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Abstract

Background: The detrimental health effects associated with the receipt of moderate (0.1-1 Gy)
and high (>1 Gy) acute doses of sparsely ionising radiation are well established from human
epidemiological studies. There is accumulating direct evidence of excess risk of cancer in a
number of populations exposed at lower acute doses or doses received over a protracted period.
There is evidence that relative risks are generally higher after radiation exposures /n uteroor in
childhood.

Methods and findings: We reviewed and summarised evidence from 60 studies of cancer
or benign neoplasms following low- or moderate-level exposure in utero or in childhood
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from medical and environmental sources. In most of the populations studied the exposure

was predominantly to sparsely ionising radiation, such as X-rays and gamma-rays. There were
significant (p < 0.001) excess risks for all cancers, and particularly large excess relative risks were
observed for brain/CNS tumours, thyroid cancer (including nodules) and leukaemia.

Conclusions: Overall, the totality of this large body of data relating to /n utero and childhood
exposure provides support for the existence of excess cancer and benign neoplasm risk associated
with radiation doses < 0.1 Gy, and for certain groups exposed to natural background radiation, to
fallout and medical X-rays /n utero, at about 0.02 Gy.
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Radiation; Childhood; /n utero; Cancer risk; Radiobiology

1. Introduction

Although moderate and high doses of sparsely ionising radiation (such as X-rays and
gamma-rays), when received at a high dose-rate, are known to be associated with elevated
cancer risks (Armstrong et al. 2012; Committee to Assess Health Risks from Exposure

to Low Levels of lonizing Radiation 2006; International Commission on Radiological
Protection (ICRP) 2007; United Nations Scientific Committee on the Effects of Atomic
Radiation (UNSCEAR) 2008), less is known about any risks arising from exposures at lower
doses and dose rates.

There is growing evidence in the Japanese atomic bomb survivors (Grant et al. 2017; Little
et al. 2020) and in groups receiving medical diagnostic exposures or radiation therapy

of an excess risk of cancer following lower levels of exposure to radiation, particularly
among those exposed in childhood (L.ittle et al. 2018b; Lubin et al. 2017). The pioneering
case-control study of Stewart ef a/ (Bithell and Stewart 1975; Stewart et al. 1956; Stewart
et al. 1958), which became known as the Oxford Survey of Childhood Cancers (OSCC),
suggested that there might be excess risk of most types of childhood cancer associated with
antenatal exposure to doses of about 0.01-0.03 Gy of X-rays; however, the interpretation

of the association found by this and similar case-control studies has been controversial,
with potential for recall and selection biases and for confounding (Brent 2014; International
Commission on Radiological Protection (ICRP) 2003; United Nations Scientific Committee
on the Effects of Atomic Radiation (UNSCEAR) 2008). More recently there have been

a number of studies of childhood cancer associated with natural background exposure to
gamma radiation (with cumulative doses generally in the range of at most a few tens of
mGy), some (but not all) of which have observed excess cancer risks (Kendall et al. 2021;
Mazzei-Abba et al. 2020).

By far the largest part (>80%) of man-made radiation exposure (apart from patients
receiving radiotherapy) to children in the US is from computed tomography (CT) scan use,
comprising a collective effective dose of about 18,000 person Sv in 2016, with much smaller
contributions from conventional radiography (~1300 person Sv), fluoroscopy (~700 person
Sv), nuclear imaging (~700 person Sv), and image-guided interventions (~300 person Sv)
(National Council on Radiation Protection and Measurements (NCRP) 2019). Both in the
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US and Canada rates of CT scan use in children have stabilised since the early 2000s,

with some signs of reduction since about 2006 (Smith-Bindman et al. 2019), in contrast

to trends in the adult population in the US and elsewhere where rates have carried on
increasing (National Council on Radiation Protection and Measurements (NCRP) 2009;
2019; Smith-Bindman et al. 2019). There have been a number of studies evaluating risks

of cancer after CT scanning in childhood, many of which have indicated some excess risk
(Berrington de Gonzalez et al. 2016; Journy et al. 2015; Journy et al. 2016; Kojimahara et
al. 2020; Krille et al. 2015; Mathews et al. 2013; Meulepas et al. 2019; Pearce et al. 2012)
although the interpretation of these findings is not straightforward (Boice 2015; Walsh et al.
2014).

There have been a number of recent reviews of this low and moderate dose literature,

in particular by the National Council on Radiation Protection and Measurements (NCRP)
(National Council on Radiation Protection and Measurements (NCRP) 2018; Shore et al.
2018; Shore et al. 2019) and by a large group of collaborators coordinated by the National
Cancer Institute (NCI) (Berrington de Gonzalez et al. 2020; Daniels et al. 2020; Gilbert et
al. 2020; Hauptmann et al. 2020; Linet et al. 2020; Schubauer-Berigan et al. 2020), although
most studies surveyed in both cases related to exposure in adulthood.

Childhood cancers have never been common diseases and recent decades have seen great
improvements in therapy (Stiller 2007). Nevertheless, they remain diseases of concern,
particularly due to the temporal and spatial variations in incidence (“clusters”) that have
been observed in, for example, childhood leukaemia (Steinmaus et al. 2004). In this paper
we shall review cancer risks following exposure to sparsely ionising (low linear energy
transfer (LET)) radiation exposure early in life (in utero and in childhood) in many of
these low and moderate dose studies, and by a meta-analysis quantitatively assess the
degree of compatibility of relative risk estimates derived from the main studies. As such,
the focus of this review is quite distinct from the recent reviews of low dose risk by

the NCRP (National Council on Radiation Protection and Measurements (NCRP) 2018)
and by the NCI (Berrington de Gonzalez et al. 2020; Daniels et al. 2020; Gilbert et al.
2020; Hauptmann et al. 2020; Linet et al. 2020; Schubauer-Berigan et al. 2020), which
concentrated on all-age exposure with the former conducted in the context of radiological
protection, and specifically did not assess /17 utero exposure in any depth; however, the
issue of risks after radiation exposure in childhood has been dealt with in a number of
other reviews (Linet et al. 2009; United Nations Scientific Committee on the Effects of
Atomic Radiation (UNSCEAR) 2013). In the Discussion we shall also briefly review the
radiobiology to assess the biological plausibility of these epidemiological associations.

