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REVIEW

Spatially resolved transcriptomics provide 
a new method for cancer research
Bowen Zheng and Lin Fang* 

Abstract 

A major feature of cancer is the heterogeneity, both intratumoral and intertumoral. Traditional single-cell techniques 
have given us a comprehensive understanding of the biological characteristics of individual tumor cells, but the lack 
of spatial context of the transcriptome has limited the study of cell-to-cell interaction patterns and hindered further 
exploration of tumor heterogeneity. In recent years, the advent of spatially resolved transcriptomics (SRT) technol-
ogy has made possible the multidimensional analysis of the tumor microenvironment in the context of intact tissues. 
Different SRT methods are applicable to different working ranges due to different working principles. In this paper, 
we review the advantages and disadvantages of various current SRT methods and the overall idea of applying these 
techniques to oncology studies, hoping to help researchers find breakthroughs. Finally, we discussed the future direc-
tion of SRT technology, and deeper investigation into the complex mechanisms of tumor development from different 
perspectives through multi-omics fusion, paving the way for precisely targeted tumor therapy.
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Background
Despite many types of research done on cancer, it is still 
one of the diseases with a high mortality rate and seri-
ously affects the quality of human life. In recent years, 
with the maturation and application of single-cell RNA 
sequencing (scRNA-seq) technology, significant break-
throughs have been made in the research of cancer 
signaling pathways, cytodynamics, and tumor microen-
vironment in various types of tumors [1, 2]. Especially 
in hematological malignancies, the application of this 
technique has made great contributions to the staging 
and treatment of leukemia [3]. However, it is far from 
enough to study only the differences in gene replication, 
transcription, and translation between cancer tissues 
and normal tissues. The heterogeneity of tumors is also 
manifested in the interaction of heterotypic cells and the 

regional enrichment of immune cells, which results in 
phenotypic differences in spatial dimensions [4, 5]. But 
for solid tumors, The homogenization of tissue before 
sequencing destroys the original spatial information 
[6]. To solve this issue, a method for nucleic acid analy-
sis after partial lysis of adherent cells was presented [7]. 
Although the spatial specificity of tumor tissue cannot 
be accurately restored, it laid a foundation for the emer-
gence of spatially resolved transcriptomics (SRT).

SRT technique was proposed based on past research 
and ongoing developments in computer approaches 
for sequencing findings. SRT combines RNA sequenc-
ing results with spatial backdrop information to help 
researchers better understand the roles of distinct cells 
and how they interact, opening up new avenues for bio-
logical research. SRT technologies have been employed 
in numerous biological investigations in recent years, 
with a great number of them being published, the major-
ity of the study focusing on embryonic development [8, 
9] and neuroanatomy [10–12], while there are still few 
cancer-related studies.
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In this review, to help researchers choose the right 
technique, we discuss the different techniques included 
in SRT at this stage, as well as the basic working princi-
ples and the existence of benefits and drawbacks of these 
techniques, including differences in spatial resolution, 
sample handling, complexity, and throughput. A slew of 
hardware and software advances have aided in the growth 
of SRT analysis reports’ reliability. In addition, a plethora 
of web-based databases have been created for usage, sub-
stantially alleviating the cost concerns of those research-
ers. We also talk about how SRT has been used in cancer 
research so far, including xenomorphic cell interactions 
in tumor tissues, tumor immune microenvironment, 
tumor ecology, and so on. Finally, we considered poten-
tial avenues for future uses of SRT technology in the field 
of tumor research, including integrating multi-omics data 
to gain a greater understanding of tumor cellular modes 
of action, this will lead to breakthroughs in the discovery 
of more targeted treatments for tumors.

Basic methods of spatially resolved transcriptomics
Different methods are classified into two groups 
based on how they encode spatial backdrop infor-
mation: One is an imaging-based method, the 
transcriptome can be read in  situ by special micro-
scopes or in combination with fluorescence in  situ 
hybridization (FISH) techniques [13], and the other 
is in  situ barcoding-based methods, Spatial back-
ground information is saved into barcodes before 

non-in situ sequencing and combined with transcrip-
tome information [14].

Imaging‑based spatially resolved transcriptomics
Imaging-based SRT enables high spatial resolution tran-
scriptomic analysis. Behind the high resolution is the 
high demand for optical imaging capability and data pro-
cessing ability. Generally, imaging-based methods are 
divided into two types: multiplexed fluorescence in  situ 
hybridization (FISH) or based on in situ sequencing (ISS). 
The two methods are similar in some respects.

