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Abstract

Although conventional cigarette smoking is declining, emerging tobacco related products (ETRPs) 

are currently gaining ground, especially among the youth. These products include electronic 

cigarettes, waterpipes/hookah, cigars/cigarillo, smokeless tobacco, and heat-not-burn cigarettes. 

The observed increase in the use of ETRPs is multifactorial and complex but appears to be mainly 

driven by efforts from the major tobacco companies to reinvent themselves, and present more 

appealing and allegedly safe(r) tobacco products. However, it is becoming apparent that these 

products produce substantial amounts of toxic chemicals, many of which have been shown to exert 

negative health effects, including in the context of the cardiovascular system. Thus, there has been 

research efforts, albeit limited in general, to characterize the health impact of these products on 

occlusive/thrombotic cardiovascular diseases (CVD). In this review, we will discuss the potential 

impact of ETRPs on thrombosis-based CVD. Specifically, we will review how these products and 

the major chemicals they produce and/or emit can trigger key players in the process of thrombosis, 

namely inflammation, oxidative stress, platelets, coagulation, and the vascular endothelium, and 

the relationship between these effects.

Introduction

There is overwhelming evidence that conventional cigarette smoking (CS) is a major risk 

of cardiovascular disease (CVD), not only to active users, but also individuals within 

close vicinity [1, 2]. For instance, CS in both men and women increases the incidence 

of myocardial infarction (MI) and fatal coronary artery disease (CAD) [3]. Similarly, studies 

also demonstrated that even low-tar cigarettes increase the risk of acute cardiovascular 

events in comparison to nonsmokers [4]. Along the same lines, passive smoking or 
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environmental tobacco exposure- with a smoke exposure about that is only 0.01% that 

of active CS- was found to be associated with approximately a 30% increase in risk of 

CAD, compared with an 80% increase in active smokers [1]. It is worth mentioning that 

the risk of CVD due to CS is both dose and duration dependent [3, 5, 6]. In short, the 

available set of facts- that took decades to accumulate- document a clear link of CS to major 

negative health consequences, particularly in the case of CVD. This body of evidence, along 

with efforts from private and public entities mounted “push back” campaigns against CS 

use, which is considered a public health problem. Consequently, these efforts have resulted 

in noticeable decline in CS use in the United States (US) and Europe [7]. Nonetheless, 

although CS has experienced a declining trend on a global scale [8], emerging tobacco 

related products (ETRP) are gaining ground [9], especially among the youth [10, 11], 

and women of childbearing age [12, 13]. The observed increase in the use of ETRPs is 

multifactorial and complex but appears to be mainly driven by efforts from the major 

tobacco companies to reinvent themselves, and present more appealing and allegedly safe(r) 

tobacco products [14–16]. Fortunately, nonetheless, these ETRP are now the focus of 

rigorous research efforts-including from our team- to understand their safety profile and 

their effects on health outcomes, including in the context of thrombotic CVD. It is of utmost 

importance to note that thrombosis is a major mechanism of occlusive CVDs. To this end, 

thrombosis is defined as the pathological condition in which a blood clot is formed within 

blood vessels, lead to obstruction of blood flow, and that can manifest as a MI or stroke. 

Major players in thrombosis include hyperactive platelets, activated coagulation system, and 

vascular endothelium injury. Therefore, in this review we will discuss the potential impact of 

ETRPs on thrombotic based CVD. Furthermore, we will review how these products and the 

major chemicals they produce/emit can trigger inflammation, and oxidative stress, as well as 

how they impact platelets, coagulation, and the vascular endothelium- all of which are key 

players in the process of thrombosis- and the relationship between these effects.

Emerging Tobacco Related Products

ETRPs are group of products that include electronic cigarettes, waterpipes/hookah, cigars/

cigarillo, smokeless tobacco, and heat-not-burn (HNB) cigarettes (see Table 1). These 

products emerged on the premise of their safe profile – especially in current smokers 

trying to quit - in comparison to traditional cigarettes, and this assumption made them very 

appealing to many including the youth (e.g., high and middle school students; Figure 1A). In 

the next section, we will describe the different ETRPs and their health impact especially in 

the context of thrombotic CVDs.