Methods

Literature review

A literature search of PubMed was last performed on 16th May 2021 using the search

terms given in the Supplementary Methods. Additionally, recent UNSCEAR reports (United
Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008; 2013;
2018) were scanned to assess additional literature, as well as recent review articles (Kendall
et al. 2021; Linet et al. 2009; Linet et al. 2012; Wakeford and Bithell 2021). We restricted
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attention to those studies of persons exposed /n utero or in childhood (age 20 y or less)

and with individually estimated organ/tissue doses. A further restriction was either that
maximum cumulative doses (or if this could not be determined, mean cumulative doses)
should not exceed the conventional definitions of low doses, <0.1 Gy, or moderate doses,
0.1-1 Gy (Harrison et al. 2021; Little et al. 2021a; United Nations Scientific Committee

on the Effects of Atomic Radiation (UNSCEAR) 2015), or that the maximum dose rate
should not exceed 0.005 Gy per hour (the conventional upper limit for low dose rate (United
Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2018) or 0.1
Gy per hour (which we take as the upper limit for moderate dose rate). Justification for these
limits will be found in the Supplementary Methods.

Meta-analysis

Meta-analysis was conducted of the studies, of /n utero and postnatal exposures, outlined

in Tables 1-5; the basis of all estimations of radiation risk in this latter analysis is the

value of excess relative risk (ERR) per unit of absorbed dose of radiation exposure (ERR
per Gy). For absorbed dose, most publications employed unweighted radiation dose (Gy),
but some use weighted dose, for example in the LSS to account for the higher biological
effectiveness of neutrons compared with photons (Shimizu et al. 2010; Grant et al. 2017).
Wherever possible the OR, RR or ERR were taken directly from the relevant publication;
further details are given in Tables 1-5 and Supplementary Tables S1-S2. There are grounds
for thinking that risks of thyroid nodule and thyroid cancer are not dissimilar, as for example
suggested by the Ukraine /in utero data of Hatch et a/ (Hatch et al. 2019), likewise among
postnatally exposed groups in Belarus (Cahoon et al. 2017a; Zablotska et al. 2011). For this
reason we group thyroid cancer and thyroid nodules together in all meta-analyses. Further
details of data exclusions and of how the data abstraction was performed for particular
studies are given in the Supplementary Methods.

An aggregate estimate of ERR per Gy was computed across subsets of these studies

using random effects models and standard statistical methods. Random effects models

were fitted by restricted maximum likelihood (REML) because of the theoretically superior
performance, in particular, the absence of bias in the estimate of variance (Bartlett and
Fowler 1937; Viechtbauer 2005). Results are given in Table 6 and Supplementary Tables S3,
S4. However, for certain analyses (Table 7, Supplementary Tables S5) maximum-likelihood
fits were used, as these facilitate comparison of nested models (in particular, to test against
improvement over the null). Values of ERR per Gy derived from the meta-analysis are
given in Tables 6, 7 and Supplementary Tables S3-S5 for major cancer subtypes (leukaemia,
lymphoma, brain/central nervous system (CNS), etc.), by /in utero vs postnatal exposure

and by level of maximum dose or maximum dose rate, into low (L), medium (M), or high
(H), using the classification by dose (L/M/H) and dose rate (L/M/H) in columns 3 and 5,
respectively, of Tables 1-5. We undertook sensitivity analyses in which we refitted:

a. thyroid nodule data < 0.799 Gy of Hatch et a/ (Hatch et al. 2019);
b. thyroid cancer data < 0.284 Gy of Kopecky et a/ (Kopecky et al. 2006);

C. Cardis et a/ (Cardis et al. 2005) thyroid cancer data using a linear model
restricted to < 1 Gy;
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d. Lubin et a/ (Lubin et al. 2017) data restricted to < 0.1 Gy;

e Preston et af (Preston et al. 2007) brain/CNS and breast cancer data restricted to
<0.1Gy;

f. Cahoon et a/ (Cahoon et al. 2017b) lung cancer data restricted to < 0.1 Gy.
These we term the “lower dose risks”. These we contrasted with using instead:

a. the full dose range thyroid nodule data of Hatch et a/ (Hatch et al. 2019);

b. the full dose range thyroid cancer data of Kopecky et a/ (Kopecky et al. 2006);

C. Cardis et a/ (Cardis et al. 2005) thyroid cancer data using a linear model
restricted to < 2 Gy;

d. Lubin et a/ (Lubin et al. 2017) data restricted to < 0.2 Gy;

e Preston et af (Preston et al. 2007) brain/CNS and breast cancer data restricted to
<1Gy;and

f. Cahoon et a/ (Cahoon et al. 2017b) lung cancer data restricted to < 1 Gy.
These we term the “higher dose risks”.
All statistical models were fitted using the metafor package (Viechtbauer 2010; 2020) in R

(R Project version 3.6.1 2019). Further details of the statistical methods are given in the
Supplementary Methods.

3. Results

3.1

The second stage of the literature review yielded 49 studies in which radiation exposure has
been quantitatively assessed, whether in utero or in childhood (Tables 1-5). Supplementary
Table S6 gives details of a further 11 studies of natural background radiation that are not
included in Table 1, generally because they were not informative or because their results
were effectively subsumed within larger studies; also given in Supplementary Table S6, for
completeness, are details of those 6 studies that are also included in Table 1.

Risks of in utero exposure

There are strong estimates of excess risk of cancer in childhood in the OSCC study

of Bithell and Stiller (Bithell and Stiller 1988) and of Bithell (Bithell 1993) (Table 2,
Supplementary Table S7), at doses that likely do not exceed 0.03 Gy, and borderline
significant indications of excess risk for lympho-haematopoietic malignancies in the range
of attained ages up to 61 years in the Southern Urals study of Schiiz et a/ (Schuz et al. 2017)
and for all thyroid nodules (mainly benign) at an attained age of 25-30 years in the Ukraine
131|_exposed cohort of Hatch et a/ (Hatch et al. 2019) (Table 3, Supplementary Table S7).
There are weaker indications of excess brain tumour risk in a case-control study of medical
diagnostic exposures (Pasqual et al. 2020) (Table 2, Supplementary Table S7), for solid
cancer in the /n utero exposed Japanese atomic bomb survivors in the incidence study of
Preston et al (Preston et al. 2008) at attained age of 12-55 years and in the mortality study of
Sugiyama et a/ (Sugiyama et al. 2021) at attained age of 5-67 years (Table 4, Supplementary
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Table S7), and for lymphoma, leukaemia and solid cancer in the offspring of US radiologic
technologists (Johnson et al. 2008) at attained age up to 20 years (Table 3, Supplementary
Table S7).