Multiplexed FISH
Traditional FISH methods are greatly limited in large-
scale RNA detection due to limited color channels. Cai 
and his colleagues attempted to use enzymes to sepa-
rate the already bound FISH probes and RNA to dupli-
cate the utilization of color channels [15]. This method 
increased the number of detectable RNAs, although the 
effect is limited, it provides a new way of thinking. Excit-
ingly, Zhuang and his team proposed a new method of 
multiplexed error-robust FISH (MERFISH) [16]. RNA is 
assigned a value of “0” or “1” based on whether it is found 
in one round of detection, and the number of detect-
able RNAs is exponentially increased by several rounds 
of hybridization and binary computations in the MER-
FISH method. (Fig. 1a) At the same time, it also leads to 
the infinite magnification of small errors in each round 
of testing. MERFISH employs coding systems that ena-
ble the identification and repair of errors [16]. In 2019, 

Fig. 1  a A Multiplexed FISH strategy, achieves spatial information retention of the cell transcriptome through multiple rounds of FISH hybridization 
and binary computation. b In SPBC, tissues are placed on slides lined with beads containing gene probes containing positional information that 
can bind to tissue RNA. The tissue RNA is permeabilized onto the slide by the action of enzymes, and the tissue RNA that has bound to the probe is 
subsequently reverse transcribed into cDNA and sequenced
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MERFISH was successfully used for large-scale RNA 
imaging with about 80% detection efficiency and about 
4% false positives involving 23 cycles of hybridization 
and three-color imaging [17]. In addition, expansion 
microscopy helps reduce molecular crowding in MER-
FISH imaging applications [18, 19], and hydrogel tissue 
treatment reduces interference from lipids and proteins 
that interfere with probe-specific binding [20]. Based on 
MERFISH, improved seqFISH [21], ABER-FISH [22] and 
osmFISH [23] have been proposed to solve the issue of 
dense RNA molecular imaging. Researchers have used 
these techniques to generate medium-scale molecu-
lar resolution maps of RNA. Also, the mass production 
of recyclable probes reduces the cost of detection [24]. 
However, due to the complexity of dealing with tumor 
tissues and other technical reasons, none of them are 
widely used in cancer research in a commercialized form. 
In the future, Multiplexed FISH methods will likely be 
further applied to the quantitative analysis of low expres-
sion RNA due to their high detection efficiency.

In situ sequencing (ISS)
In situ sequencing can be done in two ways: targeted or 
untargeted. In targeted in  situ sequencing, a particular 
nucleotide is utilized as a barcode to attach to a target 
gene, and the target sequence is executed rolling cir-
cle amplification (RCA) to acquire enough fluorescence 
intensity that can be recognized precisely by the device 
[25]. The STARmap method enables the direct binding of 
probes to target RNA. Simultaneously, it used hydrogel 
tissue processing technologies with signal amplification 
techniques to overcome the problem of low detection 
efficiency in complex tissues [12]. In untargeted in  situ 
sequencing, the fluorescent in situ RNA sequencing (FIS-
SEQ) method is representative, RNA is indiscriminately 
converted to cDNA, amplified, and sequenced. Ampli-
fication primers help limit the amount of RNA detected 
[26]. The non-targeted feature allows the FISSEQ method 
to achieve full gene coverage, but also creates inefficient 
detection. Technology firms are already mass-producing 
FISSEQ reagents and apparatus [27], which might be the 
first to be employed on a wide scale in tumor spatial tran-
scriptomics investigations.

In addition, many improved in  situ sequencing meth-
ods have been proposed by researchers. By combin-
ing in  situ sequencing with non-in situ sequencing, the 
reduced accuracy of the results caused by sequencing 
large molecular weight RNAs has been settled [28]. or 
targeted sequencing, Zhuang mentioned a strategy in his 
comment [13], using the absence of signal to adjust the 
molecular density. This strategy combined with the use 
of expansion microscopy is expected to achieve efficient 

detection of large-scale RNA. For untargeted sequencing, 
we consider that we can keep some “invalid” RNA mole-
cules from being detected by increasing the specificity of 
amplification primers and reducing molecular crowding.

In situ barcoding‑based spatially resolved transcriptomics
Several in  situ DNA barcoding-based methods are 
being developed in parallel. All of these methods use 
DNA barcoding to gather spatial background informa-
tion on genes, which is then matched with gene expres-
sion data using advanced algorithms to acquire tissue 
expression profiles at complete cellular resolution. The 
main advantage of these methods is complete capture 
of the entire transcriptome, although large-scale data 
processing is relatively the imaging-based methods 
more demanding algorithm.

In the fundamental methods termed solid phase-
based capture (SPBC), spatial barcodes and RNA 
probes are printed and gridded on glass slides, then tis-
sue sections are placed on a glass slide, RNA is released 
and hybridized to the probe by enzyme penetration. 
Subsequently, the new sequence formed by the RNA 
and the probe was reverse transcribed to cDNA and 
sequenced. Finally, spatial barcodes are mixed with the 
original tissue images to match [29, 30]. (Fig.  1b) 10X 
Genomics had already taken this technology from labo-
ratory expertise to commercialization and improved 
the resolution of imaging, their new method was 
termed 10X Visium. The diameter of each well on the 
glass slide was reduced to 55 μm. They also increased 
the capture density to 5000 spots per slide by print-
ing hexagonal holes. In addition, unlike in scRNA-seq 
where a single cell suspension needs to be prepared, 
SPBC requires an optimal cutting temperature (OCT) 
compound embedded or paraffin-embedded sample of 
tissue, which does not require high cell activity. Since 
the total amount of RNA expression and the efficiency 
of RNA permeabilization vary in different tumor tis-
sues, 10X Genomics has introduced test slides to select 
the optimal permeabilization time for each sample.

