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ABSTRACT

Digital twins employ mathematical and computational models to virtually represent a physical object (e.g., planes and human organs),
predict the behavior of the object, and enable decision-making to optimize the future behavior of the object. While digital twins have been
widely used in engineering for decades, their applications to oncology are only just emerging. Due to advances in experimental techniques
quantitatively characterizing cancer, as well as advances in the mathematical and computational sciences, the notion of building and
applying digital twins to understand tumor dynamics and personalize the care of cancer patients has been increasingly appreciated. In this
review, we present the opportunities and challenges of applying digital twins in clinical oncology, with a particular focus on integrating
medical imaging with mechanism-based, tissue-scale mathematical modeling. Specifically, we first introduce the general digital twin
framework and then illustrate existing applications of image-guided digital twins in healthcare. Next, we detail both the imaging and
modeling techniques that provide practical opportunities to build patient-specific digital twins for oncology. We then describe the current
challenges and limitations in developing image-guided, mechanism-based digital twins for oncology along with potential solutions. We
conclude by outlining five fundamental questions that can serve as a roadmap when designing and building a practical digital twin for
oncology and attempt to provide answers for a specific application to brain cancer. We hope that this contribution provides motivation
for the imaging science, oncology, and computational communities to develop practical digital twin technologies to improve the care of
patients battling cancer.
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I. INTRODUCTION
A. Definitions of digital twins

1. Conceptual and practical definition of a digital twin

In 2010, NASA published a formal definition of a digital twin as
an “integrated multi-physics, multi-scale, probabilistic simulation of a
vehicle or system that uses the best available physical models, sensor
updates, fleet history, etc., to mirror the life of its flying twin.”1

Though specialized to aeronautics, this definition reflects the status of
a digital twin as a natural extension of simulation and optimization.
More recently, digital twins connote the coupling of quantitative

sensing techniques capable of acquiring large datasets with realistic
mathematical models that characterize key components of the spatial
and temporal dynamics of the phenomena under investigation. Thus,
digital twins have moved simulation beyond replicating a physical
device and are now used to test components, diagnose issues, and opti-
mize operations.2 These developments have brought digital twins out
of the realm of science fiction and into real-world application in fields
as varied as manufacturing, aeronautics, public utilities, and—the sub-
ject of this article—oncology.

2. Mathematical definition of a digital twin

A digital twin is a mathematical model (or a collection of models)
that provides a virtual representation of a specific physical object and
predicts its behavior at future time points.3 Accurate predictions allow
a tailored decision-making process for which actions could be applied
to the target object to optimize either its behaviors or outcomes from
an intervention. The general framework for building a digital twin of a
particular object can be mathematically abstracted from six major
components4 [see Fig. 1(a)]:

(1) Physical state (S): the parameterized state of the physical object
(2) Observational data (O): the available information describing

the state of the physical object
(3) Control inputs (U): the actions or decisions that influence the

physical object
(4) Digital state (D): the parameters and model inputs that define

the computational models comprising the digital twin
(5) Quantities of interest (Q): the model outputs, or quantities esti-

mated via model outputs, describing the physical object
(6) Rewards (R): the quantification of overall performance of the

object-twin system.

Based on these six elements, a dynamic decision network can be
established [see Fig. 1(b)]. Initially, experiments (U0) are applied to the
target physical object to obtain observational data (O0), which represent
the physical state (S0). Then, the digital state (D0) is constructed by
leveraging these data to calibrate or assign the model parameters and
define the digital twin geometry. The models constituting the digital
twin can be statistical, mechanism-based, or a hybrid of the two. (The
term “mechanism-based” refers to the property that each term or
parameter included in the model represents a specific biological or phys-
ical mechanism.) The models specified by D0 will output the predictions
of the behaviors of the physical object [i.e., the quantities of interest
(Q0)]. Finally, based on Q0, the predicted outcomes can be evaluated
and quantified as rewards (R0). For example, in oncology, rewards may
be overall survival, drug toxicity, and quality of life. Furthermore, as
guided by Q0 and R0, decisions (U1) are made on what adjustments
should be applied to the physical object and what additional experi-
ments should be performed to monitor the changes of the physical state
(S1). As more data (O1) are acquired, the digital state can be updated as
D1, as well as its outputs Q1 and R1. This iterative procedure can con-
tinue over time to optimize the behaviors of the physical object.

3. Examples of digital twins

The use of digital twins rapidly expanded beyond NASA’s initial
efforts into a variety of fields. For example, the automotive industry
was an early adopter of digital twins, using them to guide vehicle design,

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 3, 021304 (2022); doi: 10.1063/5.0086789 3, 021304-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/bpr


test precondition safety systems in adverse conditions, monitor vehicle
use, and streamline service visits. In fact, some automobile manufac-
turers now generate a digital twin for every car sold.5 In this setting, a
myriad of sensors on each vehicle continuously monitor data from the
various components and stream these data to digital twins at the factory.
If these data indicate that the vehicle needs maintenance, the driver can
be alerted, or the issue can be corrected remotely by a software update.
Similar implementations of digital twins have occurred across the trans-
portation industry including planes and trains. The utility sector has
also made use of digital twins to monitor electric grids, wind power
farms, and wastewater plants in an attempt to save energy and predict
faults.6 In fact, digital twins are said to be bringing a “Fourth Industrial
Revolution” as “smart factories” with embedded sensors can monitor
the manufacturing process and synchronize with a digital twin to opti-
mize processes, make decisions about production control, and predict
maintenance and failure of components.7 Most recently, digital twins
have begun to be applied in healthcare and medicine.8 By employing
medical imaging data, image-guided digital twins have been used to
address problems in cardiology,3,9 diabetes,10 and oncology.11 All these
applications have a common goal of improving treatment outcomes for
individual patients by building patient-specific models that can predict
disease progression and treatment response.

B. Rationale for digital twins in clinical oncology

1. How clinical trials determine therapeutic regimens

The conventional approach for determining therapeutic regimens
in oncology, as well as other diseases, is through the clinical trial

process. A clinical trial is an investigation performed on human sub-
jects for the purpose of assessing the safety or efficacy of a specific
intervention. The treatment(s) being tested may be pharmacological
agents, medical devices, or novel surgical procedures or interventions.
Clinical trials typically employ a three-phased approach. In oncology,
phase I studies seek to identify side effects and dose-limiting toxicities
using a dose-escalation paradigm. If phase I studies demonstrate safety
and acceptable toxicity, the efficacy of the treatment is evaluated in
subsequent phase II studies. Randomized phase II and III studies fre-
quently compare the investigational intervention against the current
standard-of-care intervention. Phase II studies are smaller than phase
III studies and are focused on establishing efficacy while continuing to
evaluate safety. Phase III trials tend to be much larger, involve many
sites, and are designed to obtain data to characterize whether the
investigational intervention is more effective and safer than the inter-
vention of the control arm. It is these data that are typically submitted
with a new drug application to the Food and Drug Administration
(FDA) in the United States or similar regulatory bodies.

For every treatment that has been approved after a successful
phase III trial, there are copious examples of interventions that have
failed in clinical trials. In fact, fewer than 10% of drugs in phase I stud-
ies will be approved, while approximately 25% of phase II and 60% of
phase III drugs will be approved.12 Despite the large number of studies
undertaken for successful drugs to reach patients, clinical trials are also
plagued by scarcity in terms of the number of patients enrolled in each
study, the number of treatments that can be compared simultaneously,
and the range of doses that can be evaluated in any one trial. Thus, the
cost of performing trials on drugs that fail, combined with the cost of

FIG. 1. Illustration of the structure of a digital twin and the resulting dynamic decision network. Panel (a) presents a general framework for a digital twin and its associated
physical object for an example application in brain cancer. As outlined by Ref. 4, the framework consists of six major components: three for the physical object [physical state
(Si), observational data (Oi), and control inputs (Ui)] and three for the digital twin [digital state (Di), quantities of interests (Qi), and rewards (Ri)], where the subscript i indicates
the ith temporal update of the system. Panel (b) shows a conceptual decision-making network based on the framework in panel (a) (adapted from Ref. 4). The status of the
physical object at time is used to initialize the digital twin. Then, based on this patient-specific digital twin, decisions can be made to adjust the control inputs (e.g., treatment or
examination plans), which will lead to a subsequent change in the physical status and observational data at future time points, thereby necessitating an update to the digital
twin. This procedure can be performed multiple times during the patient’s care to monitor and optimize their outcome. (Figure style based on that found in Ref. 4.)
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performing clinical trials with the necessary rigor to prevent bias, adds
to incredibly high clinical research costs; the budget for a single oncol-
ogy study in the U.S. is estimated to be $79 � 106, including an aver-
age per-patient cost of $59 500.13 Recruitment is also a challenge: only
3% of adult cancer patients enroll in clinical trials, with lower enroll-
ment from elderly and minority groups.14 These low accrual rates pro-
long study duration and have led to early closure or failure of many
clinical trials15 and the imbalance of representative populations
enrolled into clinical trials may introduce bias and limit the generaliz-
ability of the study findings. An interesting exception is clinical trials
for pediatric cancers, in which more than 50% of patients enroll in
clinical trials.16,17

Given the high cost and challenges of recruiting the required
number of patients, it is difficult to overstate the importance of design-
ing more expedient methods for accepting or rejecting candidate treat-
ments as early as possible, as well as for determining which patients
could benefit from candidate treatments to guide efficient patient
recruitment. While designing better in vitro and preclinical models
certainly helps, these systems may fail to mimic the complexity of
human studies.18 An in silico approach that is capable of faithfully rep-
resenting an individual’s biology and interactions with various inter-
ventional strategies would not only dramatically reduce the cost of
clinical trials but also improve the efficiency of identifying promising
drugs in a substantially shorter timeframe.