3.2. Risks of radiation exposure in childhood

3.2.1. Risks associated with environmental radiation exposure

3.21.1. Naturally occurring environmental exposures.: A large number of studies of
natural background radiation and childhood cancer have been conducted, as shown in

Table 1 and Supplementary Table S6. The maximum doses are generally very low, in no
case exceeding 0.05 Gy (Table 1). Among the main studies listed in Table 1, all are of
natural background gamma radiation, but some also include assessment of the risks of radon
exposure (Berlivet et al. 2021; Berlivet et al. 2020; Demoury et al. 2017; Kendall et al.
2013). All these studies, and two studies that assessed only gamma radiation (Nikkil& et

al. 2016; Spycher et al. 2015) are of European national populations, and are register based.
Most studies do not yield significant excess risks, the only exceptions being the British
study of Kendall ef a/ (Kendall et al. 2013) and the Swiss study of Spycher et a/ (Spycher

et al. 2015). We note that since the original database search was conducted an updated
Swiss study has been published (Mazzei-Abba et al. 2021), which reported very similar
relative risk estimates to those of Spycher et a/ (Spycher et al. 2015) and we judge that the
meta-analysis would be little affected. The small Finnish study of Nikkila et a/ (Nikkilaet
al. 2016) is probably of limited statistical power, but the French studies are of much larger
populations (Berlivet et al. 2021; Berlivet et al. 2020; Demoury et al. 2017). The small size
of most of the studies in Supplementary Table S6 means that they have little realistic chance
of detecting an effect of radiation exposure.

3.2.1.2. Exposuresdueto man-made environmental contamination.: The Chernobyl
nuclear accident in northern Ukraine in 1986 resulted in large releases of radioisotopes of
iodine and caesium, and other radionuclides to a lesser extent, resulting in a mixture of
internal and external exposure, particularly to parts of the populations of Ukraine, Belarus
and Russia (United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR) 2011). One of the main health consequences has been the markedly elevated
incidence of thyroid cancer, largely due to intakes of radioiodine by children (Brenner et al.
2011). However, as noted in the Methods, the thyroid doses in most of these studies include
both high doses and high dose rates; an exception in this respect is the Belarus and Russia
thyroid cancer case-control study of Cardis et a/ (Cardis et al. 2005), which did consider
risks over lower dose (and dose rate) ranges (Table 5).

More relevant to the present review are two case-control studies of childhood leukaemia
among those exposed /n utero or under the age of 6 years while living in heavily
contaminated areas of the former USSR at the time of the Chernobyl accident; the mean
dose to the active bone marrow (ABM) was around 10 mGy (Davis et al. 2006; Noshchenko
et al. 2010). There are modest excess risks in the Russian and Belarusian components of
the study of Davis et a/ (Davis et al. 2006) and the Ukrainian study of Noshchenko et

al (Noshchenko et al. 2010), only the second of these significant (Table 5). Raised, albeit
non-significant, risks were observed in a study of childhood leukaemia in Utah and fallout
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from the Nevada Test Site (Stevens et al. 1990) (Table 5). A cohort study in Utah, Nevada
and Arizona of thyroid disease and childhood exposure to fallout from the Nevada Test Site
found a positive association for thyroid neoplasms (Lyon et al. 2006) (Table 5). By contrast,
a cohort study of persons exposed in early life to 131] releases from the Hanford nuclear
site (Davis et al. 2004) yielded virtually no excess risks of thyroid cancer or benign thyroid
nodules (Table 5), but this study probably had only limited power to detect the increased
risks predicted by studies of external exposure in childhood (Table 4).

3.2.2. Risks associated with medical diagnostic exposure and other low and
moderate dose radiation exposure—There have been a number of studies evaluating
risks of cancer after diagnostic CT scan exposure in childhood, some of which have yielded
excess risks of various cancers (Berrington de Gonzalez et al. 2016; Journy et al. 2015;
Journy et al. 2016; Kojimahara et al. 2020; Krille et al. 2015; Mathews et al. 2013; Meulepas
et al. 2019; Nikkila et al. 2018; Pearce et al. 2012), and summarised in Table 2. Most
studies only assessed risk of leukaemia and brain tumours (Table 2). Only in the Finnish
case-control study (Nikkild et al. 2018), the Australian study (Mathews et al. 2013) and the
UK study (Pearce et al. 2012), the low dose part of which is subsumed in the study of Little
et al (Little et al. 2018Db), was the excess risk of leukaemia statistically significant. In the
UK study (Berrington de Gonzalez et al. 2016; Pearce et al. 2012), the Australian study
(Mathews et al. 2013), the German study (Krille et al. 2015) and the Dutch study (Meulepas
et al. 2019) there were significant excess risks of brain tumours (Table 2).

Table 2 shows leukaemia risks in the < 0.1 Gy pooled dataset of Little et a/ (Little et al.
2018b), also thyroid cancer incidence following external exposure in childhood at thyroid
doses of < 0.2 Gy and < 0.1 Gy (Lubin et al. 2017). Risks in both studies are statistically
significantly elevated (Table 2). Table 4 shows the paediatrically exposed moderate dose
range brain and breast cancer data of Preston et a/ (Preston et al. 2007), the lung cancer

data of Cahoon et a/ (Cahoon et al. 2017b) and the solid cancer data of Grant et a/ (Grant

et al. 2017), all from the LSS cohort. The risks in these datasets are generally compatible
with those in the medical diagnostic studies, although the central estimates of risk tend to be
higher in the LSS (Tables 2, 4).

3.3. Meta-analysis of cancer risks associated with radiation exposure in early life

3.3.1. Restricted maximum likelihood (REML) and maximum likelihood
analyses—The REML analysis of Table 6 in relation to postnatal exposure suggests that,
overall, there were significantly elevated risks of all cancers and brain/CNS tumours (o <
0.05), with marginally significant (p = 0.108) elevation of risk for leukaemia. Risks for
lymphoma and the remainder category (cancers other than leukaemia, lymphoma, brain/CNS
tumours) were markedly lower, and were not statistically significant (o> 0.5). In relation to
in utero exposure there was (at least using the lower dose analysis) significant excess risk

for thyroid cancer and thyroid nodules (p < 0.05), and large (but non-significant (p > 0.2))
excess risks for brain/CNS tumours. [Note: the meaning of “higher dose” studies and “lower
dose” studies is defined in the Methods.] For most postnatal exposure endpoints there was
significant inter-study heterogeneity, as indicated by the Q statistic, although that was not the
case in relation to /7 utero exposure (Table 6). The £ statistic was often substantial for many
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postnatal exposure endpoints, a number above 40%, implying that a material proportion of
the variance was due to inter-study heterogeneity; however, this was generally not the case
for /n utero exposure. Analysis of the data for /n utero exposed subjects using adjustments
to the ERR for attained age yielded much larger risks (Supplementary Table S4) than those
using the unadjusted data (Table 6), but only for thyroid nodules was there a significant
positive trend when using the lower dose estimates (p = 0.033).