To reduce the size of each spot to obtain a higher 
resolution, Slide-seq [31] and High-definition spatial 
transcriptomics (HDST) [32] were born. In Slide-seq, 
SOLiD sequencing chemistry [33] which requires the 
use of a bespoke fluidics-coupled microscope is applied 
for decoding beads, then the tissue is placed on a thin 
layer of beads for RNA capture with 10 μm resolution. 
The newest Slide-seqV2 [34] mixed advances in library 
production, bead manufacturing, and array indexing to 
achieve RNA capture efficiency ~ 50% that of single-cell 
RNA-seq data. As for HDST, an Illumina bead array is 
used to enable the SPBC to achieve a resolution of 2 μm 
[32]. Such beads are already much smaller than ordinary 
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tumor cells, providing the possibility of subcellular reso-
lution. Such high resolution allows this technology to 
greatly advance the application of spatial solved tran-
scriptomics Meanwhile, some beads are strewn across 
cells, resulting in a reduced amount of captured RNA and 
reducing the infection of housekeeping RNA for cell-to-
cell contacts analysis.

Different from SPBC, DNA barcodes will either be 
supplied to or recycled from specific tissue regions in 
another class of methods, termed selective barcoding 
(SB). GeoMx Digital Spatial Profiling (DSP) [35] and 
ZipSeq [36] were developed on this basis. DSP was also 
used for spatial solved proteomic analysis and ZipSeq 
expanded transcriptomics to the temporal dimension. 
Regrettably, they were not applied on a large scale due to 
the high cost.

This technology has enabled a leap in resolution accu-
racy, helping to understand the mode of action of tumor 
cells at the subcellular level. More and more commer-
cial reagents and instruments are gradually penetrating 
the laboratory. In our opinion, three challenges remain 
with this technology. First, after enzymatic digestion, 
RNA moves laterally in tissues, causing misaligned cap-
ture and interfering with the precision of RNA spatial 
information. Tissue pretreatment like Hydrogel-Tissue 
is needed to reduce this movement. Second, large-scale 
hybrid reverse transcription may lead to distortion of 
the original gene expression information. Third, the high 
resolution may make the differences in RNA expression 
captured between each bead small in certain regions of 
high RNA expression, leading to redundancy in the data, 
special data processing tools are needed to help solve this 
problem.

Advanced algorithms to process and analysis 
the dataset
When applied to spatially solved transcriptomics data, 
traditional analytical methods like Gene-category enrich-
ment analysis (GCEA) and Gene Ontology (GO) might 
create a considerable false-positive bias [37]. In addi-
tion, Increased data volume leads to significantly longer 
analysis times. Consequently, novel algorithms are devel-
oped. For ISS methods, He et  al. [38] introduced an 
unsupervised and annotation-free framework, termed 
ClusterMap, which defined the task as a point pattern, 
and found significant biological structures by density 
peak clustering (DPC). Cable et al. [39] developed robust 
cell type decomposition (RCTD), which could spatially 
map cell types and thus defined the spatial components 
of cell identity in Slide-seq and Visium datasets of the 
mouse brain. SPARK [40] directly models spatial count 
data through generalized linear spatial models and uses 
a computationally efficient algorithm based on penalized 

quasi-likelihood to enable the measurement of tens of 
thousands of genes. What’s more exciting, SPARK is 10 
times more efficient than the traditional method when 
analyzing 4 published datasets of spatially solved tran-
scriptomics. The advent of these aforementioned algo-
rithms has helped to reveal more biological principles 
that will be applied to tumor research in the future as 
well.

The emergence of web databases and open source 
tools
The diversity and complexity of strategies for data analy-
sis, as well as the higher cost of being a new technology, 
have limited the exploitation of spatially solved transcrip-
tomics datasets by researchers. The emergence of some 
relevant web databases is a good solution to this problem. 
Fan et al. [41] introduced SpatialDBC (https://​www.​spati​
alomi​cs.​org/​Spati​alDB), a database with 5 species, and 24 
datasets, generated by eight spatially resolved transcrip-
tomic techniques. SpatialDB is also a user-friendly online 
application that allows researchers to visualize and com-
pare spatially resolved transcriptomic data. RNAloca-
tion v2.0 (http://​www.​rnalo​cate.​org/) has many updates 
to the original version that allows for the addition and 
reorganization of RNA information involving RNA sub-
cellular localization conditions and descriptive figures for 
method, RNA homology information, and RNA interac-
tion [42]. Existing databases are more focused on bio-
logical research, and we expect the emergence of cancer 
research-related databases like GEO and TCGA in the 
future. In addition, the development and application 
of open source tools such as STUtility [43], ST Viewer 
[44], and so on, make data processing and visual analysis 
easier.

SRT technology is used in different tumor 
and other disease studies
As SRT technology continues to mature, it has been 
applied to the study of many types of solid tumors, 
including breast cancer, prostate cancer, melanoma, and 
liver cancer. Researchers have done a lot of exciting work 
with SRT technology.

