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Abstract

Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field 

of in vitro disease modeling, granting us access to disease-pertinent human cells of the central 

nervous system. These technologies are particularly well-suited for studying diseases with strong 

monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, 

with approximately half of all genetic cases caused by mutations in ion-channel genes. These 

channelopathy-associated epilepsies are clinically diverse, mechanistically complex, and hard 

to treat. Here, we review the genetic links to epilepsy, the opportunities, and challenges of 

iPSC-based approaches for developing in vitro models of channelopathy-associated disorders, 

the available tools for effective phenotyping of iPSC-derived neurons and discuss the potential 

therapeutic approaches for these devastating diseases.
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Epilepsy: clinical presentation and genetic causes

Epilepsy is primarily characterized by unprovoked recurrent seizures caused by 

abnormal synchronized electrical discharges of cerebral neurons reflected in abnormal 

electroencephalographic (EEG) recordings [1,2]. Mutations in ion channel genes can cause 

a diverse class of diseases known as channelopathy-associated epilepsies that range from 

mild self-limiting seizures that resolve in adulthood, to severe developmental and epileptic 

encephalopathies (DEEs) [3,4]. DEEs are associated with serious comorbidities including 

intellectual disability, movement disorders and other multi-organ dysfunctions (for in-depth 

reviews on clinical seizure classifications, see [2,5,6]), that are particularly resistant to 

available pharmacological treatments. The advent of iPSC technology has enabled the 

generation of patient-specific cellular of the CNS, providing a platform for the study of 

the complex pathophysiological mechanisms that occur in DEEs and other types of epilepsy.

Next-generation sequencing (NGS) technology has led to the identification of pathogenic 

variants in multiple genes and enabled the development of clinical diagnostic panels 

targeting specific epilepsy-associated genes. We selected and reviewed 19 recent genetic 

studies of epilepsy with cohort sizes ranging from 70 to 8565 individuals, screened by whole 

exome or whole genome sequencing (WES and WGS, see Glossary), or by epilepsy gene 

panels (see references within Table S1 [7-25]). Importantly, these studies excluded patients 

with epilepsy secondary to metabolic disorders, brain injury/hypoxia or brain malformation. 

This integrated review as illustrated in Figure 1, revealed the identification of causative 

genetic variants in approximately 40% of study participants (Figure 1A; Table S1; [7-25]). 

However, it is important to consider that in most cases a variant is defined as “causative” 

based on in silico algorithms that predict a pathogenic effect on protein structure and 

function [26], as well as allele frequency in the population [27]. Thus, it is likely that the 

genetic etiology of 40% is an underestimate. Of persons with confirmed pathogenic variants, 

approximately 45% were in genes encoding ion channels or accessory proteins (excluding 

ligand-gated ion channels) [7-25]. Epilepsy patients with pathogenic variants in the sodium 

channel gene SCN1A, associated with Dravet syndrome, were the most common, followed 

by KCNQ2, SCN2A, SCN8A, KCNT1, CACNA1A and SCN1B [7-25].

With this compiled list of ion channel/accessory protein genes, we next performed a batch 

search for disease-causing variants using the human gene mutation database (HGMD) and 

cross-referenced the results for epilepsy or seizure-related clinical phenotypes (Figure 1B). 

The HGMD database curates published “gene lesions responsible for human inherited 

disease” [28]. Figure 1B illustrates the relative number of pathogenic variants within 

each specific gene, with SCN1A, SCN2A, KCNQ2 and SCN8A representing the highest 

heterogeneity in pathogenic variants. Importantly, while in Figure 1A we present the number 

of patients identified with epilepsy-associated variants in specific genes from selected 
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studies, Figure 1B represents the number of different variants per gene confirmed to be 

pathogenic or likely pathogenic. Some variants are recurring in different individuals or 

segregate in families. This is true for some of the less severe or self-limited epilepsy 

syndromes. Moreover, because Na+, Ca2+ and Cl− channel genes are nearly 4 times the size 

of most K+ channel genes, the number of possible variants would be higher by default (e.g., 

protein length of Nav1.1/SCN1A (NP_001159435.1) is 2009 amino acids while KCNQ2 

(NP_742105.1) is only 872 amino acids).