Further maximum likelihood analyses were performed in order to assess the significance

of certain contrasts between lower and higher dose meta-analyses, exhibited in Table 7.
These suggest that for thyroid cancer (including thyroid nodules) there was significantly
lower risk (p=0.033) associated with postnatal exposure compared with 7n utero exposure
when using the lower dose estimates. Lung cancer and thyroid (including nodules) risk were
significantly higher at lower levels of dose (o= 0.031, p= 0.001 respectively) using the
lower dose set of risk estimates. Lung cancer risk was significantly higher for low dose-rate
exposures than for moderate and high dose-rate exposures (p = 0.031), although information
was only available for the lower dose set of risk estimates, whereas for thyroid (including
nodules) risks were significantly higher (p < 0.001) for the moderate and high dose-rate
exposures than for lower dose-rate exposure. However, the problems of convergence with all
the thyroid cancer/thyroid nodules model fits complicate interpretation of all these findings
for this endpoint and caution in interpretation is required. There was significant (p < 0.05)
inter-study heterogeneity for certain endpoints for certain of these contrasts, a generally
consistent feature of the analyses of leukaemia, brain/CNS tumours and thyroid cancer
(including nodules) (Table 7). The /2 statistic was somewhat variable, generally near 0, but
for brain/CNS tumours consistently above 50%, implying that a relatively large amount of
the variance for this endpoint was accounted for by inter-study heterogeneity.

The analysis of Supplementary Tables S3 and S5, in which inverse-variance weighted linear
models were employed to refit thyroid nodule data < 0.799 Gy of Hatch et a/ (Hatch et

al. 2019), leukaemia data of Stevens et a/ (Stevens et al. 1990), and thyroid cancer data

< 0.284 Gy of Kopecky et al (Kopecky et al. 2006) yielded generally similar findings,
although the postnatal risk of leukaemia reduced but became (at least when using the

lower dose set of risk estimates) highly significantly increasing (o < 0.001) (Supplementary
Table S3). Additional analysis suggested that when using the lower dose study estimates
there was highly significant heterogeneity in risk by endpoint (using the 6-endpoint split

of Tables 6 and 7) overall (combining postnatal and /n utero exposures) (p < 0.001), and
also considering only studies of post-natal exposure (p < 0.001), but not for studies only

of in utero exposure (p = 0.194) (results not shown). When using the higher dose study
estimates there was highly significant heterogeneity in risk by endpoint overall (combining
postnatal and /n utero exposures) (p < 0.001), but not when considering only studies of
postnatal exposure (p = 0.461), or for studies only of in utero exposure (p= 0.266) (results
not shown). A complication with the analyses overall and for postnatal exposure only is
that there were indications of non-convergence, whether using the lower or the higher risk
estimates.

3.3.2. Possible selection bias—Although the general symmetry of the funnel plots
does not suggest any marked selection bias (Supplementary Figure S1), nevertheless the

Environ Int. Author manuscript; available in PMC 2022 May 19.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Little et al.

Page 9

formal analysis of selection bias in Supplementary Table S8 implies that for many endpoints,
in particular all postnatal endpoints, leukaemia, thyroid cancer (including nodules) and all
cancer other than thyroid cancer (including nodules) there is significant selection bias (p <
0.05). However, the analysis of Supplementary Table S8 also demonstrates that adjusting

for selection bias using the trim-and-fill method of Duval and Tweedie (Duval and Tweedie
2000) does not in general lead to marked changes in the central estimates, whether using the
lower or higher set of risk estimates — only for lymphoma does the adjustment for selection
bias lead to a marked reduction in ERR, although for the lower dose risk estimates the risk
for all post-natal studies substantially increases after adjustment.

4. Discussion

4.1. General remarks

While understanding of the development of cancer at a cellular and sub-cellular level is
very important and steadily increasing, and can inform risk extrapolation, epidemiology
provides the human evidence most directly relevant to estimate radiation-related cancer risk.
Because we are interested in the effects of low doses, large study populations are required
to achieve sufficient statistical power. Studies of cancer after exposure in childhood have
decisive advantages over studies of adult cancers: the frequency of cancer at young ages is
relatively low and the ERR per unit dose is generally substantially higher than for exposure
in adulthood (Grant et al. 2017; United Nations Scientific Committee on the Effects of
Atomic Radiation (UNSCEAR) 2008; 2013). Most of the risk factors apart from radiation
for the common childhood cancers are familial or genetic (Roman et al. 2018); there are
few other risk factors that substantially modify risk at a population level in childhood (Linet
et al. 2018). However, about 20% of childhood leukaemia could be attributed to natural
background radiation on the basis of conventional risk estimates (Wakeford 2004; Wakeford
et al. 2009).

The meta-analyses that we have undertaken combine studies that consider different ranges
of attained ages. Many are of childhood cancers, but some extend into adulthood. We have
attempted to allow for this in the analyses, in particular the analyses of exposures /n utero
(Supplementary Tables S4, S7), but this point should be borne in mind. In addition, as noted
above, for many postnatal exposure endpoints (but not for studies of /n utero exposure) a
large proportion of the total variance is accounted for by inter-study heterogeneity, which
complicates interpretation of the findings. Nevertheless, the meta-analysis of Table 6 using
REML models suggests that there are significant risks for all cancers in relation to postnatal
exposure (p < 0.01), with particularly large relative risks for brain/CNS tumours and
leukaemia, whereas in relation to /n utero exposure the strongest evidence of excess is for
thyroid cancer (including nodules) (p = 0.033), although this is based on one study (Hatch et
al. 2019). The meta-analysis using maximum-likelihood fitted models in Table 7 implies that
for thyroid cancer (including nodules) there is significantly higher relative risk associated
with /n utero exposure compared with postnatal exposure. There are significant variations
by dose and dose rate for certain endpoints, so that lung cancer relative risk appears to be
highest for low dose-rate exposures, although the data are limited. There are suggestions

of significant variation in relative risk between the cancer endpoints overall, but not when
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postnatal and /n utero exposures are considered separately. The findings of selection bias

in the data are somewhat troubling. Nevertheless, although statistically significant for a few
endpoints (in particular leukaemia and thyroid), adjustment for such bias does not generally
change the ERR estimates (Supplementary Table S8).