Aside from the high cost and challenges of patient recruitment,
clinical trials (as well as other population-based approaches) have an
intrinsic limitation of not being able to capture the unique biological
features characterizing the tumors of individual patients, and this can
lead to sub-optimal outcomes. Clinical trials can only control for a cer-
tain number of variables to ensure that the study enrollment is feasible,
which leaves many other variables that may influence the response of
patients. For example, other medications patients may be taking,
comorbid illnesses that may have not been accounted for in the study
design but may influence toxicity, etc. Most phase I studies are done in
patients who have been heavily pretreated, which may influence indi-
vidual patient responses. Furthermore, different combinations of mul-
tiple therapies and the timing and sequencing of treatment delivery
may influence the outcome; but given the enormous number of thera-
peutic options it is simply impossible for clinical trials to experimen-
tally evaluate all the possible interventions that might be appropriate
for a particular cancer. As additional therapeutic targets and treatment
options are continuously evolving,19–21 the determination of proper
treatments for a specific patient becomes increasingly complex.

2. How digital twins can hasten the arrival
of patient-specific oncology care

Digital twins provide a practical framework to glean additional
insights from current population-based approaches while filling the
unmet needs of patient-specific oncology care. Specifically, prognoses
(i.e., the expected course of the disease) are currently determined from
the statistical summary of population data including the age and gen-
der of the individual, the type and subtype of cancer, the stage of dis-
ease at diagnosis, and the molecular profile of the tumor.22 In contrast,
digital twins can hasten the arrival of a truly personalized prognosis by
serving to establish the pathophysiology of an individual patient’s

disease, so that the survival of an individual patient can be specifically
predicted, rather than extrapolated from a population.

The ability to make accurate patient-specific predictions would
not only improve prognosis, but would also identify mechanistic rea-
sons for different responses to treatment across patients and provide
guidance on how to personalize the intervention for individual
patients. Determining the optimal choice of treatment(s), including
the combination, dose, sequence, and timing of therapies, is extremely
complex, and a comprehensive evaluation of all options by traditional
clinical trials or experiments is impossible. In contrast, as the dynamic
decision network in Sec. IA 2 illustrates [Fig. 1(b)], a digital twin con-
strained by the observational data from an individual patient can sys-
tematically explore many possible treatments in silico and therefore
present a compelling strategy to optimize the patient’s outcome.23–26

Currently, complex treatment decisions for individual patients are
often addressed at tumor boards attended by physicians and scientists
from many different specialties who provide recommendations based
on their pooled experience, expertise, and biases. In comparison, digi-
tal twins can provide a decision-making framework to quantify and
integrate additional patient care factors including the clinicians’ expe-
rience and expertise as well as the patients’ perspective on the quality
of life, to develop a personally optimized therapeutic strategy.27

More recently, there have been efforts to develop methods to gen-
erate quantifiable predictions of tumor dynamics for individual
patients with the goal of accurately diagnosing the disease, predicting
response, and establishing optimal treatment options.28–31 While these
studies were not specifically presented as digital twins, the goals, chal-
lenges, and techniques are closely related to those required to develop
digital twins and thus provide a unified foundation for establishing
more comprehensive digital twins for oncology. The potential of digi-
tal twins to hasten the arrival of personalized precision cancer care has
been increasingly appreciated.32–34 In fact, multiple studies have dem-
onstrated successful prototypes of digital twins across several
scales.35–40 A practical digital twin needs to balance the complexity of
computational models with the availability of data to achieve a particu-
lar clinical goal. In this review, we focus on digital twins that employ
clinical imaging data and discuss why this is a promising direction,
what models and data can be used to build this type of digital twin,
and what problems they can address. We also present some of the
technical details on how to construct these digital twins.

C. Integrating quantitative imaging
and mechanism-based mathematical modeling

The point of view we espouse for constructing practical digital
twins in oncology relies on advanced biomedical imaging and mathe-
matical models designed to employ such data.41 Importantly, the cen-
tral role of medical imaging in screening, diagnosing, staging, guiding
therapy, monitoring, and evaluating response presents itself as an
important source of patient-specific measures of tumor growth and
response.42 Additionally, medical imaging provides noninvasive, serial
observations of the spatiotemporal variations in the physical state of
the patient, which can be employed as the observational data of a
patient’s digital twin. We11,29,43–46 and others47–51 have demonstrated
that mathematical models can be initialized and personalized by medi-
cal imaging data collected from patients. Once personalized, the
image-guided mathematical model parameters serve as a digital repre-
sentation of that patient’s tumor where treatment can be optimized
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and response can be forecasted. Early efforts by Swanson et al.52 relied
on anatomical or structural imaging, which report on the location and
extent of the disease to estimate tumor-specific parameters of prolifer-
ation and invasion in patients with glioblastoma. The approach by
Swanson et al. has evolved over the years to produce an informative
“days gained”53 metric of treatment efficacy where real or hypothetical
patient outcomes are compared to an untreated “virtual control” (i.e.,
digital twin). More recently, advanced quantitative imaging techniques
are capable of reporting on the heterogeneity in tumor biology and are
now being employed in image-guided mathematical models. For
example, in Weis et al.,43 longitudinal maps of tumor cellularity—as
estimated by diffusion-weighted (DW-) magnetic resonance imaging
(MRI)—collected before and after the first cycle of neoadjuvant sys-
temic therapy (NAT) in patients with breast cancer were used to cali-
brate a mechanically coupled, reaction–diffusion equation to identify
patient-specific and spatially varying net-proliferation rates and tumor
cell diffusion. These rates were then used to run the mathematical
model forward in time to predict response at the conclusion of NAT.
Jarrett et al.29 extended this effort by incorporating longitudinal
dynamic contrast-enhanced (DCE-) MRI to quantify tissue perfusion
and approximate the delivery of chemotherapy. By leveraging quan-
titative MRI to estimate both tumor cellularity and tissue perfusion,
Jarrett et al.29 were able to employ digital twins to identify alterna-
tive therapeutic regimens that were hypothesized to outperform the
standard-of-care for each individual patient. This initial effort into
developing a digital twin in breast cancer demonstrates the utility,
and potentially paradigm-shifting power, of using advanced quanti-
tative imaging measures to personalize and construct digital twins
in oncology.

D. Outline for the remainder of the manuscript

We attempt to provide an up-to-date review of the opportunities,
established techniques, and challenges of developing digital twins for
oncology that are built upon the integration of quantitative biomedical
imaging and mechanism-based mathematical modeling. In Sec. II, we
describe the state-of-the-art of image-guided digital twins in multiple
fields of healthcare, specifically highlighting the milestones in cardio-
vascular simulation, convection-enhanced drug delivery, and virtual
reality for surgery. In Sec. III, we detail the techniques required to
make practical image-guided digital twins for oncology a reality.
Specifically, we discuss (1) the clinically available imaging techni-
ques that provide a quantitative characterization of cancer, (2) the
current mechanism-based models that capture the salient features
of tumor development, tumor response, and the underlying patho-
logical processes, and (3) how the imaging data are integrated into
the mathematical models. In Sec. IV, we discuss how artificial
intelligence (AI) and big data can assist the development of
mechanism-based digital twins for cancer. In Sec. V, we explicitly
list and discuss the current barriers to success for image-guided
digital twins in oncology, including limitations in what biological
mechanisms can be included in tissue-scale models, available data,
and computational techniques required for model implementation,
calibration, selection, updating, and evaluation. Finally, in Sec. VI,
we illustrate the process of developing an image-based, mecha-
nism-based digital twin for oncology, with a specific application to
brain cancer.

II. IMAGE-GUIDED DIGITAL TWINS IN HEALTHCARE

There have been substantial efforts to develop image-guided digi-
tal twins for various diseases, each with the common goal of improving
treatment outcomes for individual patients. By summarizing several
previous examples of digital twins in other fields of medicine, we see
the potential for employing digital twins in clinical oncology.

A. Simulation of cardiovascular disease and their
treatments

Patient-specific simulation of cardiovascular disease constitutes
one of the most developed applications of digital twins in healthcare.
The mathematical and computational modeling of cardiovascular
pathologies has been systematically investigated for several decades
and has led to practical tools for guiding interventions.4,54,55 Indeed,
some cardiovascular modeling tools are already commercially avail-
able. For example, HeartFlow analysis and HeartFlow planner
(HeartFlowVR , Inc, Redwood city, CA) are FDA-approved software for
assisting in diagnosis, risk prognosis, and surgical planning for coro-
nary artery disease.56,57 HeartFlow analysis produces a personalized,
color-coded 3D rendering of the patient’s coronary arteries based on
x-ray computed tomography (CT) scans, providing physicians detailed
information about the location and severity of stenoses (i.e., narrowing
or blockage of coronary arteries which can lead to heart failure). In
particular, the software calculates the pressure field within the diseased
arteries and the resulting “fractional flow reserve,” which is commonly
used to determine the risk level for a patient.58 Furthermore,
HeartFlow planner allows physicians to interactively explore different
intervention scenarios, virtually modifying each identified stenosis to
see the potential impact on blood flow. Nevertheless, there are more
challenges in cardiac modeling attracting great interest, including, for
example, the incorporation of models and data across multiple spatial
and temporal scales,3,59–63 as well as more complete analyses of cardiac
electrophysiology, mechanics, and hemodynamics.9,60,64–66 Additionally,
there are several efforts to develop open-source software environ-
ments60,67,68 to make cutting-edge cardiovascular modeling techniques
(e.g., image analysis, mesh generation, numerical solvers, and visualiza-
tion) accessible to a wide audience, including researchers, clinicians,
and students.