A critical challenge is ascribing functional relevance to the many rare variants continuously 

being reported in patients with epilepsy that occur within ion channel genes. Figure 1C 

illustrates the pathogenicity classifications of rare variants found in SCN1A, KCNQ2 and 

SCN2A genes, based on the ClinVar database, which tracks genetic variation in relation 

to disease [29]. The variant classification includes the following categories: pathogenic/

likely pathogenic, benign/likely benign, conflicting interpretations or uncertain significance. 

Most KCNQ2 variants are cast as pathogenic/likely pathogenic, while for SCN2A most 

of the variants are of uncertain significance. Experimentally assessing the impact of 

genetic variants in ion channel function is labor-intensive but recent advances in automated 

electrophysiology have allowed for large scale analysis, which will contribute to improving 

the accuracy of variant classification and facilitate clinical diagnosis and genetic counseling 

[30-32].

Modeling channelopathy-associated epilepsy using human iPSC 

technology

There are advantages and disadvantages of different model systems to study ion channel 

variants and their functional consequences (for a review see [33]). One of the major 

limitations of animal models is that orthologues of human channels have varying expression 

patterns among cell types and brain regions, and differences in developmental time course 

and subcellular localization that collectively influence how neurons mature and behave 

[34-37]. As an example, a recent study found that compared to rat cortical pyramidal 

neuronal dendrites, human neuronal dendrites exhibit lower expression of ion channels, 

which leads to higher input resistance and reduced AP burst firing [34,37]. These 

species differences can impede the discovery of human-specific disease mechanisms and 

development of therapeutic strategies. Therefore, to understand how genetic variants in ion 

channels cause human pathology, it is important to study them in the context of human 

neurons. Stem cell technologies and specifically induced pluripotent stem cells (iPSCs, see 

Glossary) have enabled the development of such human neuronal models.

As is the case with all disease modeling systems, the value of research findings from in 
vitro iPSC-based models depends on thoughtful experimental design. Special consideration 

should be given to rigorous quality controls (QC) to account for the variability and 

associated limitations of iPSC-technology (Figure 2, Text Box 1; [38]). The primary 

research question should guide the selection of the disease-relevant differentiation protocols 

and platforms for discerning in vitro phenotypes (discussed in Part III). Basic experimental 

design considerations include: 1) selecting patient donors and properly matched controls for 
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comparisons, 2) powering assays with enough clones per genetic background and adequate 

biological and technical replicates, 3) determining the suitable differentiation protocol, and 

4) selecting appropriate platforms to interrogate disease-relevant cellular phenotypes that 

can constitute accurate read-outs for drug screening and mechanistic studies.

Sources of variability and proper controls when using iPSC-based disease models

The derivation of iPSCs and their subsequent differentiation into disease relevant cell types 

is a multistep process, and small variations at each step can accumulate and have profound 

effects on biological function including disease-related in vitro phenotypes (for in-depth 

reviews see [39-43]). The inter-individual differences in genetic background of human 

subjects have been shown to be a key factor in iPSC differentiation potential and efficiency 

[44-46]. According to an extensive study, common genetic variation is the primary driver of 

molecular heterogeneity between individual iPSC lines and can account for up to 26% and 

45% of differences in transcript and protein expression, as measured by RNA sequencing 

and immunostaining, respectively [44]. As a result, using iPSCs to model diseases with 

polygenic or unknown genetic origins can be challenging. In these cases, comparisons of 

multiple patient lines to multiple healthy controls are required to build confidence that 

differences between these two groups reflect a disease-associated mechanism.

To circumvent the effects of genetic background, CRISPR/Cas9-based gene editing can be 

used to generate isogenic control iPSC lines (see Glossary). This approach is warranted 

when modeling monogenic disorders, such as channelopathy-associated epilepsy [47]. 