It is important to recognise that although relative risks for childhood exposure are relatively
high, the absolute risks associated with exposure are quite low. For example, in the pooled
analysis of leukaemia after childhood exposure the excess cases or deaths after 0.1 Gy

were in the range 0.1-0.4 per 10,000 person-years of follow up (Little et al. 2018b). It is
also important to recognize that there has been evidence for some time that relative risks
associated with exposure /n utero and in childhood are very likely not constant with attained
age (Little et al. 1991). We have attempted to adjust for this at least in relation to the studies
of /n utero exposure (Supplementary Tables S5, S7), from which can be seen the substantial
difference that is made. It is possible that such attained age effects could explain part of the
heterogeneity observed in studies of postnatal exposure; unfortunately, it was less easy to get
useful information on attained age in all of these studies.

4.2. Studies of atomic bomb survivors

The survivors of the Japanese atomic bombings offer a unique cohort which can throw light
on low-dose effects as well as effects at higher doses — around two-thirds of the survivors
received doses < 0.1 Gy. Cancer relative risks in the LSS (Table 4) are not very dissimilar in
magnitude to those in diagnostically exposed groups (Table 2). There are suggestions that /in
utero relative risks in the atomic bomb survivors (Table 4) may be lower than those in some
other groups, in particular, for endpoints such as lymphoma and brain/CNS tumours (Tables
2, 3, Supplementary Table S7), as is also indicated by the results of the meta-analysis (Table
7). It should be noted that there are limited numbers of cases and deaths among the /n utero
exposed occurring in childhood (age < 15 years), specifically one death from liver cancer
(Delongchamp et al. 1997) and a non-fatal case of Wilms’ tumour (Yoshimoto et al. 1988).
The first case of leukaemia, also the first death from this cause, occurred at age 18 years
(Delongchamp et al. 1997; Yoshimoto et al. 1988).

For leukaemia there are indications of lower relative risk among those exposed /n utero
during the atomic bombings, with an average dose of ~ 0.12 Gy (Sugiyama et al. 2021), than
in the OSCC (Table 2) and in other case-control studies of intrauterine medical diagnostic
exposure. This may be because of elevated sensitivity of the active bone marrow (ABM)

to the competing effects of moderate doses of acutely delivered radiation /in utero. 1t is
notable that there are no leukaemia cases or deaths observed in childhood among the in
utero exposed cohort, although the expected numbers are small (Delongchamp et al. 1997;
Wakeford and Little 2003; Yoshimoto et al. 1988). The study of Ohtaki ef a/ (Ohtaki et al.
2004) may have some bearing on this, as it suggested that stable chromosome translocations
among the /n utero exposed survivors exhibited a biphasic response, steeply increasing
below about 0.1 Gy then involuting above that dose, indicating that haematopoietic cells
may be damaged irreparably by moderate doses and replaced by viable cells.

Recent studies in the LSS have demonstrated that radiation incidence relative risk of female
breast cancers is highest for exposure around menarche (Brenner et al. 2018) and that
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significantly increased radiation incidence risk of uterine corpus cancers is found only for
exposure during the mid-pubertal period preceding menarche (Utada et al. 2019). During
puberty, rapid stem cell proliferation of the terminal end buds mediates development of the
mammary gland into a highly branched epithelial network (Scheele et al. 2017). Likewise, a
dramatic increase in uterine volume and endometrial thickness occur during puberty prior to
menarche (Hagen et al. 2015). A narrow age at exposure window for cancer radiosensitivity
in the breast and uterine corpus may be related to radiation exposure during a period of such
increased cell proliferation, and have significant implications for radiological protection.

4.3. Studies of in utero irradiation

The association between cancer in childhood and a prior radiographic examination of the
abdomen of the pregnant mother identified by case-control studies such as those of Stewart
et al (Bithell and Stewart 1975; Stewart et al. 1956) and many others (Wakeford 2008) (see
Little et af (Little et al. 2021b, submitted)) provides epidemiological evidence that externally
delivered doses of ionising radiation of the order of 0.005-0.030 Gy of X-rays increase the
risk of cancer (United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR) 2008). This level of dose is somewhat lower than the lowest doses producing
significantly increased risks of cancer in all other epidemiological studies, apart from the
natural background radiation studies that we discuss below (United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) 2008). Case-control studies
have often been used in this setting, which can be subject to a number of biases, in particular
selection, participation and recall biases, which can make them a poor choice for studies

of medical exposure; however, with care, large case-control studies have been used in a
medical setting without appreciable bias (MacMahon 1962). Nevertheless, the interpretation
of the associations in this group of studies has been controversial. Doll and Wakeford

(Doll and Wakeford 1997), after reviewing the available evidence, concluded that there are
strong grounds for a causal interpretation of the association, and although this is still not
universally accepted (International Commission on Radiological Protection (ICRP) 2003;
National Council on Radiation Protection and Measurements (NCRP) 2013) there has been a
degree of consensus in recent years (Armstrong et al. 2012; Wakeford and Little 2003) that
this association may represent a cause-and-effect relationship.