E-cigarettes

Electronic cigarettes, also referred to as “e-cigs”, “vapes”, and “electronic nicotine delivery 

systems” (ENDS), are devices that include a power source, a heating element, and a 

prefilled or e-liquid refillable tank or cartridge (pods). These battery-operated devices exist 

in different sizes, colors, and shapes, some of which are like cigarettes and pipes. Newer 

generations on the other hand, are similar to USB flash drives or slim pens [17]. Notably, 

e-cigarettes contain different percentages of nicotine and flavors [18] that are dissolved 

in glycerol and propylene glycol. These are the main constituents of the e-liquid, which 
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is heated to generate aerosols [19]. An analysis of brands (Figure 1B) websites revealed 

that there are more than 15,000 flavors and the most common are tobacco, menthol, alcohol/

drink, fruit and dessert/candy [20] Since 2015, the popularity of the USB-like device JUUL 

has grown significantly, becoming the most popular device sold in the US [21]. To this end, 

and likely due to their success, other companies have also manufactured separate e-cigarette 

devices containing prefilled e-liquid in pods like JUUL [22]. It is noteworthy that although 

e-cigarettes do not emit large smoke clouds in comparison with traditional cigarettes, the 

pods may in fact contain as much nicotine as a pack of 20 regular cigarettes [22]. Indeed, 

e-cigarettes have the capacity to deliver levels of nicotine similar to traditional cigarettes. 

Additionally, a vast number of e-cigarette users are dual users, meaning that they use both 

types of cigarettes (traditional and electronic), and hence are consuming toxic substances 

from both products [23]. Importantly, e-cigarettes were found to be associated with MI 

even after adjusting for conventional cigarette use [24]. Furthermore, it was observed that 

there is an association between some days e-cigarette use and MI (odd ratio: 2.11, 95% CI: 

1.14–3.88, p = 0.017), as well as between coronary heart disease and daily e-cigarette use 

(odd ratio: 1.89, 95% CI: 1.01–3.53, p = 0.047; [25]). Also, there is evidence that e-cigarette 

use is associated with stroke, when used with conventional cigarette smoke (dual use), even 

when compared with current sole conventional cigarette use in young adults [26]. Finally, 

the use of e-cigarettes is shown to be associated with increase in platelet activity[27], a cell 

that is known to be a main player in thrombotic CVDs.

Waterpipes

The use of waterpipes, also known as hookah or shisha, has been rising around the world, 

mainly in young adults [28]. Many factors have been attributed to their popularity, such as 

the use of flavored tobacco, marketing, and the misperceptions about their adverse health 

effects [29]. The tobacco used in waterpipes is also called mouassal “honeyed tobacco”, 

which usually contains 30% tobacco and around 70% honey/sugarcane, as well as glycerol 

and flavors [30]. Most recently, e-hookah was introduced as a healthier alternative to 

the regular charcoal operated waterpipes, and it was “picked up” quickly by users [31]. 

Two types of e-hookahs are available in the market, e-hookah pens (they are mostly 

disposable) and e-hookah bowls (used in similar manner to the regular hookah or waterpipe). 

Interestingly, a recent study has shown that e-hookahs have a distinct user profile (common 

among females and higher prevalence of substance use) when compared to e-cigs [32]. In 

terms of their negative health effects, indeed, data has shown that smoking waterpipes is 

associated with MI [33, 34], and we have recently shown that they can directly induce 

occlusive thrombotic disorders [35]. Nevertheless, data that link waterpipes to negative 

clinical outcomes are generally limited, and hence more research is needed in this area.

Cigars/Cigarillos

Cigars represent perhaps the simplest form of tobacco products, in which tobacco is 

wrapped in a “tobacco” leaf, which is different from a cigarette in which tobacco roll is 

wrapped in paper. Cigarillo is a common and distinct cigar product [36], and is shown to be 

increasingly used among youth [37] (Figure 1C). In addition, cigarillo users are most likely 

to also be users of multiple tobacco products[38], and tend to be low income, and represent 

Alarabi et al. Page 3

Life Sci. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



racial/ethnic minority youth living in urban centers[39, 40]. Concerningly, studies on the use 

of cigars, toxicant exposure, and health effects are limited [41]. Nonetheless, cigar smoking 

has been associated with increased risk of CAD, and aortic aneurysms [42]. This should be 

reconciled with the rather interesting fact that the use of cigars is becoming more common 

among youth; primarily because of curiosity, peer influence, and low cost [43].