B. Planning convection-enhanced drug delivery
for brain diseases

Another healthcare application that substantially benefits from
digital twins is convection-enhanced delivery (CED) of therapeutics
for brain diseases, including high-grade tumors, Parkinson’s disease,
and Alzheimer’s disease.69–71 CED involves the direct infusion of
drugs into the brain via implanted catheters. This technique allows
drugs that do not cross the blood–brain barrier to be delivered in ther-
apeutic concentrations throughout large volumes of brain tissue, while
minimizing systemic exposure.69 Preclinical and clinical efforts over
the last two decades, however, indicate that the success of CED treat-
ments is intimately connected to the proper placement of catheters as
well as infusion rate.72 Suboptimal administration of CED may result
in undesirable consequences (e.g., reflux along catheters and leakage
into the cerebrospinal fluid or bloodstream), which can increase the
risk of off-target side effects.69,73 Thus, an accurate prediction of the
spatiotemporal distribution of the delivered therapeutics is necessary
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to maximize the successful application of a given therapy.72,74 This
necessarily requires digital twins of individual patients to provide
detailed computational modeling of the physiological properties, the
specific drugs delivered, and the design of the catheters employed for
administration of the treatments.69,72–75

As a commercial tool widely used in clinical trials,76–78 iPlanVR

Flow (BrainLab AG, Feldkirchen, Germany) is FDA-approved soft-
ware designed to support patient-specific optimization of CED for
brain diseases. iPlan uses MRI data to simulate the distribution of
drugs infused into the brain and then uses this simulation to guide the
placement of intra-cranial catheters.79 There are additional efforts to
address existing challenges in the simulation of CED. For example,
iPlan flow uses an algorithm that calculates the backflow along cathe-
ters assuming a constant diameter of catheter tip design.80 However,
studies have indicated that catheters with a stepped design can prevent
severe reflux.75,76 To address this issue, Rosenbluth et al. modified the
calculation of backflow along the catheter to account for the effect of
the step in the catheter tip.81 Another existing challenge is that the
relationship between model parameters and the available imaging
measurements can be different for different CED therapies. To begin
to address this limitation, Woodall et al. developed a new mechanism-
based model guided by multi-modality images (MRI, x-ray CT, and
single-photon emission computed tomography) to predict the distri-
bution of radioactive, Rhenium-186 nanoliposomes delivered via
CED.44

C. Virtual reality and digital twins for surgical planning

Virtual, mixed, and augmented reality (VR) enable users to visu-
alize objects in a computational environment, upon which devices are
developed to enable manual interaction between users and the compu-
tational environment. Emerging VR technology seeks to import the
sensed motions of the user in the physical world into the computa-
tional environment, and in feedback, to create an experience of touch
by applying forces or vibrations to the user. These haptic technologies
have seen increasing use in planning complex surgeries as well as in
training physicians in techniques that are not frequently per-
formed.82–88 Recently, the integration of digital twins with VR technol-
ogy has been regarded as a promising framework to personalize
surgical planning. Specifically, digital twins provide patient-specific
anatomy extracted from medical images and personalized models of
tissue mechanics and interactions with surgical instrumentation,
enabling patient-specific simulations in VR implementation.3,84,89

Together, these technologies enable surgeons to systematically explore
individual patients’ anatomy in 3D to plan the surgical procedure,
guide intraoperative decision-making, and gain practice before the
actual surgery.54,57,84,87,89–92

The potential of integrating VR with digital twins to assist in per-
sonalizing surgical procedures has been increasingly appreciated in
medicine. For example, a commercial platform called ImmersiveViewVR

Surgical Plan (ImmersiveTouchTM, Chicago, Illinois) is designed to
generate 3D replicas from patient scans (including CT, MRI, and 3D
angiography), allowing surgeons to study and collaborate on surgical
tactics. Using a headset, surgeons can perform multiple reality-
emulating procedures (e.g., drawing, measuring, and cutting) on the
digital twin representing patient-specific anatomy. While this system is
currently used at several academic medical centers, extensive prospec-
tive studies that quantitatively determine the utility of digital twins for

surgical planning and decision-making are still required before these
emerging technologies are available for widespread clinical use.3,84 A
central challenge in developing reliable digital twins for surgery is the
construction of realistic models that adequately capture in vivo tissue
deformation due to interaction with surgical instrumentation.89,91–94

Also, the constructed models need to be reliably parameterized with
imaging and clinical measurements.3,92,94 Current efforts also seek to
provide accurate and fast registration of the patient’s anatomy during
the intervention to refine the feedback (i.e., experience of touch) from
the digital twin to the surgeon.85,87,91,93

III. MAKING IMAGE-GUIDED DIGITAL TWINS
PRACTICAL FOR CLINICAL ONCOLOGY

While practical, rigorous, commercialized digital twins do not
currently exist for clinical oncology, there have been many efforts seek-
ing to integrate biological data with computational models in cancer
biology and oncology.34,35 In recent years, there have been tremendous
developments in methods to quantitatively describe tumor growth
from the cell scale95–97 to the tissue scale.36,98,99 In particular, the data
required for tissue scale models, which describe phenomena that are of
direct clinical interest, can now be directly and routinely measured.
Specifically, much effort has been invested in developing tissue-scale
models for (1) identifying pathophysiological characteristics of
tumors,46,100 (2) predicting spatiotemporal changes of tumor size,
shape, tumor cell density, and response to administrated thera-
pies,36,98,99 and (3) identifying and optimizing treatment options on a
patient-specific basis.11,29 Moreover, modeling at the tissue scale can
be informed by medical imaging data, such as x-ray CT, MRI, and
positron emission tomography (PET), which are clinically available
and can provide longitudinal in vivo measurements of cancers.101,102

Thus, in this section, we focus on the measurements available from
current clinical imaging techniques and how such data can be inte-
grated into tissue-scale mechanism-based models to construct digital
twins (see Fig. 2 for an overview).

A. Clinical imaging techniques

Biomedical imaging plays a fundamental role in clinical oncology
as it provides data to assist in tumor detection, staging, treatment plan-
ning, assessment of treatment response, and post-treatment monitor-
ing. The primary biomedical imaging modalities include CT, MRI,
and PET [see Fig. 2(a) for examples]. These techniques use different
physical mechanisms to noninvasively generate three-dimensional
images inside the body. For example, CT scans use rotating x-ray sour-
ces to generate multiple projection images that can be reconstructed to
form 2D cross-sectional images, MRI employs magnetic fields to gen-
erate three-dimensional images of any orientation inside the body, and
PET imaging involves the injection of a radioactive material preferen-
tially accumulates in specific regions that can be determined by recon-
struction techniques similar to x-ray CT.107–109 CT and MRI
measurements of tumor size are commonly used to assess the treat-
ment response using the Response Evaluation Criteria in Solid
Tumors (RECIST)110 which partitions patients into one of four catego-
ries (complete response, partial response, stable disease, and progres-
sive disease) based on changes in the longest dimension of their
tumor(s) between visits. By employing different methods of image
acquisition and processing, these three modalities can probe an array
of biological features regarding tumor and surrounding tissue.42
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X-ray CT, MRI, and PET are all capable of providing quantitative
biomarkers of the underlying physiological, cellular, and molecular
characteristics of cancer.111 For example, contrast-enhanced CT and
MRI can be used to quantify vascular perfusion and permeabil-
ity.103,112–114 Diffusion-weighted MRI measures the motion of water
in tissue and provides a surrogate of cellularity, which has proven to
be useful in assessing and predicting the response of a tumor to ther-
apy.115–118 Other MRI techniques under development for tumor imag-
ing include MR spectroscopy which assays the biochemical milieu of
the tumor119 and MR elastography which measures tissue stiffness.120

PET imaging allows for comparative assessment of glucose metabo-
lism via the tracer fluorodeoxyglucose (18FDG-PET).121,122 PET has
also been employed to measure hypoxia, apoptosis, and the density
of various cell surface receptors.123 The tracer fluoromisonidazole
(18F-FMISO PET) is used primarily for imaging hypoxia,124,125 and
the tracer fluoroethyltyrosine (18F-FET PET) is used for imaging meta-
bolic activity.126,127 Simultaneous acquisition of PET with CT or MRI
can further increase the utility of the data by providing better anatomi-
cal referencing and spatial localization of the PET functional
data.128,129 By assessing complementary aspects of tumors, biomedical
imaging can characterize many important aspects of tumor patho-
physiology at multiple timepoints in 3D, thereby providing measure-
ments that are both accessible and powerful for constructing realistic,
clinically relevant digital twins.

B. Mechanism-based mathematical modeling

The standard-of-care in oncology relies on the treating physician
to integrate the individual patient’s clinical and imaging information
with the statistical analysis of population-level data acquired from
both clinical trials and medical practice.130,131 Features observed at
the population level, however, frequently obscure important char-
acteristics of the individual to the point that the population-level
features may not be relevant to the individual patient. In contrast,
mathematical models—built upon established biology, chemistry, and
physics—can accurately (and practically) characterize the fundamen-
tal mechanisms underlying cancer growth and therapeutic response.
Such advances toward a mechanistic understanding of the disease
provide opportunities to better use individual patient’s data to inform
their optimal treatment plan.