Correcting a genetic variant within a patient-derived cell line can assess its necessity, while 

introducing a variant within a healthy control cell line can assess its sufficiency to cause 

specific phenotypes [48]. The availability of multiple channelopathy patient iPSC lines 

(Table S2) and the advancement of gene editing protocols [49], allow researchers to address 

fundamental questions about the impact of genetic variants on ion channel function and 

neuronal homeostasis, and can facilitate the classification of patient variants. Variability 

between distinct iPSC clones as well as between independent differentiations can arise from 

many factors and use of multiple clones and stringent differentiation QC metrics can be 

helpful strategies (Text Box 1).

Selection of differentiation protocol to study disease pertinent cell types

As epilepsy is a brain disorder, the most disease-relevant cell types are cortical excitatory 

and inhibitory neurons, and glial cells. Traditional iPSC protocols are based on the 

differentiation of adherent 2D cultures using small molecules or expression of key 

transcription factors. The development of 3D organoids allows for the differentiation of 

multi-cellular models that recapitulate certain spatial and temporal aspects of human brain 

development [50]. Table S3 includes a list of both 2D and 3D differentiation protocols 

that may be relevant for studying channelopathy-associated epilepsy. For in depth reviews 

of iPSC differentiation protocols see [51-54], for transcription factor-based protocols see 

[55], and organoid protocols see [56,57]. Complete understanding of disease pathogenesis 

requires an appreciation of its dynamic progression and of how molecular, cellular and 

tissue-level biological activities are altered spatially and temporally. iPSC-based models 

allow for the observation of disease-relevant cells over time as they mature and age in 
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vitro, and thus can highlight the origin and progression of disease mechanisms (Figure 

3, top). Emerging organoid-based differentiation protocols (Table S3) may be particularly 

relevant for the investigation of very early onset channelopathy-associated epilepsy as 

they recapitulate many spatiotemporal features of the developing early human brain [58]. 

Moreover, Trujillo et al., recently showed that cortical organoids exhibit activity reminiscent 

of late embryonic, early postnatal brain oscillations [59], suggesting that these models may 

be used to examine salient features of early onset seizure activity induced by ion-channel 

mutations.

Importantly, ion channel expression is not exclusive to the brain and some ion channels 

associated with epilepsy are also expressed in other tissues which may explain some 

comorbidities. For example, Dravet syndrome can be associated with cardiac arrhythmia. 

Studying patient iPSC-derived cardiomyocytes along with neurons has revealed important in 
vitro features relevant to both epilepsy and abnormal heart rhythms [60].

Indeed, the necessity for selection of appropriate cell types for investigation is highlighted 

in the iPSC-modeling studies of Dravet Syndrome associated with SCN1A loss-of-function 

mutations. Electrophysiological experiments on iPSC-derived patient neurons have revealed 

a variety of phenotypes in both excitatory and inhibitory neuronal subtypes (Table 

S2). Early iPSC-modeling studies reported higher sodium channel currents and overall 

hyperexcitability in cultures with mixed populations of excitatory and inhibitory neurons 

[61,62]. More recent studies reveal distinct differences in the behavior of neuronal subtypes 

wherein iPSC-derived inhibitory neurons displayed decreased sodium channel currents and 

reduced excitability [63], while excitatory neurons displayed no phenotype [64], which 

is reminiscent of early rodent studies [65,66]. Phenotypic variability could arise from 

differences in patient’s genetic background and the specific mutation tested, neuronal 

lineage, subtype differentiation protocols (Table S3), cell maturation stage (Figure 3), 

and/or choice of assay (network vs single cell) [67]. Ideal phenotypic studies would 

utilize differentiation protocols with well-characterized cell subtypes, assess multiple time 

points, and use isogenic controls [48,60,68]. Additionally, inclusion of pharmacological, or 

genetic rescue experiments with phenotype reversal [69] will build strong confidence in the 

measured phenotype as described in this review.