Heat-Not-Burn tobacco products

The heated tobacco products, also known as heat-not-burn (HNB) tobacco products, 

represent the most recent “invention” from the tobacco industry, and are claimed to 

be less harmful. These battery-operated devices heat tobacco to a maximum of 350°C 

(500°F) to generate an inhalable aerosol [44]. They also contain nicotine, propylene glycol, 

flavors and other tobacco particles [45, 46]. HNB products contain as much nicotine as 

traditional cigarettes, although the levels of nicotine in the aerosols may be lower than 

those in cigarettes [47]. Of note, the heated tobacco products are the least well-characterized 

products among the ETRP. Nevertheless, it has been indicated that due to the lack of 

combustion in HNB, less toxicants are formed in the aerosol of these products than in 

cigarette smoke [48]. However, the aerosol of heated tobacco contains the same acrolein, 

formaldehyde, benzaldehyde, acenaphthylene, nicotine, carbon monoxide, and particulates 

that are the harmful constituents of conventional cigarette smoke [45]. Nonetheless, there 

is limited data on the effects of HNB on general health and cardiovascular endpoints; a 

knowledge gap that warrants attention.

Smokeless Tobacco

Smokeless tobacco products contain fire-cured tobacco that is powdered for nasal or oral 

snuff use, and is also grated for chewing use[49]. The effect of smokeless tobacco on the 

cardiovascular system is controversial. On one hand, a systematic review indicated that there 

is insufficient data to link smokeless tobacco to CVD, including thrombotic events[50]. On 

the other hand, data have shown that smokeless tobacco products are not harmless, and 

that for instance, their long-term use may be associated with an elevated risk of MI and 

stroke [51]. One main assumption driving the use of smokeless tobacco is that they help in 

smoking cessation. This assumption was disputed by a randomized trial, which concluded 

that success of smokeless tobacco products as means of smoking cessation is low, and that 

they are indeed associated with risks for long-term adverse events [52]. A large case-control 

study found that smokeless/chewed tobacco increased the risk of MI and the highest increase 

in the risk of acute MI was in smokers who also chewed tobacco [53].

In summary, although the available data are in general still preliminary and there is an urgent 

need for more longitudinal studies, they indicate that ETRPs are instigators of thrombotic 

events. Thus; in the next section we will focus on what is known regarding the major 

mechanisms that play a role in ETRF-mediated thrombosis
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Emerging Tobacco Related Products and Thrombosis

Thrombosis, which is the formation of blood clots inside blood vessels, can lead to a 

reduction in the blood supply to organs, and consequently hypoxia and/or tissue damage. 

Hemostasis on the other hand, is the physiological balanced response to vascular/circulatory 

injury that results in the formation of a platelet-fibrin clot, which prevents further bleeding. 

The hemostatic machinery integrates many players, including the endothelium, the clotting 

factors (e.g., fibrinogen) and importantly platelets, working along the fibrinolytic system 

[54]. These elements are there to ensure the formation of a stable clot that can seal the 

damaged blood vessel. Exaggerated responses to endothelial injury can lead to thrombosis 

[55], a critical event that is associated with MI and stroke [56]. Thrombosis can also lead 

to venous thromboembolic events, which account for considerable morbidity and mortality 

[57]. It has been shown that for thrombosis to take place there must be 1) an abnormal 

pro-thrombotic activity (e.g., hyperactive platelets[58], increase plasma fibrinogen[59]), 

2) abnormal antithrombotic activity (e.g., defect in the inhibitory prostaglandin/PGI2’s 

antiplatelet function[60]), 3) an increase in thrombin generation[61], 4) vascular cell 

damage[62], 6) and fibrinolysis system failure or inhibition[63]. These processes are shown 

to be impacted by a number of ETRPs (Table1). These data provide evidence that ETRPs 

indeed present a risk in developing thrombotic CVDs, through modulating different aspects 

of hemostasis. Nonetheless, these studies are limited by the sample size used and the 

observational nature of their design, thereby opening the opportunity for more longitudinal 

studies, which would be expected to contribute more meaningful results in linking these 

products to thrombotic CVDs.

In this connection, and much like CS[64, 65], ETRPs are found/shown to produce 

proinflammatory toxic chemicals and reactive oxygen species [66–70], both of which are 

instigators/promoters of the thrombotic process, which is essential for development of 

occlusive CVDs. Surprisingly, there has not yet been any clear model to link these processes 

together in a manner that would aid not only in understanding the complete picture of the 

disease conditions, but also how these processes work in an intertwined manner to form a 

continuous cycle of harm to the users of these products.