In breast cancer research, researchers identified 
moderate negative Pearson correlations between can-
cer-associated myofibroblasts (myCAFs) and cancer-
associated inflammatory fibroblasts (iCAFs). MyCAFs 
were enriched in infiltrative cancer areas while iCAFs 
appeared to co-localize with several lymphocyte popu-
lations (Fig.  2a). In further research, receptor-ligand 
apical analysis of these cell co-localization regions 
revealed enrichment of immunoregulatory iCAF 
ligands and cognate T cell receptors nearby, includ-
ing chemokines, transforming growth factor-β, the 

https://www.spatialomics.org/SpatialDB
https://www.spatialomics.org/SpatialDB
http://www.rnalocate.org/


Page 5 of 12Zheng and Fang ﻿J Exp Clin Cancer Res          (2022) 41:179 	

complement pathway, and lymphocyte inhibitory/acti-
vation molecules (LTB-LTBR, TNFSF14-LTBR, and 
LTB-CD40, VTCN1/B7H4-BTLA). They also found 
that PD-L1/PD-1 and PD-L2/PD-1 were coexpressed 
in spots enriched for LAM2 cells and CD4+/CD8+ 
T cells across multiple types of breast cancer, dem-
onstrating that these cells are likely to have a role in 
immunoregulation [5]. In another study on gene copy 
variation in the progression of ductal carcinoma in situ 
to invasive ductal carcinoma of the breast, Casasent 

et  al. [45] challenged the traditional clonal lineage 
model of gene mutations occurring during the invasion 
and the evolutionary bottleneck model by preserving 
the spatial context of individual tumor gene copies in 
tissue sections (Fig.  2c), and their study established a 
new model of polyclonal infiltration of tumors, and of 
course, the same idea can be applied to transcriptome 
studies of invasive tumors. In a spatial transcriptomics 
study of HER2-positive breast cancer [46], the research-
ers correlated pathologists with RNA expression-based 

Fig. 2  a In the research of Wu et al. (2021), a Pearson correlation analysis of the spatial distribution of different cell types within breast cancer tissues 
was performed. MyCAFs and iCAFs are negatively correlated in spatial distribution, and iCAFs with appear to co-localize spatially with T cells. b In 
Casasent et al. (2018) research, breast tumor cells were divided into normal, invasive, and in situ cell on pathological images. c Casasent et al. (2018) 
used Timescape to plot clonal lineages of the major tumor subpopulation, with common ancestors indicated in grey and clonal frequencies labeled 
for the in situ and invasive regions. The results demonstrate that genome evolution occurs within the ducts before the tumor cells escape the 
basement membrane. d Berglund et al. (2018) selected several regions with different pathological annotations b. Berglund et al. (2018) sequenced 
the spatial transcriptomics of different tissues separately and selected 10 RNAs by factor analysis, with each factor corresponding to an activity map. 
e Massalha et al. (2020) found the expression of the ligand SLIT2 mRNAs (red dots) in pericytes (marked by red dashed lines) and ROBO4 mRNAs 
(green dots) in endothelial cells (marked by green dashed lines). f Massalha et al. (2020) used the NicheNet to detect the interaction between 
pericytes and endothelial cells. g Massalha et al. (2020) performed an enrichment analysis of the highly correlated pathways and replicated it 
in multiple samples from different patients. h In Levy-Jurgenson et al. (2020) study, Generate tensor molecular thermograms from pathological 
sections, subsequently generate inhomogeneous distribution maps of cells, and generate heterogeneity indices using the formula
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clusters and found a high degree of consistency, and 
likewise found that data-driven expression-based 
clustering captured signals that were missed by visual 
inspection. They have also used spatial transcriptomic 
data to automatically generate pathological annotations 
of HER2-positive breast cancer, the same approach was 
also applied to the annotation of invasive ductal carci-
noma pathology [47].

In digestive system malignancy research, Massalha 
and his colleagues used SRT technology to demonstrate 
that the interaction between endothelial cells and their 
attached pericytes plays an important role in the inter-
nal vascularization of malignant tumors of the liver [48]. 
In another study on pancreatic tumors, Moncada et  al. 
[49] identified spatially restricted enrichment of ductal 
cells, macrophages, dendritic cells, and cancer cell sub-
populations by multimodal intersection analysis (MIA) 
and demonstrated co-localization of inflammatory fibro-
blasts and cancer cells expressing stress response gene 
modules. Notably, they also detected a subpopulation of 
tumors with specific antigen presentation or apol1 hyper/
hypoxia gene signatures not identified in previous single-
cell sequencing studies and confirmed the existence of 
the subpopulation by dual fluorescein assays. In a recent 
study, scientists have proposed a genome atlas combin-
ing single-cell CITE-seq, spatially resolved transcrip-
tomics, and spatially resolved proteomics. By integrating 
data sets from different histologies, the identification 
and localization of all hepatocytes are made more reli-
able. They also revealed the respective spatially resolved 
cellular niches of these macrophages and the microen-
vironmental circuitry driving their unique transcrip-
tomic properties [50]. Although this innovative research 
method is currently only used to describe the structure of 
normal liver tissue, it will also become a trend in cancer 
research in later years.