The behavior and interaction of tumor cells with, for example,
healthy cells, immune cells, and vasculature can be described through
the language of ordinary differential equations (ODEs), which describe
the change in the quantity of species over time, or partial differential
equations (PDEs), which describe the change in the quantity of species
over both time and space35,36,99,132–134 [Fig. 2(b)]. There have been
many recent developments in these mechanism-based models36,45

with promising results for reproducing and forecasting the growth
and treatment response of tumors of the brain,30,135–139 breast,29,140

prostate,31,141,142 head and neck,143 pancreas,144,145 and kidney.146

FIG. 2. Integrating clinical imaging and mechanism-based modeling to build patient-specific digital twins for oncology. Panel (a) illustrates three of the primary imaging modali-
ties in clinical oncology (for the specific example of breast cancer): CT, MRI, and PET. From left to right, and then top to bottom, the MRI data include T1-weighted images,
diffusion weighted MRI, and pre-contrast and post-contrast DCE-MRI.103 The PET scan employs the radiotracer fluorodeoxyglucose (FDG) and was downloaded from the
QIN-breast collection of the Cancer Imaging Archive.104–106 Panel (b) lists several of the key, mechanism-based modeling methods for cancer, as well as some of the phenomena
investigated with the models. Integrating panels (a) and (b), a digital twin for a specific application in oncology can be established, as illustrated in panel (c) for the treatment for
breast cancer with NAT. Specifically, imaging data can provide a detailed characterization of (for example) morphology, tissue cell density, vascular permeability, and interstitial
pressure.46 Mechanism-based models can then be personalized with such data to make patient-specific predictions of the outcomes of a range of treatment plans. For example,
as shown in panel (c), the digital twin can predict the spatiotemporal distribution of delivered therapies, and tumor response to a specific therapeutic plan (i.e., therapy No. 1
causes the tumor volume to shrink by 67.64%, while therapy No. 2 only reduces the tumor volume by 31.29%).
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These models often begin by characterizing the change in the total
number of tumor cells or in the tumor volume over time. But they can
be further extended to account for other important phenomena,
including the evolving mechanical properties of the tissue during
tumor growth or the dynamics of the availability of nutrients and
therapeutics.

To develop clinically actionable digital twins using mechanism-
based models, it is essential that these models are constructed upon
clear mathematical relationships connecting patient data with model
inputs (e.g., initial conditions and parameters) and outputs (e.g., model
variables or other quantities of interest that are readily calculated from
model variables).3,11,36 To this end, ODE models of tumor growth and
treatment response often describe the temporal change in tumor vol-
ume, total tumor cell number, or other clinically relevant biomarkers
(e.g., serum prostate specific antigen in prostate cancer).31,142,143,147

ODE models are attractive because they can incorporate not only
imaging data, but also multi-dimensional omics data (e.g., genomic,
proteomic, transcriptomic, and metabolomic148), which makes such
models a practical paradigm for accounting for multi-scale mecha-
nisms. For example, intracellular signaling pathways and metabolic
networks are commonly represented by coupled ODEs describing the
temporal dynamics of entire signaling pathways.136,137,149–151 Inter-
cellular interactions and transformations, such as communication
between tumor-immune cells, and epithelial-mesenchymal transition,
can also be represented by ODEs.152,153 Another key advantage of
ODE models is that, in general, they can be solved using well-
established algorithms that are straightforward to implement and
require a minimal computational cost. However, they are not able to
provide a spatially resolved prediction of tumor growth or therapeutic
delivery, which may limit their utility in building digital twins for
some decision-making processes requiring local tumor information
(e.g., biopsy, surgery, or radiotherapy planning).

This limitation is overcome by PDE models, which often extend
ODE formulations to incorporate the movement of the modeled spe-
cies and their interaction(s) with spatially varying tissue proper-
ties.35,36,99,132–134,138 Tumor cell movement is often modeled via a
diffusion term which can be randomly defined or informed by tissue
type,52 mechanical properties,154 or tissue anisotropy.155 These models
can return spatially resolved estimates of tumor quantities that are
readily comparable to clinical imaging measurements, such as tumor
morphology, cell density, vasculature networks, and perfusion (see
Sec. III B below). Additionally, by integrating certain PDE model vari-
ables over a region of interest it is possible to estimate the scalar quan-
tities of interest usually employed in ODE models (e.g., tumor
volume). However, to solve and parameterize PDE models it is neces-
sary to employ more advanced numerical methods, which are usually
more computationally intensive.132,138

C. Linking imaging and mechanism-based modeling
to enable digital twins practical for oncology

After reviewing the information presented in Secs. IIIA and IIIB,
we hope that the reader finds it natural to employ quantitative imaging
techniques to populate mechanism-based mathematical models that
describe the biophysical dynamics of tumors and their response to
treatment [as shown in Fig. 2(c)]. Recalling the digital twin framework
introduced in Sec. IA 2 (and Fig. 1), imaging provides the observa-
tional data to establish the digital state of a model, thereby linking the

physical objects [i.e., tumor(s) of an individual patient] to their digital
twins. Importantly, as imaging data are resolved in 3D (or 4D) at voxel
locations, image-guided digital twins have the inherent advantage to
naturally and explicitly incorporate the spatiotemporal heterogeneity
of the tissue and tumor. For instance, tumor cell density is a typical
quantity-of-interest in tissue-scale PDE models and can be estimated
from the apparent diffusion coefficient (ADC) maps extracted from
DW-MRI,11,29,43,45,156 where these ADC maps provide an initial con-
dition for the models. T1- and T2-weighted MRI data enable the acqui-
sition of high-resolution images to segment the host tissue and
determine the tumor geometry,11,29,135,139,141 which define the
computational domains of PDE models. Additionally, the pharmaco-
kinetic analysis of contrast-enhanced CT or MRI data can identify
local vasculature, quantify tumor-induced angiogenesis, and estimate
hemodynamics as well as therapeutic transport within the tumor-
bearing tissue,29,45,46,157 all of which can be used to inform model
parameters. Combinations of quantitative imaging data can also be
used to characterize local intratumoral heterogeneity158 that may indi-
cate critically different prognosis and/or therapeutic response.159–161

The characterization of heterogeneity from imaging data could initial-
ize multiple intratumoral species in a mechanism-based model.
Additionally, different PET modalities can also estimate tumor cell
density (FET-PET),139 characterize hypoxia-mediated radiation-
induced tumor cell death (18F-FMISO PET),162 estimate tumor cell
proliferation (18FDG-PET),144 and report on cell surface receptor
expression.163

Beyond model initialization, all the imaging measurements dis-
cussed in the last paragraph can be performed longitudinally to enable
parameter identification, model validation, physical tumor monitor-
ing, and data assimilation. For instance, by comparing the DW-MRI
and DCE-MRI measurements from multiple time points (e.g., pre-
treatment and after a few cycles of treatment administration), parame-
ters that are difficult to initialize (e.g., the spatially resolved
proliferation rate of tumor cells) can be calibrated on a patient-specific
basis.29,99 The follow-up measurements of tumor cell density by DW-
MRI during or after treatment, as well as the derived metrics of clinical
interest (e.g., tumor volume and longest axis), can also be compared to
the corresponding predictions to validate realized digital twins.29

Additionally, contrast-enhanced CT or MRI acquired over the course
of treatment to monitor the change of tumor-associated vasculature
can lead to a more accurate estimation of the therapy delivery and dis-
tribution.164 All these procedures allow for refining the digital state
(see Fig. 1) and improving the prediction of the quantities of interest
of the digital twins which, in principle, could contribute to optimizing
patient-specific interventions.

The collection of imaging data can also be guided by and benefit
from the outputs of digital twins. Indeed, one application of digital twins
in cancer is to guide the management of control inputs (see Fig. 1) for
the individual patient, based on the predicted tumor response given
by the patient data-constrained models. The control inputs can span
not only treatment options but also data collection including, for
example, imaging studies, biopsies, and blood tests. Specifically, a
digital twin validated to accurately predict tumor progression and
treatment response in an individual patient can assist in deciding the
frequency of follow-up imaging examinations. Hence, patients who
are predicted to have a less favorable response to the selected treat-
ment could be advised to anticipate additional follow-up imaging
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examinations, so that early plans can be made for alternative interven-
tions if deemed appropriate. Conversely, patients who are predicted to
have a more favorable response to treatment could be advised to sched-
ule fewer follow-up examinations, addressing the concerns of overdiag-
nosis and overtreatment.165 This latter issue is especially important for
slow-growing tumors like those frequently found in certain pros-
tate166,167 and breast cancer.168,169 Additionally, the uncertainty of a
model’s prediction would increase with the duration of time forecasted
past the last data acquisition point. Thus, uncertainty quantification170

of the digital twin’s status would improve guidance on when the
current prediction is reliable and when additional imaging data should
be collected to maintain a sufficiently high level of confidence in
predictions.

We here provide a motivating illustration (Fig. 3) on how a digi-
tal twin, realized via imaging data, could be practically linked to per-
sonalize a neoadjuvant systemic therapy (NAT) regimen for a breast
cancer patient. Consider a woman who has recently been diagnosed
with locally advanced breast cancer. As the current standard-of-care,
NAT would be recommended for her to minimize the tumor burden
before surgery and to improve her long-term outcomes.171

Unfortunately, nearly 50% of HER2þ, 67.4% of triple-negative, and
90.7% of HRþ/HER2- breast cancer patients who receive standard
NAT show residual tumors at surgery,172 which is correlated with
poor long-term outcomes. A major challenge to improving outcome
for these patient populations is to optimally tailor the treatment plan
for each individual patient. Currently, a patient’s treatment plan is
determined by a multidisciplinary team that includes not only the
medical oncologist, but also the patient’s surgeon, radiologist, and pos-
sibly a radiation oncologist.173 In many instances, the treatment plan
is largely determined by the experience and expertise of the patient’s

treating oncologists27 and, for the most part, restricted to a few fixed,
standard protocols as guided by the National Comprehensive Cancer
Network.130 If, however, a mechanism-based digital twin was available,
it could be used as a platform to systematically test a large number of
potential therapeutic protocols and predict their effects on tumor
response. The results of such predictions could then be rank-ordered
by the anticipated outcome. Selection of a plan would be made after
discussion between the patient and treating oncologist covering the
range of predicted outcomes and potential toxicities, so that the patient
understands the decision-making process before beginning the
personalized regimen. After the first few cycles of treatment, the
patient would return for a subset of repeat imaging and clinical
exams at the appropriate pre-determined frequency to update the
digital twin. The updated twin would then provide a higher-
confidence prediction of tumor response. This would allow for
dramatically earlier modifications to the treatment protocol than
what is currently available. Refining the therapeutic approach
might even occur multiple times over the course of treatment. In
this way, a digital twin would significantly hasten the arrival of per-
sonalized neoadjuvant therapy for breast cancer, thereby almost
certainly improving outcomes. Of course, while this example
focused on the NAT of breast cancer, such a framework would
apply more generally to any disease site.