As well as the medical diagnostic studies without assessed doses (which are reviewed in a
separate paper (Little et al. 2021b, submitted)), there is information in a large number of
studies of various exposed groups in which individual dose estimates are available (Tables
2, 3, Supplementary Table S7). One of the more intriguing findings of the meta-analysis

are the indications of difference for certain endpoints in the magnitude of relative risk for
exposures /n utero and in the postnatal period (Tables 6, 7). In particular the analysis of
Table 7 highlights the significant difference between these two types of exposure for thyroid
cancer (including nodules), with relative risks tending to be higher for /n utero than for
postnatal exposure. Although not formally statistically significant there are also indications
of much higher risks of lymphoma and brain/CNS associated with exposure /n utero than for
postnatal exposure (Table 7).
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4.4. Studies of natural background radiation

As discussed by Kendall ef a/ (Kendall et al. 2021), many of the early studies concentrated
on effects of exposure from inhaled radon (an alpha-particle emitting noble gas) and its
radioactive progeny, but as time went on, there was an increasing focus on studies of gamma
radiation as well as, or instead of, radon, possibly driven by the realisation that doses

from penetrating gamma radiation almost certainly accounted for most of the predicted
radiation-related absolute risk of cancers in childhood (Kendall et al. 2021). A large number
of studies of natural background radiation and childhood cancer have been conducted
(Supplementary Table S6). The early studies tended to be ecological, but as time went

on there was a preference for the more reliable case-control design. Insufficient statistical
power is a particular problem for case-control studies, as realistically sized interview-based
studies, with usually at most a few thousand cases, can never have high (>80%) statistical
power to detect realistic excess risks (Little et al. 2010). As shown by Land (Land 1980)

if a low power study produces a statistically significant positive trend it is almost always
bound to be upwardly biased. Studies reporting positive associations are also more likely
than negative ones to be written up and published, leading to a reporting bias. However,
Hauptmann et a/ (Hauptmann et al. 2020) judged that most studies that are set up to study
cancer and are of reasonable size would be published, whether null or not. Kendall et a/
(Kendall et al. 2021) discuss various other issues, in particular the problems of selection bias
that may affect case-control studies. Largely in response to these two problems, of lack of
statistical power and potential bias, a number of register-based national studies have been
conducted over the last decade or so, and the advantages and disadvantages of these are
discussed by Kendall er a/ (Kendall et al. 2021). Although free of selection, participation and
recall bias, inevitably registry-based studies will lack individual dose estimates and many
other individual covariates that can be collected by an interview-based case-control study.
However, surrogates for some of these, for example indicators of socioeconomic status, are
included in many datasets, and as noted above there are few large risks factors that operate
at a population level for most childhood cancers. Therefore, this loss of information is
perhaps not a large concern. There have been a number of European national register-based
studies (Berlivet et al. 2021; Berlivet et al. 2020; Demoury et al. 2017; Kendall et al. 2013;
Mazzei-Abba et al. 2021; Nikkila et al. 2016; Spix et al. 2017; Spycher et al. 2015), recently
reviewed by Mazzei-Abba et a/ (Mazzei-Abba et al. 2020) and by Kendall et a/ (Kendall

et al. 2021). Most of these studies remain underpowered; only the British study (Kendall et
al. 2013) and the French study (Berlivet et al. 2021; Demoury et al. 2017) have reasonable
power, of 50% or more, to detect the predicted excess risk.

4.5. Studies of exposures due to man-made environmental contamination

In terms of population exposure, the Chernobyl reactor accident in northern Ukraine in
1986 was by far the largest nuclear accident, in particular, leading to significant intakes

of internally deposited radio-active iodine among the populations of the former USSR
(United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)
2011). As noted in the Supplementary Methods, many thyroid doses and dose rates were
very high, so that the screening studies of these populations, recently reviewed by Hatch
and Cardis (Hatch and Cardis 2017) are outside the scope of the present review. The mean
ABM dose from Chernobyl exposure, mainly external gamma radiation from deposited
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radiocaesium, was just 10 mGy and the study of childhood leukaemia in the Chernobyl-
exposed populations has been problematical (Davis et al. 2006): there were concerns about
the representativeness of the controls in the Ukrainian part of the study (Davis et al. 2006;
Moysich et al. 2011), which led to a further case-control study being conducted in Ukraine
that produced a substantially lower risk estimate (Noshchenko et al. 2010) (Table 5). The
positive findings for thyroid cancer and benign neoplasms in the Nevada fallout study (Lyon
et al. 2006) are also consistent with studies of exposures at slightly higher (but still low)
levels of external dose (Lubin et al. 2017) (Tables 2, 5). They are also consistent with risks
in the Chernobyl screening studies, although doses and dose rates here are high (Brenner
et al. 2011; Little et al. 2014; Little et al. 2015). Both comparisons suggest that internal
exposure or low dose rate exposure are unlikely to be the reason for the absence of thyroid
cancer risks in the Hanford study (Davis et al. 2004). It is possible that the statistical power
in the Hanford study is low.

The Fukushima Dai-ichi nuclear accident in Japan in 2011 also released radioactive

iodine, but an order of magnitude less than the release during the Chernobyl accident,

and thyroid doses were estimated to be much less than those received by children living
around Chernobyl (United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR) 2014; 2021b). As yet, no studies of populations exposed from Fukushima have
incorporated individual dosimetry; in particular this is the case for studies of thyroid cancer
by Tsuda et a/ (Tsuda et al. 2016) and by Ohira et a/ (Ohira et al. 2020) (see Table 5);

the study of Tsuda ef a/ (Tsuda et al. 2016) has been much criticised on other grounds
(Wakeford et al. 2016).

4.6. Studies of computed tomography (CT) in children

Large datasets of persons receiving substantial doses from CT examinations in childhood
have been assembled (Bernier et al. 2019; Berrington de Gonzalez et al. 2016; Journy et al.
2015; Journy et al. 2016; Kojimahara et al. 2020; Krille et al. 2015; Mathews et al. 2013;
Meulepas et al. 2019; Nikkil& et al. 2018; Pearce et al. 2012). In these CT studies there is
some assessed potential for bias associated with reverse causation (Boice 2015; Walsh et
al. 2014), that is that the CT scan might have been taken because of early symptoms from
pre-existing (latent) disease and was therefore not a cause of the disease (Schubauer-Berigan
et al. 2020; Walsh et al. 2014). A priori it is unlikely that reverse causation would have
much role to play for leukaemia, as most cases are acute. Confounding by indication, in
other words the possibility that high-risk conditions lead to increase in prevalence of CT
imaging, is also a concern in these studies (Schubauer-Berigan et al. 2020; Walsh et al.
2014). Confounding by indication is quite distinct from reverse causation, although the
two terms are often used interchangeably (Kummeling and Thijs 2008). Recent studies
have demonstrated that although there is evidence of confounding by indication in the