In melanoma research, Toki et  al. [51] used the DSP 
platform to classify the melanoma lymph node tissue 
section into CD68 + compartment, CD45+ compart-
ment, and tumor compartment. Further studies showed 
that high CD8+ T cell counts in the CD65+ compart-
ment were associated with prolonged OS and PFS, while 
this association was not found in the CD45+ compart-
ment. To discover more prognosis-related molecules, 
the authors selected multiple cut-off points within dif-
ferent cells. They found several predictors of longer PFS 
such as CD8, CD3, TIM3, HLADR, CD11c, B2M, and 
PDL1. In another research, Kim et  al. [52] applied SRT 
technology to gene expression profiling in melanoma 
lymph node metastases. They used tSNE to visualize the 
expression profiles after factor analysis, generated fac-
tor activity maps, and identified RNAs that were highly 
expressed in different strains of melanoma. In addition, 

they noted that PMEL and SPP1 were overexpressed in 
the tumor cell cluster whereas lymphoid tissue regions 
far away from and near, the tumor cell areas were char-
acterized by expression of the immune-related genes 
CD74 and IGLL5, respectively. Their work has led to a 
deeper understanding of the intratumoral heterogeneity 
of melanoma.

In addition to tumor research, SRT technology was 
being used more often in the exploration of neurological 
diseases. Chen et al. [53] used the human APP knock-in 
APPNL-G-F mouse model to probe transcriptomic changes 
during the progression of Alzheimer’s disease. They dis-
covered a multicellular co-expressed gene network of 57 
Plaque-Induced Genes (PIGs) that define a series of coor-
dinated and tentatively defined the role of various types 
of cells contained within the network in the process of 
amyloid plaque formation and the interaction pattern 
between them. Gregory et al. [54] identified postmortem 
cerebral cortical tissue from a patient with myeloprolif-
erative sclerosis using the SRT technique and found a 
spatial transcriptional imbalance between GRM3 and 
USP47. Although the resolution of 100 μm and the high 
degree of autolysis of tissue RNA after death had a major 
impact on the accuracy of the results, this study pio-
neered the application of SRT technology to human brain 
tissue. In a study of the glioma tumor microenvironment, 
Vidhya et al. [55] analyzed transcriptomic data to identify 
a subpopulation of HMOX1+ myeloid cells that release 
interleukin-10, which mediates T-cell depletion, leads to 
immunosuppression, and affects tumor progression.

Some ideas on the application of SRT to oncology 
research
ScRNA-seq has played an important role in tumor 
research, including probing tumor heterogeneity [56], 
predicting tumor progression [57], and identifying spe-
cific subgroups [58]. However, scRNA-seq tissue process-
ing methods, both the traditional FACS technology [59] 
and the more advanced nanogrid technology [60], have 
made the lack of spatial information of gene expression 
due to homogenization. Today SRT can preserve RNA 
positional information at a higher resolution, facilitating 
the understanding of tumor cell type and functional dif-
ferences in different regions and further discovering het-
erogeneity within and between tumors.

The various methods of SRT mentioned above have 
been used to varying degrees in cancer research. SPBC 
is useful for developing large-scale tumor SRT data-
bases because it integrates sequencing and pathol-
ogy sectioning with high data throughput [61]. Due to 
the subcellular-level resolution, HDST is appropriate 
for high-precision expression profiling of individual 
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tumor cells [46]. The image-based methods, research-
ers are using more often for complex neurodevelopment 
because of the advantages of visualization [11], and we 
believe that these methods have unique strength for the 
study of neurological tumors as well.

Since the application of SRT to oncology research is 
still in the early stage of exploration and there are not yet 
some fixed research methods, we propose several main 
application directions based on the understanding of pre-
vious studies to provide ideas for investigators.

Further search for cell subgroups after unsupervised 
clustering
Differential gene expression analysis of tumor and para-
neoplastic tissues has become an important tool in tumor 
bioinformatics research to help find coding or non-cod-
ing RNAs that play an important role in tumor develop-
ment. In transcriptomics at the level of gene expression, 
SRT allows the working mechanism and working regions 
of coding or non-coding RNAs to be more tangible 
through the preservation of gene expression location 
information.

In transcriptomics studies at the cellular level, some 
large research projects have distinguished different types 
of tumor-associated cells and found their specific bio-
markers after large-scale single-cell sequencing of all cells 
in regional cancer tissues and downscaling and cluster-
ing analysis of sequencing data using algorithms such 
as t-SNE or UMAP [62], which is undoubtedly a great 
breakthrough for further delineation of molecular typ-
ing of different kinds of tumors and provides ideas for 
individualized targeted therapy for tumors. However, the 
workload and cost of sequencing thousands or even tens 
of thousands of single cells are huge, and the differences 
in the pre-sequencing pretreatment received by different 
cells can also lead to questions about the authenticity of 
the sequencing results. Although SRT technology is still 
not a complete replacement for such research methods, 
it is slowly entering the minds of researchers due to its 
simplified workflow.