IV. ROLE OF ARTIFICIAL INTELLIGENCE AND BIG DATA

Complementary to the mechanism-based modeling approaches
described above are the statistical-based artificial intelligence (AI)
methods.174 In this section, we briefly introduce the AI/Big data para-
digm commonly seen in healthcare (Sec. IVA) and discuss its role in

FIG. 3. Impact of image-guided digital twins on personalized healthcare of cancers. An individual patient could undergo pretreatment, quantitative imaging to provide the data
to personalize a digital twin for making predictions of tumor response and side-effect toxicities associated with each potential treatment plan. Given these possibilities, a treat-
ment plan can be made after discussion between the treating oncologist and patient covering the range of predicted outcomes and toxicities. After the first few cycles of treat-
ments, the patient would return for imaging and clinical exams which would then be used to update the digital twin and its associated predictions. This procedure of refining
therapeutic plans might occur multiple times over the entire course of therapy, eventually achieving an optimized outcome for the individual patient.
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assisting the development of image-guided, mechanism-based digital
twins (Sec. IVB).

A. Summary of the AI/big data paradigm

AI is, broadly, the ability of machines to perform independent
tasks without human intervention. Machine learning (ML) is a subset of
AI, which is defined as a general-purpose method of AI that identifies
relationships from data without the need to define these relationships a
priori.175 Neural networks are a tool within ML whose architecture is
based on the neuronal structure of the human brain. The basic compu-
tational unit in the neural network is called a node or neuron, which
takes one or more weighted inputs, uses a transfer function to combine
the inputs, and provides an output. The nodes are grouped in layers,
which are the core architectural blocks of a neural network. One layer is
a collection of “nodes” operating together at a specific depth within a
neural network. Nodes from separate layers are linked together with a
certain strength, also termed a “weight.”176 The output of neurons in
one layer activates downstream nodes via nonlinear activation func-
tions.177 Convolutional neural networks (CNNs) take this a step further
by convolving the output of preceding layers using filters of tunable
size.177 Deep neural networks (DNNs)—advanced from the conven-
tional three-layer CNNs—are NNs with multiple layers that exploit the
hierarchical structure of real-world data, where each processing layer
progressively builds upon the output of the preceding layer.178 This
multi-layer abstraction makes DNNs especially useful for image recon-
struction and classification.

There are two common forms of DNNs: trained (supervised) and
un-trained (unsupervised).179 Supervised methods involve exposing
DNNs to large amounts of labeled “training” data,174,180 where param-
eters in the DNN are iteratively adjusted to minimize the error
between the DNN output and the ground truth. For example, when
diagnosing brain cancer from MRI, a training dataset could be built
with a large collection of T1-weighted brain MRI scans including both
healthy and pathological cases. The network would be trained to sepa-
rate the scans that contain a pathology from those that are healthy
using ground-truth labels provided by a radiologist. In unsupervised
methods, however, there are no ground-truth labels with which the
network can be trained.174 Instead, the structure of the DNN itself
imposes constraints on the structure of the output.179,181

There are advantages and disadvantages with both trained and
un-trained networks. The primary issue with trained methods is the
potential lack of sufficiently large training datasets that adequately
span all possible biological features for a specific problem.174 If a train-
ing dataset does not span all such features, there is the risk of the net-
work not recognizing novel features outside the scope presented in the
training datasets.182 For example, Elmarakeby et al. developed a deep
neural architecture called P-NET (pathway-aware multi-layered hier-
archical network) to predict cancer state in prostate cancer patients
based on genomic pathways.183 This P-NET required over 3000 bio-
logical pathways from patient data for training. While the method per-
formed better than other deep learning methods, its training and
tuning heavily relied on the quantity and quality of the annotated
patient data. Untrained methods, on the other hand, are not limited
by data availability; however, their accuracy is usually slightly outper-
formed by trained methods.182,184

It is important to note the inherent limitation of AI methods:
since they often do not incorporate the underlying physical

mechanisms describing the phenomenon under investigation, AI
methods alone cannot explain the correlations observed within the
data. This may lead to a limited understanding of the phenomena
under investigation, but the AI methods may identify patterns and
relationships that trigger a worthwhile investigation for underlying
mechanisms. The rapid growth of AI methods has shown promise for
achieving widespread deployment of deep learning in precision medi-
cine, especially when integrated with mechanism-based models.174,185

B. AI/big data to assist in the implementation
of mechanism-based digital twins

AI and big data have proven capable of aiding in the practical
implementation of digital twins built on mechanism-based models in
healthcare.186 Specifically, employing AI to enable fast and accurate
data arrangement, parameter identification, and evaluation of
mechanism-based models are known as hybrid AI-mechanistic tech-
nologies. For example, with the rise of technologies like wearable devi-
ces, it becomes increasingly feasible to collect large amounts of
biometric data from an individual patient. These data would enable
oncologists to monitor patients outside of the walls of the clinic,
thereby facilitating decision-making about the choice of therapies and
overall patient management.187 At the same time, however, the man-
agement of these biometric data also becomes increasingly challeng-
ing.188 AI methods provide a level of autonomy in data storage,
management, and updating for the maintenance of digital twins.28,189

Specifically, in the context of system health monitoring, AI technolo-
gies have been developed to monitor patient health status and to rec-
ommend healthcare actions.188,190–192 This approach, which is known
as “condition-based maintenance,” manifests the utility of AI in
patient monitoring and data management to support the implementa-
tion of digital twins for healthcare.

Another opportunity for AI methods to assist mechanism-based
digital twins is to increase the spatial and temporal resolution of medi-
cal images, which would improve the accuracy with which a digital
twin can be realized. Both supervised and unsupervised methods of
training DNNs have dramatically improved the spatial and temporal
resolution at which quantitative imaging data can be reconstructed.
For example, Cohen et al. developed a DNN applied to the MR finger-
printing technique, which achieved a reconstruction of high spatial
resolution T1 and T2 maps 300 and 5000 times faster, respectively,
than the conventional dictionary-matching methods.193 This increase
in resolution provides access to a more refined domain on which to
perform calculations, more accurate segmentation of important ana-
tomical features,194 and more refined parametric maps of tissue
properties.195

AI technologies are also attracting attention in computational sci-
ence as they can enable the solution and calibration of complex
mechanism-based models in practical time frames, which are of great
importance in building digital twins to support real-time clinical deci-
sion-making.3 For example, Brunet et al. developed an approach com-
bining a mechanism-based model with DNN to learn complex elastic
tissue deformations and, hence, non-rigidly register patient-specific
organ geometries in real-time for augmented reality during liver sur-
gery.87 Raissi et al. presented a mechanism-informed deep-learning
framework that encodes the Navier–Stokes equations into neural net-
works to directly extract velocity and pressure fields from longitudinal
images of flow phenomena.196 The authors further showed that this
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hybrid approach could estimate quantitative hemodynamics in
patient-specific intracranial aneurysms. Moreover, Zhang et al. utilized
a neural network representation of a complex structural constitutive
model accounting for detailed tissue features to efficiently calculate the
mechanical response of heart valves.63 These successes in other areas
of medicine provide motivation for the extension of these hybrid AI-
mechanistic technologies to oncology.

Hybrid approaches combining AI and mechanism-based models
are also a promising strategy for integrating multi-scale, multi-modal
datasets within the digital twins.197 For example, the hybrid model for
glioblastoma growth proposed by Gaw et al., which integrated imaging
and histopathological biopsy data, showed superior predictive perfor-
mance than either the mechanistic or machine learning components
of the hybrid method alone.198 The authors also showed that the
mechanism-based model is the feature providing the greatest contribu-
tion to the hybrid model forecasts. Hybrid strategies combining mech-
anistic modeling and AI approaches can also be exploited to
investigate the genetic markers supporting each mechanism of a bio-
physical model, which provides an opportunity to integrate omics data
with macroscopic observations within digital twins. For instance,
Nicolo et al. combined an ML analysis with a mechanistic model to
estimate the time to post-surgery detection of distant metastatic recur-
rence of early-stage breast cancer to find correlations of this relapse
metric and the underlying model mechanisms with a panel of diagnos-
tic clinicopathological features.199 In the context of digital twins, these
patient-specific clinicopathological data, such as gene expression pan-
els, could therefore be leveraged to estimate individualized mechanistic
parameters, such as proliferation rate, mobility, invasion, and reaction
to targeted therapies.