Tools for phenotyping patient iPSC-derived neurons

There are many available tools that can be utilized to systematically examine the function 

of neurons derived from channelopathy-associated epilepsy iPSC lines. Given the clinical 

presentation of patients, most published studies have focused on assessing neuronal 

excitability (Table S2). In the section below we discuss several phenotypic platforms 

and their applications in relevant iPSC models. During selection and optimization of 

the assay used to establish a disease-associated phenotype, it is important to consider 

the required throughput, resolution, and reproducibility. A variety of functional and 

molecular approaches can be used separately, or in combination, to generate the source 

data for phenotype discovery (Figures 2-3). Principal component-based analysis of different 

phenotypic metrics (e.g., excitability and morphological measurements) can facilitate the 

robust separation between patient and isogenic control neurons. In such analytical models, 
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disparate measures may be weighted unequally based on their ability to distinguish patient 

and control neurons.

Manual and automated patch-clamp electrophysiology

Patch-clamp (see Glossary) recording provides direct and precise measurements of 

electrical activity such as membrane potential and current density, at single cell level. These 

methods can generate rich datasets and offer flexibility to explore disease mechanisms and 

characterize pharmacological effects [70]. Several studies have used manual patch-clamp 

to assess the functional effects of epilepsy-associated ion channel variants using iPSC-

differentiated neurons (SCN1A, SCN2A, SCN8A, KCNQ2, CACNA1C; Table S2). While 

these have effectively revealed mutation-associated alterations on the firing properties of 

iPSC-differentiated neurons, they have also demonstrated the necessity to record from a 

substantial number of neurons due to high inherent variability. As manual patch-clamp 

is very labor-intensive it is not adequate for larger scale phenotypic and drug discovery 

projects. Automated patch-clamp instruments can provide high quality electrophysiological 

data in 384-well format and are a key resource for molecular characterization of epilepsy 

associated ion channel gene variants in heterologous expression systems [30-32]. In a recent 

study Vanoye et al., reported the high-throughput evaluation of more than 80 KCNQ2 
epilepsy-associated variants revealing strong functional and pharmacological heterogeneity 

[32]. However, automated patch-clamp recording requires dissociated cells, which disrupts 

the morphological integrity of mature neurons, and precludes measurements of network 

neuronal function.

Multielectrode arrays (MEAs)

MEAs provide a nonperturbative way to measure the electrical activity of a network of 

cultured neurons with high temporal resolution for extended periods. Neurons are plated on 

a surface with embedded electrodes that offer an extracellular, alternating capacitive (AC)-

coupled measure of action potentials (APs). Spatial resolution is determined by electrode 

size, which is typically larger than individual neurons, such that each electrode provides a 

composite view of the neurons that are in close contact with its surface [71]. Transparent 

electrodes and concurrent viability assessment assays will facilitate the interpretation of 

recording data [72]. An advantage of MEAs is that it is possible to make long-term 

recordings from neuronal cultures within an incubator and assess dynamic changes in 

network activity [73]. MEAs have been used to assess the spontaneous activity of excitatory 

neurons derived from KCNQ2-DEE patient iPSC lines [74]. The patient-derived neurons 

exhibited a higher propensity to fire in bursts compared to isogenic controls, a phenotype 

that remarkably resembled the burst-suppression pattern typically seen on corresponding 

KCNQ2-DEE patient EEGs. A bursting phenotype was also found in neurons differentiated 

from an iPSC line with an engineered KCNT1 gain-of-function mutation [75]. Another 

study compared the functional profiles of iPSC-derived excitatory neurons from multiple 

patients with SCN8A-associated epilepsy to several healthy controls. Patient neurons were 

found to exhibit resurgent Na+ currents and slower AP repolarization leading to prescription 

of Riluzole in these patients, which blocked resurgent Na+ currents and reduced seizure 

frequency [69].
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Fluorescent assays of intracellular calcium or membrane voltage

Changes in intracellular calcium or membrane potential can be followed using kinetic 

plate readers including FLIPR (Molecular Devices), FDS6000 (Hamamatsu), PanOptic 

(WaveFront Biosciences), Bolt (Photoswitch), Cellaxes (Cellectricon), and Kinetic Imaging 