In the mapped spatial transcriptional profiles of tumor 
cells, the enrichment of some RNAs makes it easy to 
identify regions with active molecular pathways and 
has led to a clearer direction for studying the role of 
these aberrantly expressed RNA molecules in tumors. 
Berglund et al. [61] in their study analyzed a tissue sec-
tion containing a tumor and performed a factor analysis 
of its spatial transcriptomics sequencing results. They 
identified a total of 10 mRNAs including KLK3, KLK2, 
MSMB, and ACPP as classification factors (Fig. 2d), and 
performed hierarchical clustering of these factors into 
four major categories corresponding to cancer, PIN, 
inflammatory, and normal gland tissues in the annotated 

pathology. This approach became the basis for automated 
tissue molecular annotation. Different annotated tis-
sues have unique gene expression statuses, for instance, 
there was an enrichment of SPINK1 and PGC in cancer 
tissues, as well as deletion of ACPP. They then applied 
this type of molecular annotation to other tissue sec-
tions and found that the annotation results were similar 
to pathological annotation. They also found differences 
in the tumor center and peripheral expression. TAGLN, 
HLA, and ACTB are highly expressed in the peri-can-
cerous area which may be closely associated with tumor 
metastasis. Along the same lines, pancreatic tumor tissue 
was divided into cancer region, pancreatic tissue, duct 
epithelium, stroma [49], and melanoma lymph node tis-
sue was classified into CD68 + compartment, CD45+ 
compartment, and tumor compartment [51]. Research-
ers have further built on this foundation by searching 
for specific molecular phenotypes and combining them 
with unknown patterns of cellular interaction or clinical 
prognosis to achieve a classification of tumor cell sub-
populations. For example, Sinjab [63] et al.demonstrated 
that transcriptomic features span normal tissue regions 
to reach lung adenocarcinoma (LUAD), where elevated 
expression of CD24 in epithelial cells drives primary 
tumor features. Their study helps to identify cell popu-
lations, states, and phenotypes in the geographical and 
ecological progression of LUAD from the lung, including 
high-potential targets for early interception.

A relatively fixed pattern exists for the analysis of spa-
tial gene expression differences in SRT data. Firstly, spa-
tial enrichment of some genes is found using algorithms 
such as SVG, and common tools include SpatialDE [64] 
and Trendsceek [65]. Then different functional regions 
are sorted out according to the expression of specific 
genes, corresponding to abnormal metabolism, hypoxia 
response, vascular neogenesis, etc. SpaGCN [66] helps to 
realize this step. Finally, the clustered cells were mapped 
to different functional areas and some cell subpopula-
tions with specific functions and their biomarkers were 
found.

Perhaps selecting multiple regions of tumor tissue 
for traditional single-cell sequencing would yield the 
same findings, but spatial transcriptomics seems to be 
more advantageous for interpreting tissue in junctional 
regions, especially when tumor boundaries are unclear.

However, unlike traditional single-cell sequencing, SRT 
appears to utilize a relatively fixed size point, rather than 
cells in the original sense, but even cell sizes and mRNA 
expression are different for the same type of cells. When 
spatial transcriptome resolution is not improved to the 
single-cell level, using SRT technology instead of tradi-
tional single-cell sequencing is likely to result in an over-
lap of cellular expression within a single point. Therefore, 



Page 8 of 12Zheng and Fang ﻿J Exp Clin Cancer Res          (2022) 41:179 

it becomes important to deal with the precise relation-
ship between points and individual cells. Cell2location 
[67] and tangram [68] could apply deconvolution analy-
sis to determine the type of cells contained in each point. 
Moreover, due to the limitations of sequencing technol-
ogy, some low-expressed genes may not be detected and 
tangram [68] helps to predict the expression of these 
genes in various types of cells. All of the above tech-
niques make the analysis of SRT data more realistic and 
convincing.

There is no quantitative index to visualize tumor het-
erogeneity in the aforementioned studies, and interest-
ingly, Levy-Jurgenson et al. [54] proposed a new concept 
called heterogeneity index (HTI). They classified tumor 
cells into three categories: high expression of MKI67, 
high expression of miR-17, and high expression of MKI67 
and miR-17. The uniform spatial distribution of these 
three categories of tumor cells corresponds to a higher 
HTI (Fig. 2 h). HTI can quantify the level of heterogeneity 
of a given image from a tensor molecular map. They also 
demonstrated a high correlation between HIT and breast 
cancer prognosis, a finding provided.

The analysis of spatial differences in RNA expression in 
tumor tissues is not just an improvement on scRNA-seq, 
but a major step forward in the search for important mol-
ecules in the mode of action of tumor cells. We expect 
that more HIT calculation methods for other types of 
tumors will be proposed by researchers, advancing SRT 
in the field of oncology research and achieving funda-
mental breakthroughs.