Emerging Tobacco Related Products, Inflammation, Oxidative Stress, and 

Thrombosis

It is inferred from the evidence in the literature that inflammation, oxidative stress, and 

thrombosis are interconnected processes that can be very detrimental to our cardiovascular 

system health. Therefore, it is imperative to discuss this process in one framework to 

appreciate their role in the disease state. To this end, animal and human studies (including 

data from Population Assessment of Tobacco and Health Study (PATH) indicate that 

the majority if not all of the tobacco products can induce inflammation and oxidative 

stress [66–71]. For instance, e-cigarette usage was found-some of which by our group- 

to be associated with increase in proinflammatory proteins IL6, TNFα, and CXCL8[67], 

ROS[72] and a heightened risk of thrombosis [27, 73]. These effects are possibly due to the 

proinflammatory toxic chemicals produced by heating the e-liquid. Similarly, waterpipes 
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are known to produce many proinflammatory toxic chemicals [66]. In fact, it is now 

known that waterpipes increase proinflammatory cytokines IL-6, IL-8, IL1β and TNFα, 

as well as markers of oxidative stress such as 8-isoprostane, myeloperoxidase, and matrix 

metalloproteinase-9[74], all of which are preconditions for development of CVD [66, 75, 

76]. Smokeless tobacco has also been shown to cause inflammation [77] and to produce 

oxidative stress [78]. Most recently, HNB products were found to induce oxidative stress and 

inflammation [79–81] in a manner similar to conventional cigarettes. It should be noted that 

inflammation and oxidative stress are strong instigators of thrombosis, the main pathology of 

acute occlusive cardiovascular events.

With regard to the interconnectedness of these processes, it has been observed that 

inflammation can shift the hemostasis response toward a prothrombotic state [82]. In fact, 

data have shown that inflammation may also cause a tendency to develop arterial and venous 

thrombosis, leading to a wide range of clinical presentations ranging from mild disease 

to life-threatening situations [82]. It is noteworthy that inflammation is considered one 

of the main mechanisms by which a host defends itself against external foreign entities, 

including toxic chemicals[83]. Physiological inflammation is self-limited and beneficial 

to the host. However, if inappropriately stimulated, excessive inflammation may fail to 

resolve, thereby creating an environment for “pathogenesis” [84]. One reason that the 

inflammatory process may fail to resolve is because of continuous exposure to toxic 

chemicals, including those emitted by tobacco products [85]. The activation of immune 

cells (e.g., neutrophils, and monocytes)- driven by proinflammatory stimuli- leads to the 

production of reactive oxygen species (ROS; e.g. hydrogen peroxide, and hydroxyl radical), 

reactive nitrogen species (e.g., peroxynitrite), and chlorine species (hypochlorous acid), 

which are the main players of the oxidative stress state [84]. Exaggerated production 

of ROS predisposes the host to thrombotic state by modulating endothelial function 

[86], and activating platelets[87] - potentially through leukocyte release of superoxide. 

Furthermore, ROS impacts polymorphonuclear leukocytes, leading to the production of 

tissue factor, which is a major trigger of the coagulation system [88, 89]. In fact, a 

previous study suggested that NAD(P)H oxidase activation and ROS generation are involved 

in tissue factor upregulation in activated platelets[90]. In addition, superoxide generated 

in hyperactive platelets might be another mechanism that contributes to the thrombotic 

state [90]. Oxidative stress also upregulates plasminogen activator inhibitor-1 (PAI-1) and 

alters the bioavailability of nitric oxide in endothelial cells, which consequently promotes 

thrombus formation [91]. Interestingly, studies have shown that platelets and coagulation, 

which are part of the thrombotic state, can augment the inflammatory process by means of 

modulating proinflammatory cytokines and growth factors[82]. The mechanism by which 

coagulation modulates inflammation is primarily through binding of thrombin and some 

other coagulation factors to the protease-activated receptors (PARs)[92]; which are located 

on the endothelium, platelets, fibroblasts, and smooth muscle cells. While PAR-1, PAR-3, 

and PAR-4 are mainly interacting with thrombin, PAR-2 is thought to potentially serve as 

a receptor for both the “TF-factor VIIa” complex and factor Xa. Moreover, thrombin is 

known to interact with these receptors, which induces the production of growth factors 

and cytokines (e.g., IL-6 and IL-8), thereby leading to up-regulation of inflammatory 

responses[93]. Moreover, studies have shown that platelet activation leads to production 
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of ROS, which becomes a potential source of further oxidative stress[94]. Taken together, 

the use of ETRPs-in a manner similar to conventional cigarette- can induce inflammation 

and oxidative stress (through the action of toxic chemicals). Consequently, these activities 

modulate hemostasis and lead to thrombosis, which can directly potentiate the inflammatory 

and oxidative stress processes, thereby creating a potentially dangerous, yet vicious cycle 

(Figure 2)[82, 95, 96].