AI techniques have also been leveraged to characterize parameter
uncertainty and solve inverse problems for poorly-constrained param-
eters within mechanism-based models. For instance, Ardizzone et al.
performed a mathematical analysis on how an invertible neural net-
work can be used for determining the posterior distribution of a
parameter of interest given a dataset of relevant measurements.200

Another example from Wang et al. is a theory guided neural network
that outputs quantities of interest from inputted stochastic parameters
and is closely coupled with the Monte Carlo method for evaluating
parameter uncertainty simultaneously. The utility of such a method
lies in its superior computation of uncertainty compared with simu-
lated implementations.201

While there have been strong early signals of the benefits of inte-
grating AI and big data with mechanism-based modeling to enable
digital twin technologies, there are a number of ongoing challenges to
overcome in order to achieve clinical impact. One fundamental chal-
lenge is the potential inaccessibility of sufficiently large training data-
sets needed for any modeling approach that relies (at least in part) on
AI methods to generate models with adequate generalizability across
given anatomy or disease in clinical practice. Techniques known as
data augmentation have been investigated to enlarge existing medical
imaging datasets of limited size and to balance the proportion of
healthy and pathological cases within a given dataset.202 These techni-
ques show promise for addressing the limitation of insufficient train-
ing datasets; however, data augmentation techniques (in general), rely
on synthesizing new data by extrapolating from existing data, which
may have a concern of overfitting in training the AI models.
Furthermore, such methods would not be able to account for

important features not found in the base data sets and may further
augment biases in the original dataset. For supervised methods, big
data remains a necessity to expose AI algorithms to all possible physio-
logical features so that the resulting analysis obtained from AI algo-
rithms achieves diagnostic-quality accuracy and precision.179 The
quality of annotations and the imaging data themselves can also
impact the efficiency of training and performance of the supervised
models. Another limitation is whether AI software could be exten-
sively deployed,28,192 regarding both generalizability and feasibility of
the techniques, such that clinics around the world could reliably lever-
age AI-based digital twins. Finally, there remains the fundamental con-
cern that using big data inherently means straying away from patient-
specific care as it relies on properties of large populations of patients
which may obscure subtle, patient-specific differences.

V. BARRIERS TO SUCCESS OF IMAGE-GUIDED
MECHANISM-BASED DIGITAL TWINS FOR CLINICAL
ONCOLOGY

Any developing field inherently has a set of fundamental barriers
that must be overcome to realize the promise of the effort. In this sec-
tion, we describe the major barriers to successfully applying image-
guided digital twins in clinical oncology, and discuss current efforts
and potential methods to address the challenges.

A. Limitations of realistic mathematical models

Despite the utility of mathematical and computational models,
all models are based on simplifications and assumptions of the key sys-
tem components under investigation.203 Mathematical models of can-
cer have been constructed for over a century and they vary
tremendously in complexity depending on the phenomena they
attempt to characterize. Cancer initiation, growth, expansion, and
invasion depend on phenomena at multiple spatial and temporal
scales, and this presents additional challenges in establishing proper
mathematical models.204–207 Large-scale cancer behaviors (e.g.,
growth, invasion, and therapy response) depend on small-scale char-
acteristics (e.g., cancer cell genotypes, phenotypes, populations, and
cell–cell or cell–environment interactions).208,209 Tissue mechanical
properties such as stiffness can facilitate signaling pathways at the sub-
cellular scale that dictate cell death and proliferation and affect tumor
size, shape, and interactions with the surrounding tissues.210–212 One
of the challenges when developing a practical model is how to establish
the connections between phenomena at different scales and, subse-
quently, how to calibrate model parameters from partial data on these
processes. See Ref. 205 for a comprehensive discussion on the open
challenges associated with multi-scale modeling.

Instead of incorporating all phenomena at all spatial and temporal
scales, the level of complexity (i.e., the number of processes described)
of the digital twin should be chosen according to the goals of the
problem under investigation.213 In particular, it is imperative to deter-
mine which quantities-of-interest are central to understanding the phe-
nomena. These might be clinical endpoints (e.g., overall survival, time
to progression, or distinguishing complete response, partial response,
stable disease, and progressive disease) or detailed measurements of
tumor development and its interaction with the microenvironment
(e.g., tumor cell counts, proliferation rate, accumulation of delivered
therapy in tumor or other tissues). Based on the selected endpoints,
the proper models that contain the appropriate quantities-of-interest
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can be constructed. For digital twins based on biomedical imaging, the
governing models are necessarily designed to incorporate observables
that are accessible in the clinical setting; therefore, they are most
frequently operating at the tissue scale. However, the accuracy of
tissue-scale modeling may be limited for some applications (e.g., immu-
notherapy response) due to the lack of description of finer-scale biolog-
ical processes. Thus, efforts have been made to integrate image-guided,
tissue-scale models with finer-scale biological processes.206,207,214,215

For example, Rahman et al. linked a PDE-based tissue-scale model, an
agent-based cellular-scale model, and an ODE-based subcellular-scale
model.214 In this approach, a fully coupling bridging algorithm was
designed to achieve communication across the scales via passing
parameters and solutions. In particular, the pathway activities solved at
the subcellular scale are transferred into the cellular-scale model to
inform cell proliferation at the cellular scale which is then imported
into the tissue-scale model. The density of tumor cells solved at the
tissue scale is then fed back into the cellular-scale model, while the
distribution of nutrients solved at the tissue scale is fed back into
the subcellular-scale model. A practical consideration for such multi-
scale digital twins is the limited availability of the appropriate multi-
scale data.34,35

B. Limitations of available data

A fundamental limitation in constructing and applying clinically
meaningful digital twins in oncology is the currently limited access to
the necessary data types. Existing digital twins in healthcare frequently
make use of highly resolved spatial data collected via anatomical imag-
ing, or highly resolved temporal data collected via wearable devices
reporting on, for example, an individual’s blood pressure, oxygen satu-
ration, and temperature. These data, however, are of limited specificity
for mechanism-based modeling of phenomena as complex as tumor
growth and response to therapy.

Currently, image-guided digital twins rely on the clinical, in vivo
measurement of cancer-relevant data obtained from the biomedical
imaging modalities discussed above in Sec. IIIA. Biomedical imaging,
though, has several limitations including, perhaps most importantly,
the limited assessment frequency for each patient due to logistics,
expense, and burden to the patient. Patients must travel to imaging
centers for each measurement, and the imaging center may operate at
a patient volume which can make it complicated for patients to sched-
ule several exams that fit their constraints. Measurements thus typi-
cally happen at only a limited number of time points. Though
portable, lower-cost imaging scanners have the potential to acquire
data more frequently,216 even if continuous monitoring is not possible.
In addition to the limited assessment frequency, there are also limits
imposed by the spatial resolution of biomedical imaging where each
voxel is at the scale of millions of cancer cells. Advances in imaging
hardware and acquisition techniques are improving the available spa-
tial resolution while maintaining sufficient signal to characterize fine
details.217 Moreover, the common imaging modalities interrogate only
a limited subset of the relevant cancer biology. Still, new nuclear imag-
ing probes are being developed to assay tumor receptors and targets,
such as the recently approved tracer for imaging prostate cancer
metastases.218 Magnetic particle imaging is based on the use of super-
paramagnetic iron oxide nanoparticles as a tracer to perform cell
tracking and vascular imaging.219 Although still limited to pre-clinical
use, magnetic particle imaging was recently demonstrated to track the

movement and persistence of T cells in solid tumors in a mouse model
of brain cancer for adoptive immunotherapy.220 These developments
are important because the currently available methods of imaging
response to immunotherapy are quite limited.221

As discussed in Sec. VA, image-guided digital twins may also be
integrated with multi-scale models to enhance their ability to capture
more detailed tumor characteristics and processes. However, this inte-
gration requires the appropriate (quantitative) data frommultiple tem-
poral and spatial scales.35 At the subcellular scale, mathematical
models describing signaling pathways, metabolic networks, and the
evolution of cell populations can be informed by analysis of
biopsy specimens including (for example) quantitative polymerase
chain reaction, whole-genome sequencing, RNA sequencing, and flow
cytometry.222–224 At the cellular scale, models representing cell–cell or
cell–microenvironment interactions can also be informed by analysis
of tissue samples including (for example) immunohistochemical stain-
ing and microscopic techniques.225–227 Unfortunately, the availability
of such data for individual patients is currently limited and much
effort is required to promote the acquisition and management of such
in the clinical setting. Furthermore, such data suffer from sparse sam-
pling in both the spatial and temporal domains. Thus, the body of
work that currently integrates multi-scale data into predictive, biology-
based mathematical models is currently limited.34

C. Limitations of computational techniques

Central to the computational implementation of an image-
guided digital twin is the construction of a geometric model of the
tumor-bearing organ frequently based on anatomical imaging (e.g.,
x-ray CT and MRI).8,228 This geometric model can be directly used for
clinical assessment, but it also defines the computational domain in
which the PDEs are solved within the digital twin framework.8,132,228

Thus, the method selected to solve the model needs to handle the
image-informed geometric representation of the tumor and host
organ. The finite difference method (FDM) and the finite element
method (FEM) have traditionally been used for this purpose.132

However, both methods may suffer from geometric discretization
issues that can compromise prediction accuracy and that may limit
their use within digital twins. In brief, the FDM relies on capturing
complex organ border anatomies by introducing enough grid points
(i.e., spatial points where the PDEs are solved over time). While the
standard unstructured FEM meshes used to approximate complex
anatomic geometries are inherently susceptible to discretization errors
(i.e., mismatches between the real geometry and the approximated
geometry provided by the finite-element mesh).132 Alternatively,
Isogeometric Analysis (IGA) is a recent generalization of classical
FEM that leverages highly continuous functional spaces from
computer-aided geometric design (e.g., B-splines, non-uniform ratio-
nal B-splines, T-splines, hierarchical splines), which accommodate the
representation of exact geometries and ultimately lead to superior
accuracy.132,229,230 Furthermore, image-guided mechanism-based
models of solid tumor growth and therapeutic response may be more
amenable to FEM or IGA immersed-boundary methods.132,231–234

These computational strategies rely on a background mesh, which
exactly represents the voxel imaging space and a level set function,
which identifies the organ domain on where PDEs are actually solved.
Thus, immersed-boundary methods eliminate the need to explicitly
discretize the complex tumor-bearing organ anatomy, but they may
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require ancillary techniques to impose certain boundary conditions
accurately and efficiently (e.g., Nitsche method235,236).