Exploring heterotypic cell interactions
Tumor heterogeneity is largely reflected in heterotypic 
cell interactions in the tumor microenvironment, and 
previous studies have found that Cancer-associated fibro-
blasts (CAFS) are associated with poor prognosis [69, 70] 
while tumor-infiltrating lymphocytes (TILs) aggregation 
predicts high response to neoadjuvant chemotherapy 
[71]. SRT predicts the mode of action of heterotypic cells 
in the tumor microenvironment by monitoring the spa-
tial expression of different cellular receptors and ligands 
and the regional enrichment of heterotypic cellular 
markers.

In a recent study, Massalha et  al. [48] identified 
endothelial cell-peripheral cell interactions in liver 
malignancies. They first identified the co-localization of 
endothelial cells with pericytes on a spatial map. They 
then applied NicheNet [67], a computer technique that 
predicts ligand-receptor interactions based on down-
stream target gene activation, to demonstrate that 
the pericyte SLIT2 ligand and the endothelial ROBO 
receptor form the SLIT-ROBO signaling pathway and, 
together with other pathways, promote angiogenesis 

within malignant tumors (Fig.  2e-g). Most likely, this 
pathway will be a new site for targeted therapy in liver 
tumors. In breast cancer studies [5], spatial distribution 
correlation between fibroblasts and lymphocytes has also 
been found, and enrichment of multiple receptor-ligand 
pathways was identified. In addition, researchers have 
discovered evidence of diverse cellular interactions in the 
tumor microenvironment in other types of cancers, such 
as malignant melanoma [72] and prostate cancer [61].

For the study of heterotypic cell interaction mecha-
nisms within different types of tumors, the application of 
SRT technology may vary depending on the tissue mor-
phology and cell receptor expression, but a general idea 
exists. First, by investigating the spatial correlation of the 
distribution of heterotypic cells in the region, the cell-cell 
proximity network or fraction is used to identify the two 
cell types that are more likely to be associated (positively 
or negatively) in the course of tumor biology, thus allow-
ing for a narrower and more targeted study. Then some 
biological processes that may exist between selected 
cells are identified through previous studies or signaling 
pathways that may intersect between cells are predicted 
using bioinformatics methods. Finally, to accurately ver-
ify the reliability of the pathway presence, apical analysis 
of receptor-ligand expression was performed using tools 
such as cellphoneDB [73] to better understand the mode 
of action between heterotypic cells.

In our view, SRT technology applied to the study of 
heterotypic cell interactions has several advantages over 
conventional methods. Firstly, regional aggregation and 
co-localization between different cell types can be eas-
ily detected by the analysis of spatial differences in the 
expression of specific markers of them. Notably, this is 
in comparison to the findings from pathological sections 
alone, which tend to be more precise and easier to detect 
the distribution of heterogeneous cells in low-grade 
tumors. Secondly, most previous studies in this area have 
simply analyzed the expression of cellular receptors and 
ligands and then predicted the potential mode of action 
between cells. However, owing to the retention of spatial 
information, the signaling routes established between 
cellular receptor ligands are identified more intuitively, 
which reduces the false positive rate produced by the 
prediction calculation approach. Thirdly, SRT methods 
are also expected to assist in the investigation of three or 
more cell contact patterns, which will undoubtedly be a 
quantum leap in the field of oncology research.

Fusion of expression profiles with pathology images
It is well known that pathology is the gold standard for 
the diagnosis of solid tumors. However, the emergence of 
SRT technology seems to shake the status of traditional 
pathology diagnosis. When drawing the spatial maps 
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of prostate cancer transcriptomes, Berglund et  al. [61] 
found that the cancer expression region exceeded the 
pathological annotation region marked by experienced 
pathologists. These “high-risk areas” over the portion 
may determine the scope of the surgery. The investiga-
tors also used the spatial transcriptome to automate the 
pathological annotation of HER-2-positive breast cancer 
[46] as well as invasive ductal carcinoma [47]. Although 
this method cannot replace pathological sections in the 
short term due to cost and may provide pathologists with 
some clinical decisions hereafter.

With the development of computer technology, deep 
learning has also been applied to oncology research. 
Bryan et  al. [74] presented ST-Net, a deep learning 
method that captures high-resolution gene expression 
heterogeneity by combining spatial transcriptomics and 
histological pictures. ST-NET uses easily available hema-
toxylin eosin-stained histopathology images to predict 
spatial differences in the expression of 102 genes with 
a resolution of 100 μm, including GNAS, FASN, DDX5, 
XBP1, and other known breast cancer biomarkers. 
To reduce experimental noise, they averaged the gene 
expression values of each point with those of the adjacent 
points. ST-NET was directly applied to the interpreta-
tion of breast cancer HE images from the TCGA tumor 
database, the results demonstrate that this algorithm can 
be extended to the construction of breast cancer gene 
expression datasets without repeated training, and It is 
also applicable to the tumor genome, The same approach 
has also been well applied in the field of colon cancer 
research [75]. The widespread application of this tech-
nique requires a great deal of preliminary work, includ-
ing the mapping of large-scale spatial transcriptions, the 
standardization of a large number of pathological sec-
tions, and the iterative training and continuous improve-
ment of the algorithm. Also, it is worth thinking about 
how to reduce the impact of staining and decolorization 
on the tissue transcriptome. In the future, these meth-
ods will probably be widely employed in transcriptomics 
research and early diagnosis of cancer.