Cytometer (Vala). Some of these instruments can read all wells in a plate in a single scan 

and assays using these platforms can be readily adapted for high-throughput screening to 

support phenotyping and drug discovery efforts. Calcium measurements can be performed 

using genetically encoded calcium indicators (GECIs, see Glossary) or calcium-sensitive 

fluorescent dyes, whereas membrane potentials can be measured with genetically encoded 

voltage sensors (GEVIs, see Glossary), or voltage-sensitive dyes. Fluorescent plate readers 

can provide viable means to measure pharmacological reversal of channelopathy-associated 

cellular phenotypes using heterologous expression systems. However, commercial kinetic 

plate readers do not typically afford the sensitivity required to use GEVIs in neuronal assays.

All-optical electrophysiology

Optical stimulation and recording methods avoid the use of electrodes and can be performed 

on many neurons in parallel, and with the required spatial resolution to resolve signal 

from individual cells and temporal resolution to resolve individual APs. An all-optical 

approach (termed Optopatch™, see Glossary) was developed to address the throughput 

limitations associated with manual electrophysiology while maintaining the information-rich 

content [76,77]. This approach enables high throughput interrogation of cellular phenotypes 

(recording from thousands of neurons per condition in 96- to 384-well plates) and a 

platform for drug screening. Implementation of this approach requires optogenetic actuators 

and voltage reporters with distinct spectral properties. As an example, channelrhodopsin 

can be stimulated with blue light to excite neurons and archaerhodopsin with red light 

to measure changes in membrane potential. The optogenetics “toolbox” of actuators and 

reporters is continually evolving to meet experimental requirements [78]. In addition, 

blue light can be delivered in arbitrarily defined sequences to enable flexibility to probe 

neuronal function and can be spatially patterned to deliver stimulation to individual neurons 

or groups of neurons to evaluate network function and synaptic transmission. Widefield 

imaging can be used to detect hundreds of neurons at once with sequential well-by-well 

scanning across a multi-well plate. An automated analysis pipeline identifies individual 

spiking neurons and generates fluorescence versus time signals that are equivalent to 

standard electrophysiological records (Figure 3) [77,79]. This platform can generate rich 

datasets containing >300 functional parameters per neuron, providing a unique substrate 

for generation of complex, multiparameter cellular phenotypes using machine learning 

approaches. Measurements can also be performed using other GEVIs, voltage-sensitive 

dyes, and GECIs [80]. Optopatch measurements have been applied in iPSC-models of 

neurodegenerative diseases [77,79,81], while efforts focusing on the characterization of 

epilepsy-associated variants are ongoing.

Live cell imaging

Morphometric measures of neuronal properties can provide insight into long-term structural 

manifestations of ion channel variants [82]. High content analysis of endpoint measurements 
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along with kinetic readouts of neuronal morphology and protein trafficking can reveal 

cellular defects associated with channelopathies and provide orthogonal measurements 

to supplement functional readouts generated using optical or electrophysiological 

measurements. Using this method, neurons derived from Timothy syndrome patient-specific 

iPSCs with mutations in CACNA1C were found to exhibit dendritic retraction in cortical 

neurons [83], and abnormal interneuron migration in 3D assembloids when compared to 

mutation corrected isogenic controls [84].

Omics analyses

Comparative large-scale expression profiles (at the RNA and protein level) provide an 

unbiased view of responses to genetic variants and can facilitate the interpretation of 

functional changes identified in patient neurons. Transcriptomic analysis can provide 

insights into homeostatic responses of neurons to pathogenic ion channel variants [85], 

while proteomic studies of iPSC-derived neurons can reveal key pathways associated with 

early-onset epileptic encephalopathy [86]. Current technologies may not support large-scale 

screening to identify potential therapies but can provide a candidate list of genes for focused 

higher-throughput analysis. Single cell-based transcriptomic methods can assess changes 

in transcript levels, as well as identify effects on specific sub-populations of cells, and 

track changes in cellular lineage [87]. For example, RNA sequencing was successfully 

used in a recent study to discover new disease-related mechanisms involving dysregulated 

transcriptomic pathways for chromatin remodeling and neurodevelopment in mutant SCN1A 
patient iPSC-derived GABAergic neurons [88]. The accurate measurement of cellular 

metabolites that are critical for energy production, respiration and transmethylation is 

another emerging analysis tool [89], that can provide an insightful view of the effects of 

ion-channel variants and excitability to neuronal homeostasis.