Toxic Profile of Emerging Tobacco Related Products.

Although the levels of toxic chemicals emitted by ETRPs vary, it is important to note 

that these tobacco products are not emission free, and the toxic chemicals they emit are 

hazardous (Table 1), and have the capacity to lead to serious health issues (including 

CVD), even at low levels [97]. According to accumulating data, tobacco’s toxic chemicals 

that received the greatest scrutiny as possible contributors to CVD, include nicotine[98], 

particulate matter[99], polyaromatic hydrocarbons (PAHs)[100], and to a lesser extent 

tobacco-specific nitrosamine (TSNAs). Indeed, some of these chemicals have been proven 

to profoundly contribute to the cardiovascular hemodynamic instability and thrombotic 

effects associated with tobacco use[1]. Furthermore, they also participate in the development 

of a proinflammatory state that is mechanistically involved in “smokers”-associated 

thrombogenesis [82]. In the next section, we will focus on the specific role of the major 

toxic components of ETRPs, and the data so far linking them to thrombotic conditions.

Role of various chemical components of emerging tobacco related 

products in thrombogenesis

Nicotine

Like conventional cigarettes, ETRPs contain considerable amounts of nicotine. For example, 

e-liquids, which are used in most ENDS such as e-cigs typically contain nicotine at 

concentrations ranging between 0–87.2 mg/ml[101], albeit some e-liquids are “nicotine 

free”. Furthermore, JUUL, which is one of the popular ENDS, contains e-liquid with 

nicotine concentrations that could reach as high as 59 mg/mL [102]. With regard to 

waterpipe, the average nicotine content ranges between 67 – 713 mg per head [103]. 

Smokeless tobacco also contains considerable amounts of nicotine, which is absorbed more 

slowly than that of cigarettes. It is noteworthy that the nicotine concentration delivered/

inhaled/absorbed by the user depends on a multitude of factors, including frequency of use 

and puffing patterns (puff number and duration) [104, 105].

Rather interestingly, and perhaps contrary to common beliefs, the majority of published 

data attached little importance to the role of nicotine as a contributor to tobacco-induced 

thrombotic diseases[1]. In fact, a significant body of knowledge concluded that nicotine’s 

direct effect on the development of tobacco induced thrombosis is negligible, and its 

role centers more on hemodynamic instability[106]. Furthermore, these studies suggested 

that nicotine contributes indirectly to thrombosis, by inducing atherosclerotic plaque 

development [1, 106–108]. In contrast, other data showed that exposure to nicotine may 

increase PAI-1, which is a major regulator of fibrinolysis [109]. Also, it was found that 
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nicotine is a potential modulator of nitric oxide, which normally inhibits platelet activation 

[110]. It is important to note that some studies found nicotine to be involved in modulating 

platelet reactivity [111–115], some of which by employing urinary Thromboxane A2 

(TXA2) metabolite excretion. Of note, while we employed the well-known nicotine 

metabolite cotinine, we showed that it potentiates platelet aggregation in response to 

thrombin[35]. This is significant given that platelets are a critical player in the process 

of thrombosis.

Particulate Matter (PM)

Studies have shown that conventional cigarettes expose humans to nearly 40,000 μg of 

particulate matter (PM) [116]. These particles have a mean diameter of <1 μm, which 

allows a high degree of deposition inside the human body [117], and thus makes them very 

hazardous. In fact, studies have shown that PM is associated with increased hospitalization 

and mortality due to CVD [118]. In a striking similarity, ETRPs emit very comparable levels 

of PM to conventional cigarettes. Thus, studies have shown that e-cigs and waterpipes 

produce TPM in the range of 0.87–5.8 mg/puff, and 1.8–9.3 mg/puff, respectively, in 

comparison to 0.1–1.7 mg/puff from conventional cigarettes [119]. Consequently, in light 

of the substantial difference in the puffing topography between cigarettes (have an average 

of 18 puff/cigarette)[120–122] and other products, such as e-cigs (average >150 puff/day) 