UK (Berrington de Gonzalez et al. 2016), French (Journy et al. 2015), Dutch (Meulepas

et al. 2019) and Finnish (Nikkild et al. 2018) studies, excluding patients with possibly
predisposing syndromes (PS) did not much affect the trends with dose. A number of
different methods were employed: in the UK study pathology reports from the cancer
registries and radiologists’ notes were used to determine whether the cases and non-cases
had any of a large number of PS (Berrington de Gonzalez et al. 2016); in the French study
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patient data from the hospital discharge data was used to diagnose patients with these PS,
using a slightly smaller list (Journy et al. 2015); in the Dutch study only patients with
tuberous sclerosis (one of the PS ascertained in the British but not in the French study)
were ascertained via linkage with two hospitals treating most of the patients; and in the
Finnish study (Nikkila et al. 2018) only patients with Down syndrome were ascertained
(one of the PS ascertained in the British and French studies). The theoretical study of
Meulepas et al. examined plausible scenarios for confounding by indication, via inclusion
of individuals with cancer susceptibility syndromes, and suggested that confounding by
indication associated with inclusion of such persons was not expected to be substantial
(Meulepas et al. 2016). Another theoretical study suggested that reverse causation is unlikely
to result in bias away from the null for brain cancer (Little et al. 2021c in press). However,
the study of Mathews et a/ (Mathews et al. 2013) suggests that care is required in the design
and conduct of CT scan studies if confounding by indication is to be avoided.

and dose rates in the studies considered and for in vivo radiobiological data

Doses from natural background radiation (Table 1, Supplementary Table S6), the medical /n
utero studies (Table 2) and the studies of fallout (Table 5) are exceptionally low (generally

< 0.03 Gy), but in all studies considered here the dose rates are generally low or moderate

— the highest dose rates were generally in the CT scan studies and in a study of persons
receiving multiple fluoroscopic exposures as part of the monitoring of tuberculosis treatment
(Little and Boice 1999), approach 0.1 Gy per hour; only in the study of Swedish children
treated for skin haemangioma (Lundell et al. 1999) did dose rates greatly exceed 0.1 Gy per
hour (Table 2). Natural background radiation exposures are ubiquitous and adequately sized
cohorts can be assembled, though the studies need to be at a national or super-national scale
in order to achieve reasonable statistical power (Little et al. 2010).

A particularly interesting finding is that relative risks associated with lung cancer were
significantly lower in the moderate and high dose-rate studies than in the low dose-rate
studies, also lower in the moderate and high dose studies than in the low dose studies

(Table 7, Supplementary Table S5). This is not what would be expected conventionally,
running somewhat counter to the general observation, based largely on radiobiological data,
that cancer risks following low dose and low dose rate radiation would be below those at
high dose rate (United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR) 1993; 2008). These results took no account of smoking data in the relevant
datasets (Cahoon et al. 2017b; Ronckers et al. 2010), which could conceivably confound,;
nevertheless, analyses concentrating on lifelong smokers, or in which the baseline rates in
the LSS were adjusted for smoking status and numbers of cigarettes per day smoked yielded
ERR that were fairly close to the unadjusted ERR (Table 4). However, recent reanalysis of
some large animal datasets did not yield very strong evidence for the ameliorating effects of
low dose-rate or low dose exposure on cancer risk (Tran and Little 2017), although evidence
of such dose rate effects is stronger when the less relevant endpoint of life shortening is
used (Haley et al. 2015). This evidence relating to possible effects of dose rate is fairly
weak, since we are comparing risks in moderate and high dose rate studies with those at
low dose rate among very different study populations, with different periods of follow-up;
nevertheless, what we have done is in the spirit of similar exercises that have been conducted
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in the epidemiological literature that attempt to assess dose rate effects (Hoel 2018; Jacob et
al. 2009; Kocher et al. 2018; Little et al. 2021d; Shore et al. 2017; Walsh et al. 2021).

4.8. Other reviews of the literature

A group of NCI collaborators conducted a systematic review of 26 recently published
epidemiological studies with mean doses<0.1 Gy (range 0.0001-0.082 Gy). These
comprised eight environmental, four medical, and 14 occupational studies (Berrington de
Gonzalez et al. 2020; Daniels et al. 2020; Gilbert et al. 2020; Hauptmann et al. 2020;

Linet et al. 2020; Schubauer-Berigan et al. 2020). The review included six studies of cancer
after childhood exposure, all included here. The review considered a critical appraisal of
dosimetry methods, confounding and selection bias, outcome assessment problems and the
effects of dose measurement errors. Meta-analysis was conducted of leukaemia risk after
childhood exposure (Hauptmann et al. 2020). Both for solid cancers and for leukaemia,

the majority of the studies reported positive ERRs per unit dose. Several limitations were
identified, but only a few positive studies were potentially biased away from the null. These
studies therefore directly supported excess cancer risks from low-dose ionising radiation
(Berrington de Gonzalez et al. 2020; Daniels et al. 2020; Gilbert et al. 2020; Hauptmann

et al. 2020; Linet et al. 2020; Schubauer-Berigan et al. 2020), and the magnitude of cancer
risks was statistically compatible with those in the LSS (Hauptmann et al. 2020).

It is interesting to note how little overlap there is between the datasets considered in the
NCI review (Hauptmann et al. 2020) and the present one, specifically six studies (Davis et
al. 2006; Journy et al. 2015; Kendall et al. 2013; Lubin et al. 2017; Nikkil4 et al. 2016;
Spycher et al. 2015), although the version of the UK CT study used in the NCI review
(Berrington de Gonzalez et al. 2016) is substantially the same as that employed here (Pearce
et al. 2012). There is rather more overlap with the studies considered in a recent review

by NCRP (National Council on Radiation Protection and Measurements (NCRP) 2018),
specifically eleven studies (Akleyev et al. 2016; Demoury et al. 2017; Kendall et al. 2013;
Krille et al. 2015; Little and Boice 1999; Lubin et al. 2017; Nikkila et al. 2016; Pearce

et al. 2012; Preston et al. 2008; Ronckers et al. 2008; Schiiz et al. 2017). The fact that