Development of therapeutics using iPSC-based models of channelopathy-

associated epilepsy

A robust phenotype established using the assays described in the previous section forms 

the basis for discovering therapeutics. In both de novo and repurposed drug screening, 

human iPSC-based neuronal models of channelopathy-associated epilepsy can serve either 

as primary screening tools or as secondary assays for candidate therapeutic platforms as 

discussed below.

Small molecules

Screens of diverse small molecule and biological libraries containing tens of thousands 

of candidates provide a promising path to discovery of therapeutics. Currently, the cost 

and effort required to produce and screen large batches of iPSC-derived neurons can 

constrain ultra-high-throughput screening (uHTS) projects in which a million or more 

agents are tested, though improvements and automation of neuronal production methods 

will enable broader adoption of this approach. There are ~28 FDA-approved antiseizure 

medications (ASMs) available on the US market [90] with variable efficacies in the 

treatment of epilepsy. Importantly, only a few of ASMs are designed to address the 

underlying pathophysiology of channelopathy-associated epilepsy. ASMs mainly act to 
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reduce neuronal excitability through several mechanisms, for example by blocking sodium 

channels (e.g., carbamazepine, lacosamide, phenytoin, etc.) or boosting the effect of GABA 

(e.g., clonazepam, phenobarbital) the primary inhibitory neurotransmitter in the brain (for 

review see [91]). The research, development, and approval process for small molecules 

from bench to bedside can take up to 15 years [92]. Drug repurposing provides an 

alternative and potentially shorter avenue for therapeutic discovery of ASMs [93]. This is 

especially attractive in the case of rare, severe diseases (such as DEEs) in which the patient 

population is often not large enough to justify the development costs and time required 

for pharmaceutical development. An example of drug repurposing is use of quinidine, a 

class 1 antiarrhythmic agent and broad-spectrum sodium and potassium channel blocker 

for treating KCNT1 (encoding a sodium-activated potassium channel)-related epilepsies 

[94]. The functional classification of certain KCNT1-associated epilepsy mutations as 

gain-of-function, suggested that quinidine may be a rational treatment for this severe 

infantile epilepsy, which is refractory to traditional ASMs. Several studies exploring the 

use of quinidine in this condition showed positive responses in children with specific 

seizure subtypes and location of KCNT1 mutation [95], although potential off-target cardiac 

effects and lower efficacy in adults with other seizure subtypes in other studies limited its 

usefulness [96].

Oligonucleotide-based therapeutics

Oligonucleotide-based therapeutics that modulate gene expression, including short 

interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs), have emerged as 

potentially transformative approaches in the treatment of disorders of the nervous system. 

siRNAs are small, highly specific, double-stranded complexes that trigger the RNA 

interference (RNAi) pathway to degrade a target mRNA [97]. More than 30 siRNA-based 

therapeutics have entered clinical trials [97]. The sequence complementarity of ASOs allows 

precise binding to and modulation of levels of an RNA target [98]. Specific chemical 

modifications stabilize ASOs and allow them to downregulate target gene expression by 

RNase H-mediated decay (ASOs synthesized with “gapmer” chemistry), or by modulating 

mRNA splicing, stability, or downstream translation (ASOs synthesized with RNA-like 

“steric blocking” chemistry). Consequently, gain-of-function mutations may be rescued 

with “gapmer” ASOs and loss-of-function mutations with “steric blocking” ASOs. Many 

genetic diseases including DEEs can therefore be addressed by ASOs designed to correct 

dysregulated expression levels at their root cause. ASOs have demonstrated clinical success 

in the treatment of Spinal Muscular Atrophy (Clinical Trials identifier: NCT01839656, 