A “pseudo‑timeline” on the same tissue section to explore 
tumor progression
While SRT technology is maturing, time resolved tran-
scriptomics is also entering the vision of researchers, 
and this approach is now more frequently used for tran-
scriptomic alterations during embryonic development. 
In tumor research, since the spatial structure of the 
same tissue changes greatly over time, which makes it 
extremely difficult to compare transcriptome differences 
at different time points, most of the spatial transcriptom-
ics studies at this stage stay at the cellular level. Research-
ers have also come up with some solutions to address this 

difficulty. One is constructing animal models with stable 
tumor size and intratumor structure to minimize tran-
scriptome differences due to spatial structure. The other 
is selecting cells at different stages in the same tissue 
section for transcriptomic or genomic analysis, forming 
a “pseudo-time” axial approach to research. The former 
procedure seems to be more complicated and ensuring 
the survival of the model animals after sampling is a big 
challenge. Of course, the latter also has some drawbacks, 
as the transcriptome changes during tumor development 
cannot be fully reflected in a single tissue section at a cer-
tain stage.

Interestingly, researchers made a related attempt a 
few years ago. In studying the progression of ductal 
carcinoma in  situ (DCIs) to invasive ductal carcinoma 
(IDC) in the breast, Casasent et al. [45] classified tumor 
cells into DCIs and IDC by observing whether they 
crossed the basement membrane on pathological images 
(Fig.  2b), then they used the spatial context of preserv-
ing gene copies of individual tumors in tissue sections 
to discover a direct genomic genealogy between in  situ 
and invasive tumor subgroups and further demonstrate 
that the vast majority of mutations occur in ducts that 
do not become infiltrated (Fig.  2c). This research idea 
can be extended to other aspects of tumor research. For 
example, by observing changes in the number of relevant 
receptor expressions on the cell surface, the mechanisms 
of drug resistance to targeted drugs can be studied in 
depth. Another example is to predict multiple biologi-
cal alterations occurring during metastasis by observ-
ing the transcriptome differences between primary and 
metastatic.

Conclusion and prospects
Among lots of SRT methods, the SPBC technique has 
been the first to be commercialized and widely used 
in various studies due to its relatively simple method, 
mastered workflow, and low cost. Although HDST can 
achieve subcellular resolution, the need for special Illu-
mina beads limits its applicability. The image-based 
method is also maturing, and it is expected to give full 
play to its visualization advantages and become the 
choice of a non-professional. In situ sequencing methods 
such as FISSEQ and STARmap can also achieve subcel-
lular resolution and detect more genes, but are still lim-
ited to a few independent laboratories due to customized 
technology and lower experimental throughput. The 
continuous improvement of various technologies has 
also gradually overcome the two main difficulties of data 
throughput and resolution, and the emergence of open-
source tools and network databases has greatly lowered 
the threshold of SRT research.
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Despite the achievements of SRT technology in 
cancer research, there is still much room for future 
improvement as a novel research tool. Through SRT 
technology, the heterogeneity of each type of tumor 
can be reflected as a more quantitative index and corre-
lated with tumor survival or treatment response, which 
facilitates tumor-related clinical research. The integra-
tion of SRT technology with computer technology is 
expected to lead to more automated and accurate stag-
ing of tumor tissues, reducing the work pressure and 
possible visual errors of pathologists. At the present 
stage, spatial transcriptomics research is more focused 
on the description of the original expression profile of 
tumors, and this part of the research results does not 
play many roles in clinical tumor treatment. The direc-
tion of future research can be expanded to tumor-
targeted therapy and chemotherapy drug resistance 
mechanisms and SRT technology can indirectly benefit 
patients.

Some researchers have integrated SRT technology 
with spatial genomics and spatial proteomics through 
mass spectrometry and multi-bit immunofluorescence 
to gain more insight into cellular metabolic processes 
and protein post-translational modification mecha-
nisms [76–79]. However, such multi-omics fusion 
approaches have not been widely carried out due to the 
complexity of the research methods and technical bot-
tlenecks. We come up with a bold idea, in SPBC meth-
ods, improving hybridization probes to combine more 
biomolecules including DNA coding strands, non-cod-
ing RNAs, and proteins, enabling spatial multi-omics 
studies of the same tissue. The proposal of DBiT-seq 
[80] also provides a new strategy for multi-omics fusion 
studies of tumor tissues. As the spatial multi-omics 
research system continues to mature, it will be applied 
to the precise localization of tumor mutated genes, the 
detection of tumor cell communication networks, and 
the retrieval of abnormal proteins in the future, help-
ing researchers deepen their understanding of cancer 
pathogenesis and progression mechanisms, and driv-
ing the discovery of new therapeutic targets and more 
advanced treatments.
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