Personalized mechanism-based model calibration, parameter
update, model selection, and in silico therapeutic optimization are also
common tasks in the construction and normal operation of digital
twins in clinical oncology.132 These tasks require repeatedly solving
the mechanism-based model, which can result in a prohibitive compu-
tational cost. Furthermore, a robust digital twin implementation
requires the provision of accurate real-time predictive feedback, which
further increases the expensive computational cost. To overcome this
limitation, the hybrid AI-mechanistic approaches constructed as neu-
ral networks encoding mechanism-based models are promising to
facilitate rapid (and accurate) model evaluations (see Sec.
IVB).63,87,196,237,238 Importantly, the challenging demand on the com-
putational cost can be met by properly using high-performance com-
puting techniques involving parallelization to solve, select, or average
the models in the digital twin, while accounting for data uncertainties,
model inadequacies, and new data availability. The most common
approaches are MPI (Message Passing Interface), which splits the
computational tasks among several computers connected in a cluster
(each one being a node); OpenMP (Open Multi-Processing),239–241

which can further parallelize each task among the CPUs (Central
Processing Units) on a node; and, most recently, solving the model
using a GPU (Graphics Processing Unit),240,242,243 which divides the
tasks among the processing units present in video cards.

D. Limitations of model selection, validation,
and uncertainty quantification

Beyond leveraging efficient computational strategies, the selection
of which model to use within a digital twin is also a crucial decision.
As discussed above in Secs. III B and VA, a variety of models may be
available to describe a particular phenomenon of interest.132,244 Model
selection can be carried out over a pool of feasible alternatives via the
Akaike information criterion,245 Bayesian information criterion,245

model plausibility,246 or other information criteria.245 These techni-
ques identify the best model among the considered alternatives
according to different metrics (e.g., model complexity assessed via the
number of model parameters, quality of fit, or model likelihood given
the data) and then use the selected model to make predictions about
the modeled system.134,244,247,248 Another possibility is to rank the
models according to their performance and average their predic-
tions.99,249 In this case, the weight of each model can deal with data
uncertainties and model inadequacies either following the frequentist
approach, where the probability of an event can be predicted by
observing a large dataset,203,250 or the Bayesian approach, which does
not require a large dataset and where prior information on parameters
guides the posterior distribution of model parameters.204

Once a model is developed and calibrated, its predictive capabil-
ity needs to be assessed through model validation, whereby a model
prediction is compared against new data to evaluate its accuracy.203,251

To assess the validity of the model, one must select a metric to com-
pute the error between the model prediction and data. If the error is
below the desired tolerance, the model is deemed valid. As discussed
in Ref. 251, the validation can only provide supporting evidence of the
model’s predictive capability. It is important to realize that the limited
availability of the appropriate data directly influences the ability to
quantitatively validate the model under investigation. If one doesn’t

have access to the data types that characterize the different spatial and
temporal scales and model constituents, then quantitatively character-
izing the accuracy of the predictions is challenging. In such a situation,
a staggered validation approach can be explored.252 For example, in
Refs. 252 and 253, the authors designed a sequence of four experi-
ments with increasing complexity where they systematically calibrated
the rates of apoptosis, proliferation, and necrosis, as well as cell mobil-
ity. The mechanisms represented by the model were isolated and
respectively validated by being compared to the data acquired from
corresponding experiments.

The development of digital twins for clinical oncology is a chal-
lenging endeavor not only due to the limitations described previously
but also because of the presence of uncertainties. Uncertainties in the
observational data, model selection, and model parameters result in
uncertainties in the predicted quantities of interest.134 In data acquisi-
tion, the uncertainties arise from experimental measurement error, dif-
ferent measurement tools with a unique spatial and temporal
resolution, and errors introduced during data processing (e.g., cell
counting, image segmentation, and registration). In model selection,
the uncertainties come from the underlying model assumptions and
the numerical methods used to solve the mathematical models (e.g.,
due to discretization and numerical approximation errors). In devel-
oping a digital twin, some simplifications will inevitably be made, lead-
ing to the model prediction being an approximation of reality and,
consequentially, increasing model uncertainties. The final source of
uncertainty is in the values of the model parameters. As the tumor
environment is highly heterogeneous, with not only inter- but also
intra-patient heterogeneity, and with the inherent stochasticity of
tumor growth, the uncertainties in model parameters represent the
variability of these parameters. All these uncertainties must be consid-
ered during model calibration and when interpreting the predictions
of the model to increase the reliability of the model results.250

Nevertheless, it is worthwhile to point out that a realistic expectation
of the performance of digital twins is not to provide perfect, zero-
uncertainty predictions. Instead, a digital twin with certain uncertain-
ties but controlled and quantified is a leap forward compared to the
cumulative, unquantified uncertainty in current standard-of-care
approaches; it can substantially enhance the current clinical practice.

VI. FIVE QUESTIONS TO ANSWER FOR A PRACTICAL
APPLICATION (A BLUEPRINT)

Thus far we have presented the utility of digital twins in health-
care, promising effort and perspectives in image-guided mechanism-
based modeling in oncology, roles for big data and AI, and technical
barriers to a successful implementation of digital twins in clinical
oncology. Still, the question remains on how to practically develop a
digital twin framework for specific applications in clinical oncology.
Toward this end, we provide a specific example of adaptive radiother-
apy for high-grade gliomas and identify five questions that can serve
as a blueprint for building a digital twin for any specific applications in
oncology (see Fig. 4). Surgery, followed by radiotherapy combined
with concurrent and adjuvant chemotherapy is the standard treatment
approach for patients with high-grade gliomas to target residual and
infiltrative tumors.254 Response to radiotherapy is highly dependent
on the ability to target the tumor and on the tumor cells’ sensitivity to
radiation, which is influenced by multiple factors including tumor
physiology, phenotypic behavior, and genetic status.255,256 Adaptive

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 3, 021304 (2022); doi: 10.1063/5.0086789 3, 021304-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/bpr


radiotherapy, consisting of anticipatory adjustments in the radiother-
apy treatment, can target subregions of disease that are likely to pro-
gress during the course of therapy. A digital twin framework can be
applied in this setting to assist in identifying patients that will benefit
from adaptive treatment over the standard-of-care dose and schedule.
Establishing a digital twin for this application can be achieved by
answering five questions:

(1) What are the goals for the digital twin?
(2) What level of complexity is needed?
(3) Does a proper mechanism-based mathematical model exist?
(4) Are the required data available or accessible?
(5) Can the uncertainty be characterized?

While our discussion in this section will be framed around this
specific application, it should be clear that this framework can be applied
generically to other settings; for example, personalizing neoadjuvant sys-
temic therapy of locally advanced breast cancer,29 planning immediate
radical treatment vs active surveillance to avoid overtreatment of pros-
tate cancer,257 optimizing the combination of checkpoint inhibitor drugs
of metastatic melanoma.258 We also note that although the blueprint is
presented as five individual questions, the questions are closely related
and should be considered simultaneously in practice.

A. What are the goals for the digital twin?

Using the framework of the digital twin defined in Sec. IA 2
[Fig. 1(a)], the first decision that we need to make is what the control

inputs are for the digital twin (i.e., the goals of building the digital
twin)? This question additionally requires identifying what the quanti-
ties of interest and rewards are to achieve those goals. This question
must be answered prior to all the subsequent questions in the pro-
posed blueprint, and they must be kept in mind throughout the devel-
opment of the digital twin. In the context of building a digital twin for
adaptive radiotherapy in high-grade gliomas, the goal is to guide the
optimization of the treatment dose, schedule, and examination fre-
quency for an individual patient.259 Thus, the control inputs to be
adapted include the radiotherapy protocol (i.e., the target location and
the dose given by each administration of radiotherapy, and the fre-
quency of radiation doses) and the planning of additional tests (e.g.,
imaging, blood work). To achieve this adaption, the rewards need to
reflect both the overall survival and neurotoxicity. For example, the
rewards can be defined as the time between the end of radiotherapy
and the progression of the disease given constraints on the total cumu-
lative radiation dose, so that the optimization of the radiotherapy pro-
tocol would maximize the rewards. Moreover, the choice of target
control inputs and associated rewards can affect the choice of quanti-
ties of interest. For example, if the goal is to optimize both the target
location and dosage of radiation, the digital twin needs to be designed
to output quantities that represent the effect of the change in the radia-
tion target location, such as spatially resolved maps of tumor cell den-
sity and local response to radiotherapy. Conversely, if the goal is only
to optimize the radiation dosage, a digital twin which outputs the sca-
lar value of tumor volume or total cellularity achieved at the conclu-
sion of the radiation plan might be sufficient. This consideration

FIG. 4. Questions to answer for building a practical digital twin for oncology: a blueprint. When building a practical digital twin, five guiding (related) questions need to be
answered. First, it must be decided “what are the goals for the digital twin?,” and these goals need to be kept in mind throughout the entire development. It should then be
determined “what level of complexity is needed?” to adequately describe the phenomenon under investigation, which is intimately connected to the answer to the first question.
The next step is to determine “whether a proper mechanism-based mathematical model exists” for the problem at hand and “whether the required data are available or
accessible” to inform all components of the model. These last three questions are closely related and need to be answered with direct collaboration between experimentalists,
clinicians, and mathematical modelers. Furthermore, given the inherent limitations in both data measurement and mathematical modeling, it is important to “characterize the
uncertainty” of both so that the confidence intervals on any predictions made by the digital twin can be explicitly computed.
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would affect the answers to downstream questions, such as questions
related to the model complexity, which will be discussed in Secs. VI B
and VIE.