NCT01703988) [99,100], and there is a pipeline of compounds in development and testing 

for treating epileptic channelopathies including molecules that boost the expression of 

SCN1A for Dravet Syndrome (Clinical Trials identifier: NCT04442295, NCT04740476) 

[101]. The timeline from project inception to clinical trials for ASO-based therapeutics is 

typically shorter than the timeline for more traditional small molecule-based therapeutics 

[102], while iPSC-based models have been an invaluable platform for assessing the 

specificity, selectivity, and efficacy of candidate ASOs in vitro.
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Gene therapy

In adeno-associated virus (AAV)-mediated gene delivery a non-replicating viral capsid 

is used to supply a functional copy of a gene that may be missing or mutated in a 

loss-of-function state (e.g., SCN1A in Dravet Syndrome) [103]. To date, ~150 clinical 

trials involving AAVs have commenced and have shown acceptable safety profiles and 

clinical benefits in genetic diseases [104]. Advantages of AAV gene therapy include broad 

tissue tropism, long-term expression profiles, and the ability to transduce non-dividing cells 

[105]. Several serotypes show specificity to the CNS [106]. Ongoing challenges with gene 

delivery include appropriate biodistribution, cell-to-cell heterogeneity in expression levels, 

and limitations in cargo size [107,108]. While the primary application for gene therapy 

will be for loss-of-function channelopathy-associated epilepsy [109], AAVs can also be 

used to downregulate the expression of a target by delivering regulatory RNA (miRNA 

or shRNA) to counteract a gain-of-function disease state. Human iPSC-derived neuronal 

and multicellular organoid channelopathy models can be effectively used to assess target 

engagement, cell-type specificity, and efficacy of AAV-based gene modulation strategies in 

the context of a human genetic background.

Concluding remarks and future perspectives

Channelopathy-associated epilepsies represent a major therapeutic challenge. The advent of 

iPSC technology has enabled the development of patient-specific neuronal and multicellular 

models of human disease. This review serves as a resource for researchers and clinicians that 

are interested in adopting iPSCs as a model system for these devastating diseases. The first 

wave of published iPSC studies has showcased the impact of different ion-channel mutations 

on neuronal physiology, revealing several disease-associated phenotypes including irregular 

excitability patterns, defective interneuronal migration and dyshomeostatic plasticity. We 

anticipate that over the next decade several outstanding challenges particularly in relation 

to establishing the association of iPSC-based in vitro findings with clinical relevance (e.g., 

prediction of drug treatment responses or disease severity) will be resolved (see Outstanding 

Questions). As iPSC models and phenotyping platforms will continue to advance, their 

utility in personalized therapeutic projects as well as in broad drug screening campaigns will 

increase and affect how we diagnose, investigate, and treat epilepsy.
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Glossary

WES and WGS
sequencing of whole exome or whole genome respectively.
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iPSCs
induced pluripotent stem cells that are generated by induced reprogramming of somatic cells 

through the forced expression of transcription factors.

Isogenic control iPSC lines
cell lines engineered by gene editing methods such as CRISPR/Cas9 to introduce or correct 

a specific mutation and are otherwise genetically identical to the parental control line.

Patch-clamp
a classic electrophysiology technique based on the use of electrodes to study ionic currents 

in individual cells.

GEVIs and GECIs
genetically encoded voltage indicator and genetically encoded calcium indicators are protein 

sensors of voltage and calcium changes respectively. They are incorporated into cells by 

translation and are used to acquire excitability information.

Optopatch™
an all-optical system in which an optogenetic actuator and reporter allow for high-

throughput, light-based stimulation and recording of action potentials in individual neurons.
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Text Box 1.

Sources of variability in iPSC-based disease modeling experiments.

Variability between distinct iPSC clones generated from the same individual can 

arise from somatic mutations or loss of genetic integrity either already present in 

a subpopulation of the original parental cells (parental mosaicism) or introduced 

stochastically during reprogramming, cell culture, or during CRISPR/Cas9 gene editing. 

