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Introduction

The number of residents in the United States with Limited 
English Proficiency (LEP) has grown in recent decades.1 
According to the 2017 US Census, more than 64 million 
people aged 5 years and older speak a language other than 
English at home, and more than 25 million of the US popu-
lation are classified as “speaking English less than very 
well” or having LEP.2,3 Furthermore, approximately 60,000 
to 85,000 patients travel to prestigious medical centers in 
the United States every year for treatments not available 
in their native countries and frequently these patients also 
have LEP.4,5

Although there is a federal mandate for language ser-
vices deployment when patients with LEP navigate the 
healthcare system, interpreters are underused. Negative 
health outcomes and suboptimal healthcare quality have 

been documented for patients with LEP.6–14 However, inte-
grating medical interpreting standards into clinical practice 
has been challenging.15–17 Research demonstrates the benefits 
of using interpreter services in clinical practice. These include 
improved communication, improved patient and family 
satisfaction, and improved adherence to treatment plans. 
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Other beneficial healthcare outcomes include the reduction 
of complications and length of hospital stay, as well as 
increased use of preventive healthcare services.11–13,18–21

Despite evidence of the advantages of using interpreters, 
physicians still try to “get-by” with the use of their own 
limited language skills or those of family members as inter-
preters.15,22–24 Physician behaviors may be influenced by 
the lack of access and availability of professional inter-
preter services based on organizational structures and 
resources.25 Evidence suggests that professional interpret-
ers provide higher quality interpretation than family mem-
bers and therefore should be used.26,27

It is important to understand the use of interpreters in the 
clinical setting to be able to optimize systems to increase 
access to interpreters for patients who need one. This knowl-
edge will be a useful step toward sustained change to address 
disparities among those with LEP.

The adoption of electronic health records (EHRs) in place 
of traditional paper charts has provided unprecedented 
amounts of information (“Big data”) that allows researchers 
to evaluate larger cohorts of patients than traditional research 
approaches.28,29 Harnessing the potential of the EHR and the 
vast amounts of data within is challenging but developing and 
applying automated search strategies is a helpful approach. 
By improving validated algorithms to identify when an inter-
preter is utilized, we can support quality improvement initia-
tives, enhance clinical practice, and improve our research 
accuracy and efficiency.

Methods

Setting and study design

This is a derivation and validation cohort study which was 
approved by the Mayo Clinic Institutional Review Board 
(IRB). The IRB reviewed the study and the procedures and 
deemed the study exempt. This study did not include patient 
contact. We only reviewed and included the EHR of patients 
who had provided research authorization in accordance with 
Minnesota state statutes if applicable.30

Study participants

We included (1) consecutive adult patients (⩾18 years), (2) 
with research authorization if the state required it, (3) admit-
ted to the intensive care units (ICU) across the Mayo Clinic 
enterprise (Minnesota, Wisconsin, Arizona, and Florida), (4) 
between 1 January 2015 and 30 June 2020 (5½ years). The 
search strategies to identify when an interpreter was used 
incorporated the interpreter flag indicating an interpreter was 
needed and a combination of a preferred language other than 
English and interpreter flow sheets. Patients who did not 
need an interpreter or whose primary language was listed as 
English were randomly selected for conducting the deriva-
tion and validation. If a patient was admitted several times 

during this period, only the first admission including an ICU 
stay was included.

Our search strategy was designed to detect those who 
used professional interpreters including phone, video, or in-
person interpreters. Since this study focused on the use of 
professional interpreters, we excluded encounters in which 
interpretation by family, friends, and healthcare team mem-
bers occurred. Three random subsets of 100 patients were 
used for the derivation and validation phases (see Figure 1). 
No sample size calculation was performed. This size cohort 
has been used in previous similar derivation and validation 
studies we have conducted and is considered the accepted 
and standard size for this type of work.28,29

Manual data extraction strategies (reference gold 
standard)

Before developing the automated search strategy and to for-
mulate the gold standard for interpreter use, members of the 
study team (J.S., A.B., and S.F.) manually reviewed the 
EHRs of random patients classified as having a preferred 
language other than English and those patients whose EHR 
indicated that an interpreter was required. The study team 
examined the different ways that the “interpreter used” was 
documented by healthcare providers in the EHR including 
within flowsheets, progress, and encounter notes.