[123] and waterpipe (<171 puff/session)[66, 124], these products are even more dangerous 

with regard to PM emission. Likewise, there is data showing that HNB tobacco emits 

an average of 44 mg/cig compared to 36 mg/cig with conventional cigarettes, indicating 

that heating tobacco might be as “bad” as combustion in generating PM [10, 125]. To 

this end, accumulating evidence shows that exposure to PM does induce a prothrombotic 

state, which might involve arterial and venous thrombotic events [126, 127]. Consistent 

with this notion, exposure to PM triggers the production of fibrinogen, Von Willebrand 

factor, sP-selectin, and sCD40L, all of which are important players in the processes of 

hemostasis and thrombosis [128–131]. Furthermore, data have also shown that PM exposure 

causes a defect in the fibrinolysis mechanisms that normally would help in limiting clot 

expansion, which is consistent with the prothrombotic state. Specifically, exposure to 

PM led to inhibition of tissue the plasminogen activator (t-PA) [132]. Additionally, this 

effect was not only limited to t-PA, as PM exposure was also found to upregulate PAI-1, 

which is considered a risk factor for thrombosis [133, 134]. Taken together, these reports 

are in complete accord with previous studies that linked PM exposure with increases in 

plasma viscosity, platelet activation, and modulation of coagulation [135–138]. Interestingly, 

evidence appears to suggest that a far greater impact on hemostasis is associated with 

ultrafine particles (PM0.1) rather than coarse particles (PM10) and fine dust (PM2.5). 

Thus, in patients with metabolic syndrome, short-term exposure (2 h) to PM0.1 caused 

a decrease in blood plasminogen and thrombomodulin and increased C-reactive protein 

(CRP; a biomarker for CVD) [139]. In addition, separate cohort studies (humans) have 

showed that ultrafine particles are associated with modulation of the hemostatic process and 

increase in the inflammatory state in exposed in comparison to control [140, 141]. Another 

study with a large sample size found that mortality from ischemic heart disease was more 

strongly associated with PM0.1 relative to other PM [142]. Finally, it has been documented 

that cardiovascular mortality is correlated with particle size, and the correlation tends to 
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be more profound as the particle size decreases [143, 144]. Collectively, there is ample 

evidence indicating that PM is indeed a common harmful toxic element across variety of 

emergent tobacco products, even/including those that claimed to be less harmful than the 

conventional cigarette. Nevertheless, more studies are needed to investigate the mechanism 

and pharmacodynamics of all sizes and types of tobacco-derived PM on the various elements 

of hemostasis and thrombotic mechanisms.

Carbon Monoxide

Carbon monoxide (CO) is a product of partial combustion or oxidation of carbon in tobacco 

products. It is established that a conventional cigarette produces CO, which is known to 

be associated with negative health effects[145]. Once generated, CO finds its way to the 

pulmonary system and gets absorbed into the circulation. With the exception of e-cigs, 

almost all ETRPs have been shown to produce CO, albeit at varying concentrations [119, 

146]. For instance, conventional cigarettes can emit 1–2.3 mg/puff in comparison to 1.15–

1.67 mg/puff and 0.531mg/12 puff in case of waterpipe and HNB tobacco, respectively. As 

for its effect on the hemostasis system, excessive exposure to CO was found to increase 

the risk of deep venous thrombosis and pulmonary embolism; disease states known to be 

associated with high mortality [147]. Moreover, CO can enhance the coagulation cascade, 

inhibit fibrinolysis, and expediate clot growth, all of which favor a prothrombotic state 

[148]. It was also shown that water-soluble CO-releasing molecules (CORMs) are able 

to increase the speed by which clot formation happens, as well as inhibit t-PA-based 

fibrinolysis [149]. Interestingly, CO seems to have an opposite effect on platelets in 

comparison to coagulation, as it was found to suppress their activation. Thus, it was 

observed that CORM-3 reduces both collagen- and thrombin-induced platelet aggregation. 

This effect was mediated by the guanylyl cyclase pathway [150, 151]; albeit other pathways 

might be also involved [152, 153]. Given the apparent conflicting effects CO exerts with 

regards to platelets, thrombus formation (and coagulation), further studies are needed to 

clarify these effects. Taken together, tobacco product users are clearly exposed to a multitude 

of toxic chemicals at once, and so far, data have shown that the “collective” effect of tobacco 

on hemostasis is shifted towards thrombosis, rather than the other way around.