B. What level of complexity is needed?

As discussed in Sec. V, the level of complexity informs which
scales (i.e., subcellular, cellular, microenvironmental, and tissue scales)
must be resolved in both the modeling and imaging components. In
the context of radiotherapy in high-grade glioma, to optimize the ther-
apeutic outcome, the digital twin must provide a robust representation
of the dynamics of tumor response to a radiotherapy protocol, which
is inherently a multi-scale process. Radiotherapy causes DNA damage,
but the sensitivity to radiotherapy is dependent on not only each indi-
vidual cell’s proliferation and genetic variability but also the oxygena-
tion and vascularization of the local tissue.260,261 To develop a realistic
understanding of a patient-specific response to radiotherapy, all scales
included in the model must be informed through patient-specific data.
However, a complete characterization of multi-scale phenomena is
often infeasible from an experimental/clinical perspective, and there-
fore the level of complexity in the digital twin must be linked to the
quantities that can be reasonably measured and evaluated within the
system. This should be addressed on a case-by-case basis. For example,
to account for the effect of vascularization and oxygenation on the effi-
cacy of radiotherapy, it must be determined if resolving the effect of
the capillaries (i.e., events at the microenvironmental scale) is required,
or if characterizing the bulk averaged effect of the vasculature (i.e.,
events at the tissue scale) is sufficient. While both effects can be
described mathematically,262 if the appropriate data are not available
to calibrate the mathematical formulation, the digital twin cannot be
properly personalized.

C. Does a proper mechanism-based mathematical
model exist?

The next question to address is if a mechanism-based model
exists for the phenomena under investigation at the desired level of
complexity. For radiotherapy of high-grade gliomas, models from the
cellular to the tissue scales have been developed and shown to be suc-
cessful in predicting response.98,162 At the cellular scale, the linear-
quadratic model for cell death due to radiotherapy has been utilized
for decades.263,264 While this model was phenomenologically derived,
it has been successful at predicting the surviving fraction of cells at an
end point following radiation and determining fractionated radiother-
apy plans.265 At the tissue scale, the linear-quadratic model for cell
death has been used within reaction-diffusion models of tumor growth
(with or without vasculature) to predict response to radiotherapy both
in the pre-clinical and clinical settings.30,266,267 Recent work by Liu
et al.268 has introduced a dynamic death rate in ODE tumor growth
models that characterizes both the effects of early and late cell death
due to radiotherapy throughout the time course (as opposed to just a
pre-selected end point). This approach, and others,147,269,270 allow for
radiation therapy to include a spectrum of cell responses and not sim-
ply a binary classification of survival or cell death. Efforts to bridge the
gap between the cell and tissue scales have resulted in multi-scale mod-
els of glioma that are based on conservation laws, that incorporate
molecular factors that cause phenotypic transitions of individual cells,
and that introduce mutational events that result in biologically relevant

sub-clones (e.g., cells with higher epidermal growth factor receptor
density express more aggressive behavior).271–273 Other multi-scale
efforts have included signaling pathways,274 angiogenesis,207,275 and
invasion.276

D. Are the required data available or accessible?

As digital twins are designed to represent real-world phenomena,
it is important to not only have realistic models, but also have relevant
data available, including input data for informing the parameters that
define the digital twin and end point data for evaluating and refining
to maintain the accuracy and robustness of the digital twin. For the
example of building a patient-specific radiotherapy plan for high-
grade gliomas, imaging is a fundamental component, which typically
involves acquiring images before and following treatment for diagno-
sis, monitoring, and prognosis.277,278 Imaging is also routinely used to
help guide treatment targeting, positioning, and adaptation.279,280

Importantly, there are many publicly accessible radiological datasets of
brain cancer (see, for example, the Cancer Imaging Archive,281 and
the Multimodal Brain Tumor Image Segmentation Benchmark282)
which can help augment the study-specific data that may be acquired.
Most importantly, establishing digital twins requires close collabora-
tion between experimentalists, clinicians, and modelers with a consen-
sus goal (as identified in Sec. VIA). For example, to build a digital
twin for high-grade gliomas, a set of pretreatment images is required
to provide the initial conditions of tumor properties (e.g., cellularity,
vascularity, and anatomical landmarks). Additionally, to personalize
patient-specific response to the radiotherapy, at least one session of
follow-up imaging is required to calibrate the parameters in the digital
twin. Furthermore, if multiple imaging sessions were performed to
longitudinally monitor the patient’s response, the digital twin would
benefit from continuous refinement to preserve an accurate prediction
of the planned radiotherapy. For example, we have recently extended
our previous model of response to radiation therapy30 to include
advanced quantitative MRI data collected weekly during radiother-
apy.283 This data acquisition protocol provides an adequate source of
data to initialize and longitudinally calibrate digital twins of tumor
growth and response prior to the conclusion of radiotherapy. While
weekly or more frequent MRI assessment is not currently part of the
standard-of-care, the recent advent of MRI-guided linear accelera-
tors284 may facilitate daily acquisitions of anatomical and functional
imaging data, which makes it increasingly feasible to access large
amounts of relevant imaging data for building glioma-based digital
twins.

E. Can the uncertainty be characterized?

There are multiple sources of uncertainty that need to be quanti-
fied to provide a reliable digital twin. First, data uncertainty comes
from sparsely and inconsistently sampled data in time and space,
imprecise imaging, and post-processing procedures. Specifically in the
context of glioma, the images are commonly collected at a spatial reso-
lution ranging from one to a few mm3. The quality of brain MR
images, depending on the choice of imaging protocol, the acquisition
and reconstruction techniques, and the day-to-day setup, could intro-
duce noise or artifacts.111 Furthermore, image-based segmentation of
brain tumors present additional uncertainty due to the limitations of
segmentation methods, image quality, the intrinsic intratumoral
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heterogeneity, and the effects of therapeutic interventions on the imag-
ing features.285,286 For example, the primary regions of high-grade gli-
omas show elevated intensity in the contrast-enhanced T1-weighted
MRI, which generally demonstrates increased cell density and vascu-
larization. However, high-grade gliomas are infiltrative and may
invade surrounding tissue to generate regions with a low cell density.
These regions do not show increased intensity in the contrast-
enhanced T1-weighted MRI, but they do in the T2-FLAIR (Fluid
Attenuated Inversion Recovery) MRI; this makes it challenging to
accurately differentiate invasive tumor from edema and/or inflamma-
tion.282 Additionally, specific processing of imaging data (e.g., calcula-
tion of ADC maps from DW-MRI) and the data-driven parameter
calibration132,138,287 may further contribute to uncertainty.

Model uncertainties can arise from the assumptions and simplifi-
cations in the mathematical formulation of models. In the context of
gliomamodeling questions that arise include the following:

(1) Should the mechanical interactions between the tumor and
brain tissue, as well as between the brain and the surrounding
skull be considered?

(2) Should white and gray matter be assigned different tissue
mechanical properties?

(3) Which types of cells should be included in the model?
(4) Should the formation of new blood vessels be included?
(5) Should a global parameterization or spatially-resolved parame-

ter maps be used?

Each question has multiple possible answers, which may require
new assumptions or new modeling hypotheses that will affect the
uncertainty in the selected model and its predictions. Additionally, the
numerical methods leveraged to solve the developed model will also
affect uncertainty through errors in geometric discretization and
approximation of the solution to the differential equations.

The most challenging aspect is that these uncertainties accumu-
late (i.e., the total uncertainty in the scenario is the sum of the data,
model, and numerical uncertainties) and affect the predictive accuracy
of the model. Thus, it is important to select a method that can charac-
terize these uncertainties. The Bayesian framework addresses this
endeavor and propagates the error to the probability distribution of
the model parameters and outcomes.203 Hence, instead of relying on
deterministic estimates of the parameters, one can randomly draw
from the probability distributions of the model parameters and solve
the forward problem for each sample to obtain the corresponding
probability distributions of the quantities of interest, which enable the
estimation of their uncertainties.134,248,252

VII. SUMMARY

Digital twin technology provides a promising and practical meth-
odology to achieve precision care on a patient-specific basis in oncol-
ogy. As one of the most practical approaches, image-guided
mechanism-based digital twins integrate clinically available imaging
techniques that provide quantitative, observational data of patients
with mechanism-based mathematical models to understand and fore-
cast the dynamics of tumor growth and treatment response. These dig-
ital twins can potentially improve the accuracy of diagnosis and
prognosis, as well as provide opportunities to personally optimize
treatment. The practical application of digital twins will benefit from
the development of more realistic mechanism-based mathematical

models, experimental techniques to observe multi-scale tumor dynam-
ics at an improved spatial and temporal resolution, and more
advanced numerical techniques for rapid and accurate model calibra-
tion and model selection and uncertainty quantification. Establishing a
patient-specific digital twin is a goal-oriented task, which requires col-
laborative efforts between experimentalists, clinicians, and mathemati-
cal modelers. We hope this review serves to motivate more discussion
of, collaboration on, and development of digital twins for oncological
application, including necessary improvements in data capture to sup-
port the development and deployment of digital twins, as they are
essential to hastening the arrival of truly personalized care for cancer
patients.
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