During the derivation and validation process, the refer-
ence gold standard comparison involved EHR manual 
review by two physician researcher reviewers. They exam-
ined the electronic medical record between the specified 
admission dates to assess whether an interpreter was used. 
They did this by reviewing the medical note documentation 
and the flowsheets as well as the patient-provided informa-
tion. Two reviewers (J.S. and S.F.) conducted gold standard 
electronic medical record reviews and any disagreements 
were resolved by a third reviewer (A.B.). We have used this 
approach in other studies in which manual chart review is 
the gold standard.31

Automated electronic search strategy

Although “interpreter flags” appear in the patient-provided 
information of the EHR, this does not specify whether an 
interpreter was actually used, simply that an interpreter was 
needed or that the primary language was not English. The 
search strategy algorithm was developed in several stages. 
The first derivation used patient-provided information in 
the EHR specifically “Interpreter Indicator” (which indi-
cates if a patient needs Interpreter Services) and “Preferred 
Language.” We also used applicable interpreter flowsheets 
from the EHR. The second derivation used modifications to 
the flowsheet search and interpreter needed indicator. The 
preferred language was not included in the second search 
strategy. We used the interpreter indicator search in the 
ICU DataMart. DataMart is an extensive data warehouse 
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containing a near-real-time normalized replica of Mayo 
Clinic’s EHR.32 We accessed the DataMart warehouse and 
searched the data by using JMP software. DataMart contains 
patient demographic characteristics, diagnoses, laboratory 
results, and clinical flow sheets, gathered from various 
sources within the institution.32 The data within DataMart 
has been validated and is reliable.32–34

We also used an interpreter indicator search in Mayo 
Clinic’s Advanced Cohort Explorer (ACE), an electronic 
retrieval query database within Mayo Clinic’s Unified Data 
Platform (UDP). ACE is a powerful web-based software 
toolset that enables the search of the EHR by specific text 
phrases or terms in specific parts of the clinical notes. All 
data extracted by ACE can be exported to Excel to enable 
further statistical analysis.28 Each subset sample contained 
100 patients who were randomly selected from DataMart. 
(Figure 1) These cohorts consisted of both those likely to use 
interpreter services and those not likely to use interpreter ser-
vices (see Figure 1). In order for patients to be categorized as 
“Interpreter used” using the automated search strategy, the 

patients needed to have both an interpreter indicator “Yes” 
within their demographic information as well as an applica-
ble flowsheet articulating that an interpreter was used at the 
time of the encounter we were examining.

Following the manual review of each of the derivation 
subsets, A.M. refined the electronic search strategy through 
several iterations of evaluation and refinement of the elec-
tronic search algorithm in the derivation cohorts. Once the 
search strategy was assessed and modified in the derivation 
cohorts, it was validated in the third cohort.

Statistical analysis

An overall percent agreement between the electronic search 
algorithm and the manual EHR review was calculated. 
Sensitivity and specificity were calculated by comparing the 
results to the reference gold standard for each derivation and 
validation subsets. JMP statistical software (version 10.0.0; 
SAS Institute Inc., Cary, NC) was used for all analyses. 
Furthermore, we calculated a kappa statistic to assess the 

Figure 1.  Enrollment of admissions to derivation and validation cohort.
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agreement between reviewers 1 and 2 conducting gold stand-
ard manual EHR reviews.

Results

The cohort of those with hospital admissions and at least one 
ICU admission across the Mayo Clinic Enterprise between 1 
January 2015 and 30 June 2020 was 60,268 admissions.

Primary outcome

The primary outcome of the study was to derive and validate 
a search strategy to identify when an interpreter was used by 
patients with LEP by assessing sensitivity and specificity 
with classification performance.

In the first derivation cohort, our manual review resulted 
in a sensitivity of 100% (95% confidence interval [CI] 93.5–
100) and a specificity of 89% (95% CI 75.9–96.3). The 
supervised algorithm was used for the second derivation sub-
set. The second derivation achieved a sensitivity of 100% 
(95% CI 92.6–100) and a specificity of 87% (95% CI 74.2–
94.4). The final version of the search strategy for interpreter 
use was applied to the validation subset and this achieved a 
sensitivity of 100% and a specificity of 89% (95% CI 75.9–
96.3) (Table 1). Kappa agreement between reviewers with 
the first derivation was 0.90, and with the second derivation 
and validation were 0.86, and 0.88, respectively. These can 
be construed as near perfect agreement35 (Table 1).

Discussion

In this study, we developed a very sensitive and specific 
automated search strategy for identifying patients who used 
an interpreter. The final validated search algorithm was able 
to identify interpreter utilization within a cohort with 100% 
sensitivity and 89% specificity.