Polycyclic Aromatic Hydrocarbons (PAHs)

The PAHs- compounds that are composed of a minimum of two fused benzenoid rings- are 

known to be among the numerous toxic chemicals produced by incomplete combustion of 

tobacco. In addition, one study that analyzed 70 brands in the US market, confirmed the 

presence of PAHs in smokeless tobacco. It is noteworthy that PAHs do not occur naturally 

in plants, therefore the presence of PAHs in smokeless tobacco might be due to fire-curing, 

which is a process employed to transform green wet tobacco into a dry “ready to use” 

product [154]. PAHs are known to possess mutagenic properties [155], and experimental 

studies have shown that exposure to them might be associated with negative cardiovascular 

consequences, including thrombotic events such as MI [156]. Also, PAHs are linked to 

accelerated development of endothelial atherosclerotic plaques [157]. In addition, it has been 

suggested that PAHs induce apoptosis of endothelial cells by a mechanism that involves 

activation of phospholipase A2 [158]. Separate lines of evidence suggested that exposure to 

PAHs increases mean platelet volume (MPV) [159], which is linked to hyperactive platelets. 
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Increases in MPV is also associated with cardiovascular inflammation [160], another risk 

element for thrombogenesis [161]. Likewise, there is convincing experimental data that 

appears to positively link PAHs exposure with oxidative stress and inflammation [162, 163], 

which are strong modulators of hemostasis. Indeed, reports indicate that almost all ETRPs 

with perhaps the exception of e-cigs (not enough data to support such conclusion) can 

produce PAHs, but at varying levels. This is of significance from a health standpoint, as 

these chemicals are not safe and have the potential to participate in the genesis of a host of 

diseases overtime, even at low concentrations.

Heavy Metals

ETRPs carry a considerable profile of heavy metals such as aluminum, antimony, arsenic, 

cadmium, cobalt, chromium, copper, iron, lead, manganese, mercury, and zinc[164–167]. 

These heavy metals are of major concern due to their toxic impact on different body 

systems, including their potential to cause cardiovascular disease such CAD[168, 169]. 

Furthermore, animal studies have shown that heavy metals such as cadmium can in 

fact modulate the coagulation system and increase platelet activation, thereby increasing 

the risk of thrombosis[170]. Heavy metals are also known to increase proinflammatory 

cytokines, such as IL-1β, IL- 6, and TNF α as well as ROS in both humans and 

animals[171]. Nonetheless, more studies are needed to mechanistically address how heavy 

metals contribute to the thrombotic process, which can consequently lead to cardiovascular 

events.

Tobacco-Specific Nitrosamines (TSNAs)

TSNAs are one of the carcinogenic chemicals produced by tobacco smoke, but are also 

among the contents of smokeless tobacco [172]. In fact, like conventional tobacco smoke, 

almost all ETRPs produce TSNAs, albeit in differing amounts. To this end, there is evidence 

that tobacco smoke produces significantly higher amounts of TSNAs, in comparison to 

e-cigs and waterpipe [119]. On the other hand, HNB tobacco shows comparable levels of 

TSNAs relative to conventional cigarettes [146, 173]; which perhaps is inconsistent with the 

fact that it is being promoted as a safer option to conventional cigarettes [174]. Notably, 

studies linking TSNAs to CVD are limited, which makes it difficult to appreciate their 

harmful effects in this regard. Nonetheless, in term of TSNAs impact on the cardiovascular 

health, studies have shown that they increase CVD biomarkers such as creatine kinase-MB 

and lactate dehydrogenase. The same study [175] also concluded that TSNAs increased the 

levels of free radicals and decreased the activity of antioxidant enzymes; all of which are 

known to favor a state of thrombotic CVDs. Regarding their direct effect on thrombosis, it 

does not seem to have been explored yet, but clearly warrants investigation.

In summary, it is evident that ETRPs-emitted toxic substances are an important cause of 

thrombosis. These toxic substances impact different aspects of hemostatic processes such 

as platelet activation, coagulation, and endothelial function which predisposes to thrombosis 

and eventual cardiac events such as MI and stroke. And although it is challenging to 

characterize the effect of different toxic chemicals on the different aspects of thrombosis, 

there is a huge need for more rigors studies to address this issue mechanistically.
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Conclusion

ETRPs were introduced into the market as safe/safer options, mainly for individuals who 

would like to transition and quit cigarette smoking. However, the safety of these products 

is questionable. In fact, in many instances, some of these products appear to exert greater 

negative health effects than cigarette smoking. This- at least in part- derives from the 

fact that ETRPs emit considerable and often comparable levels of toxic chemicals, in 

comparison with conventional cigarettes. A host of these toxic chemicals are known to 

promote inflammation and oxidative stress, both of which are important instigators of 

thrombosis-based disease states. Indeed, the link between inflammation, oxidative stress, 

and thrombosis is well established in the literature. However, this relationship is not merely 

in one direction, as it involves positive feedback and is more of augmentative in nature. 