there is not greater overlap can be explained by a number of factors, specifically the fact
that the NCI review omitted all studies published before 2006 and after 2017, and because
of when it was done, the NCRP study (National Council on Radiation Protection and
Measurements (NCRP) 2018) effectively did not include any studies published after 2017.
The NCI study was limited to those datasets (excluding the Mayak workers and the Kerala
natural background radiation studies) in which the mean dose was under 0.1 Gy (Hauptmann
et al. 2020), unlike the present review, which limited coverage based on a combination of
the maximum cumulative dose and maximum dose rate, so that studies which had dose rate
> 0.1 Gy/hour and maximum dose > 1 Gy were excluded. The NCRP review was likewise
limited to “a comprehensive review of recent (within ~ 10 y) relevant epidemiologic studies
with quantitative dose-response analyses” (National Council on Radiation Protection and
Measurements (NCRP) 2018). Nevertheless, as inspection of Tables 1-5 demonstrates there
are certain other studies that might have been included in previous reviews. For example,
the lung cancer mortality part of the scoliosis study of Ronckers et a/ (Ronckers et al. 2010)
and the German CT study of Krille et a/ (Krille et al. 2015) were both apparently eligible
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for inclusion in the NCI review, but were both excluded because of the abstract-based
screening employed there. Likewise the mortality part of the scoliosis study of Ronckers et
al (Ronckers et al. 2010) was apparently not considered for inclusion in the NCRP review.
This highlights the difficulty of reviews based on automatic searches of databases such

as PubMed, but may also reflect exclusions made in reviewing the searched articles using
established criteria that were not made clear in the publications. Bearing on this it should be
noted that a very large number of the papers we reviewed were not found in our PubMed
search, but were found from assessments of other literature (see Supplementary Methods).

4.9. Biological data pertaining to the plausibility of low dose cancer risk

In this section we consider biological data that may support linearity of dose response for
cancer, and why departures from linearity can be expected, as well as dose rate effects. The
discussion here is mostly quite general, and is applicable to exposures at any age. Although
curvature of dose response is not addressed in the low dose/low dose rate data considered in
this paper, it is certainly observed at slightly higher levels of dose (United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) 1993; 2008), and the presence
of curvature is the reason why it is important that attention be paid to low dose or low dose
rate effects — otherwise one would just consider the full dose range.

Cancer is thought to result from mutagenic damage to a single cell, specifically to its nuclear
DNA, which in principle could be caused by a single radiation track, and this argues against
the existence of a threshold of dose below which cancer risk is not elevated, as discussed
elsewhere (Little et al. 2009). A more recent evaluation of the biological mechanisms
relevant for low dose radiation cancer risk inference concluded that * 7here remains good
Justification for the use of a nonthreshold model for risk inference for radiation protection
purposes, given the present robust knowledge on the role of mutation and chromosomal
aberrations in carcinogenesis’and, in relation to the potential targets in addition to nuclear
DNA, ‘The potential contributions of phenomena such as transmissible genomic instability,
bystander phenomena, induction of abscopal effects and adaptive response remain unclear.”
(United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)
2021a). A low LET radiation dose of 0.001 Gy corresponds to about one electron track
hitting a cell nucleus (National Council on Radiation Protection and Measurements (NCRP)
2001; United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)
1993). This suggests that at low doses (0.01 Gy or less spread over a year) it is unlikely that
temporally and spatially separate electron tracks could cooperatively produce DNA damage
(Brenner et al. 2003), so that in this very low dose region DNA damage at a cellular level
would be proportional to dose. It is known that the efficiency of cellular repair processes
varies with dose and dose rate (National Council on Radiation Protection and Measurements
(NCRP) 2001; United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR) 1993), and this may be the reason for the curvature that is observed in the
cancer dose response at higher levels of dose (e.g. for leukaemia (Hsu et al. 2013) and

some solid cancers (Little et al. 2020)) and dose rate effects observed in epidemiological
(United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)
2008) and animal (Haley et al. 2015; Tran and Little 2017; United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) 1993) data. DNA double
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strand breakage, and clustered damage (two or more lesions in close proximity) (United
Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2012)

are thought to be the most critical lesion induced by radiation (United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) 1993). Repair of DNA double
strand breaks (DSBs) relies on a number of pathways, even the most accurate of which,
homologous recombination, is prone to errors (National Council on Radiation Protection
and Measurements (NCRP) 2001); other repair pathways, e.g., non-homologous end joining,
single-strand annealing, are intrinsically much more error prone (International Commission
on Radiological Protection (ICRP) 2006; National Council on Radiation Protection and
Measurements (NCRP) 2001). The variation in efficacy of repair that undoubtedly occurs
will affect the magnitude of unrepaired and misrepaired damage and, whereas unrepaired
damage is likely to result in cell death, non-lethal misrepaired damage by definition results
in mutation. Some information is available on the age-dependence of induction of DNA and
chromosomal damage, and while not many studies are available, any differences between the
young and adults are not great (Gomolka et al. 2018; Oestreicher et al. 2018).

5. Conclusions

Here we have considered the overall question of the relationship between low-level exposure
to low LET radiation in childhood and the consequent risk of cancer. Attention was mainly
focused on leukaemia, the most common and best studied of the childhood cancers, but we
have also presented evidence of excess risk of brain/CNS and thyroid cancer and thyroid
nodule risk. The data presented here, particularly that in Tables 1 and 2, indicate that

there is now little reasonable doubt that the childhood leukaemia risk extends into the

low dose range conventionally considered to be doses<0.1 Gy of low LET radiation. We
would suggest that the evidence for elevated leukaemia risk now extends down to 0.05

Gy, and indeed for acute lymphoblastic leukaemia, as shown in a recent pooling study

of low dose studies, excess risk extends down to around 0.02 Gy (Little et al. 2018b).
These studies (Little et al. 2018b) and studies of natural background radiation (Kendall

et al. 2013; Mazzei-Abba et al. 2021; Spix et al. 2017; Spycher et al. 2015) and of

medical diagnostic exposures (Berrington de Gonzalez et al. 2016; Journy et al. 2015;
Journy et al. 2016; Krille et al. 2015; Mathews et al. 2013; Meulepas et al. 2019; Pearce

et al. 2012) offer strong suggestions of excess risks for certain types of cancer at around
the same level of dose, about 0.02 Gy. Studies should concentrate on all these endpoints
(leukaemia, thyroid cancer and brain/CNS tumours), because in these the excess risk will
be most clearly established, and at lower levels of dose, although it is likely that different
patterns of low-dose response may emerge. Mechanistic understanding of the development
of cancer at a cellular and molecular level makes such a possibility biologically plausible.
Further integration of information, particularly quantitative information, on the biological
mechanisms of radiation carcinogenesis and leukaemogenesis making use of the adverse
outcome pathway framework (National Council on Radiation Protection and Measurements
(NCRP) 2020) with the further refinement of epidemiological investigations such as those
reviewed here will serve to characterise radiation-related cancer risks more precisely.
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