Currently, almost all healthcare institutions in the United 
States have adopted an EHR to integrate distributed data 
sources.36–38 The large amount of data within the EHR pre-
sents great potential if strategies to examine the data can be 
developed. Otherwise, the large amount of data may present 
barriers to clinical research.39,40 Accessing big data usefully 
through the EHR and abstracting needed information for 
clinical research using manual data extraction methods is 
time-consuming and inefficient.29,41 The time required to 
conduct manual EHR review to identify if a patient used an 
interpreter is about 10 min per patient which is not feasible 
for researchers studying large data sets.

Strengths and limitations

Strengths of the study include the following. We used robust 
approaches during the derivation and validation processes 
with an experienced team. We did gold standard EHR review 
by having two reviewers and a third reviewer to resolve dis-
crepancies. Our kappa statistics are 0.86–0.90 and therefore 
demonstrate near perfect agreement. Despite the high sensi-
tivity, which remained at 100% in the final cohort, the speci-
ficity of the validation subset did not increase beyond 89%, 
meaning there is a small possibility of false-positive results. 
The differences between the first, second, and third cohorts 
are not statistically significant.

Based on estimated times required to conduct manual EHR 
review during this study, we believe our search strategy will 
prove very useful for future identification of patients who used 
an interpreter across our healthcare enterprise. Furthermore, it 
will provide useful foundational knowledge to build more 
real-time algorithms to identify patients who would benefit 
from an interpreter. Other institutions that use EPIC may also 
be able to leverage this approach to identify patients who used 
or need an interpreter. Based on 2019 data, EPIC has a market 
share of almost one-third of acute care multi-specialty hospital 
EHRs. It is becoming increasingly dominant and being 
adopted by healthcare systems nationwide.42

The study has some limitations. It is worth noting that we 
were able to leverage institutional software and specific data 
sets (ACE and DataMart) to conduct our study and these 
may not be available in all institutions. Therefore, external 
validation of this search strategy is needed especially if dif-
ferent electronic infrastructures exist in those institutions. 
Other institutions with diverse computational infrastructure 
may need to modify our search strategy within their patient 
data sets and EHRs.

We wanted to focus on professional interpreter use in this 
study as there is evidence that unless absolutely necessary, 
or in an emergency situation, interpretation by family and 
friends should be avoided.43,44 Using family and friends as 
interpreters threatens the accuracy and completeness of 
interpretation. This can lead to vital information being inad-
vertently or deliberately omitted or misinterpreted.42–47 
Using clinical team members who do not have sufficient lan-
guage skills can also lead to information being inaccurately 
interpreted compromising communication.44,46

In comparison to other papers describing validation and 
derivation of automated digital algorithms in which sensitiv-
ity varied from 77% to 100%, and specificity ranged from 
91% to 99.7%, the results of this study are favorable.28,33,34 

Table 1.  Sensitivity and specificity of subset groups.

Sensitivity (%) (95% CI) Specificity (%) (95% CI)

1st derivation cohort 100% (93.5–100) 89% (75.9–96.3)
2nd derivation cohort 100% (92.6–100) 87% (74.2–94.4)
Validation cohort 100% (93.5–100) 89% (75.9–96.3)

CI: confidence interval.
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Amra et al.’s28 automated electronic search algorithm sensi-
tivity ranged from 94% to 97% and specificity ranged from 
93% to 99%, while Singh et  al. achieved a sensitivity 
between 91% to 100% and specificity from 98% to 100%.33 
Others automated electronic queries demonstrated sensitivity 
ranging from 77% to 100% and specificity ⩾96%.34

The purpose of this study was to develop an electronic 
automated search algorithm to accurately and reliably detect 
patients who used professional interpreter services. This 
could then be used to reduce the time and effort needed to 
identify those who used interpreter services in a large data set. 
It is important to better understand professional interpreter 
use to foster strategies to increase timely and appropriate 
interpreter use in near real-time. Interpreter use can mitigate 
disparities experienced by patients with LEP.43–46 Interpreters 
can reduce cultural, language, and literacy barriers by improv-
ing communication between patients and clinicians.48

Conclusion

We have successfully derived and validated an “Interpreter 
used” search strategy that identifies if a patient used a pro-
fessional in-person interpreter, video-linked interpreter, or 
telephone interpreter. It can be deployed in our enterprise 
EHR demonstrating a sensitivity of 100% and a specificity 
of 89%. This method of electronic data extraction by an 
automated algorithm through institutional software con-
nected to EHR is accurate, time-saving, and cost-effective.
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