In this mini, yet comprehensive review, we attempted to put these relationships in a model 

that we hope will better help the readers in not only understanding the big picture, but 

also appreciating smoke-induced thrombotic diseases. Furthermore, the literature appears 

to indicate that emerging tobacco products, similar to conventional cigarettes, impact all 

elements of hemostasis, such as the endothelium, platelets, and the coagulation system, 

albeit with some variability. These effects are associated with a host of negative health 

consequences, such as myocardial infraction and stroke.. Finally, this review also revealed 

that more research is warranted to investigate the mechanistic effects of ETRPs in the 

context of thrombotic cardiovascular disease, and the pathways involved in such disease 

processes.
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Figure 1: 
A) Current Use Estimates for Selected Tobacco Products for Middle and High School 

Students-United states (2020). Data for the national youth tobacco survey, total population 

(N=14495). B) Percentage of E-cigarette Brands Used Among Middle and High School 

Students-United states (2020). Data obtained from the national youth tobacco survey, and 

based on the question (During the past 30 days, what brand of e-cigarettes did you usually 

use? Choose only one answer). C) Percentage of Cigar Products Used Among Middle and 

High School Students-United states (2020). Data obtained from the national youth tobacco 

survey. and based on the question (During the past 30 days, which of the following types of 

cigars, cigarillo, or little cigars have you smoked?)
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Figure 2: The vicious cycle of thrombotic disease.
Inflammation instigates oxidative stress through the release of ROS from excessively 

activated immune cells and the consequent production of proinflammatory cytokines. 

Oxidative stress impacts different aspects of hemostatic process, which consequently leads 

to thrombosis. Thrombosis participates in increasing the inflammatory process through 

different mechanisms including thrombin-induced proinflammatory production.
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Table 1:

different type of emerging tobacco products and the impact on different aspect of hemostasis.

Product Common brand Common Flavors Common Thrombosis-
Dependent Mechanisms

Toxicant / Chemical

Electronic cigarettes
(e-cigarettes, vapes)
Open and Close 
systems

NJOY, JUUL, Vuse, 
Mart Ten, Blu, Logic

• Fruits, mint, 
menthol[176]

• Endothelial 
dysfunction[177–
179]

• Platelet 
activation[27]

• Coagulation[180–
182]

• Oxidative 
stress[178, 183]

• Nicotine[184, 
185]

• Aldehydes[186–
188]

• Heavy 
metals[189, 
190]

• PAHs[191]

• TSNA[192]

• ROS[193]

• Furans[194]

• Phthalates[195]

Waterpipes
(Hookah, E-Hookah)

Starbuzz, Tangiers, 
Al-Fakher tobacco 
brands*

• Fruits, Mint/
menthol[66]

• Platelet 
activation[35]

• Endothelial 
dysfunction[196–
198]

• coagulation[199]

• Nicotine[200]

• TSNA [200, 
201]

• PAHs[202]

• Heavy 
metals[190, 
203]

• TPM[204]

• CO[205]

Cigars and cigarillo • Black 
& Mild

• Swisher 
Sweets

• Cohiba

• Mint/menthol

• Fruits

• sweet[206]

No sufficient data available • Nicotine[207]

• Heavy 
metals[167]

• TSNA[208]

Heat-not-burn tobacco 
product
(Heated tobacco 
products)

iQos, Plom Tobacco, menthol, bubble gum 
and lime[209]

• Endothelial 
dysfunction[210]

• Platelet 
function[211, 
212]

• Oxidative 
stress[211, 212]

• Nicotine[47]

• TSNAs[213]

• CO[10]

• Tar[10]

• TPM[214]

Smokeless tobacco 
products

Pouches: ZYN, 
DRYFT, On!
Snus: Swedish Snus

• Mint[215]

• Wintergreen[215]

• Platelets[216] (no 
effects)

• Endothelial 
effects[217, 218]

• Coagulation[219] 
(no effects)

• Oxidative 
stress[220]

• Nicotine[221]

• TSNAs [222]

• PAHs[222]

• Heavy 
metals[220]
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