Such genomic events can unintentionally be sub-cloned during passaging and lead to 

genetic drift away from the original patient cells [110-114]. The use of non-integrating 

reprogramming vectors, which has now become standard practice, avoids integration of 

DNA into the somatic cell genome, and has also been associated with lower copy number 

variation [115]. Regular assessment of genomic integrity through G-band karyotyping, 

array-CGH (Comparative Genomic Hybridization), or by WGS can be used to identify 

genomic abnormalities or variations of sub-clonal iPSCs. Additionally, standardizing 

culture conditions and use of defined reagents to maintain and propagate iPSC lines is 

highly recommended, as these can have profound effects on iPSC heterogeneity. While 

discovery of biological phenotypes using multiple clones per each patient and isogenic 

control iPSC line is strongly recommended (Figure 2), as it ensures robust results, it adds 

significant cost and effort related to the maintenance, differentiation, and assessment of 

several clones in parallel. An alternative approach could be performing extensive QC 

on a single pair of patient and edited iPSC clones for initial experiments, followed by 

validation of a measurable phenotype across additional iPSC clones or lines. The choice 

of approach will ultimately depend both on available resources and considerations around 

the degree to which detection of subtle phenotypes require additional powering with 

larger sets of cellular reagents and proper statistical modeling.

Phenotype variability between independent differentiations and between technical 

replicates of the same differentiated clone can arise from differences in cellular 

composition (varying cell type or maturation) or may simply be inherent to the type of 

differentiation protocol [116,117]. For instance, a recent study compared the production 

efficiency and cellular composition of cells generated from 3 independent differentiations 

of the same 2 iPSC lines across 5 different laboratories using a well-established protocol 

to generate a mixture of cortical neurons and astrocytes [116]. Analysis of single cell 

gene expression profiles revealed significant heterogeneity of cell type composition 

between labs that masked genotypic effects between the two iPSC lines in the multi-site 

study [116]. Transcription factor-based differentiation protocols tend to produce more 

homogeneous and mature populations of cell types [118,119], but may suffer from 

potentially skipping relevant developmental steps associated with the process of neuronal 

progenitor differentiation [120]. Some considerations to minimize variability with any 

differentiation protocol include stringent differentiation QC metrics, consistency of key 

reagents and technique, and statistical modeling of mixed effects to remove unwanted 

variation associated only with technical effects [116].
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Outstanding questions

• What is the relationship between iPSC-derived cellular phenotypes and the 

parental patient clinical phenotypes?

• How is disease severity and onset linked to the functional effects of a given 

pathogenic variant?

• Can iPSC-based models of channelopathy-associated epilepsy predict drug 

treatment responses in patients?

• How do mutations in ion channel genes impact the development and plasticity 

of human neurons?
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Highlights

• Mutations in ion channel genes account for approximately 45% of all cases of 

genetic epilepsy

• Modeling channelopathy-associated epilepsy using iPSC technology provides 

access to human neurons and requires strict quality control measures

• A range of technologies can be effectively used for physiological and 

pharmacological assessment of iPSC-derived patient neurons in cell culture 

models including advanced functional measurements and -omics based tools

• iPSC-based models for channelopathy-associated epilepsy can be used to 

develop and assess potential therapeutics such as small molecules, antisense 

oligonucleotides and gene-therapy approaches
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Figure 1. Genetic etiology of epilepsy.
(A) 19 studies were reviewed in which patients with epilepsy were screened for genetic 

etiology, with cohort sizes ranging from 70 to 8565 individuals. See Table S1 for study 

details. Pathogenic variants were identified in 40% of patients. 45% of patients with 

pathogenic variants were identified in genes encoding ion channels and their accessory 

proteins (ligand gated ion channels were not included in this tally). Individuals with 

pathogenic variants in SCN1A were the most common followed by KCNQ2 and SCN2A. 

(B) Treemap of confirmed pathogenic ion channel variants associated with epilepsy 

separated by the type of channel (Na+, K+, Ca2+, Cl−, nonselective Na+/K+, or ion channel 

accessory protein genes). A list of all ion channel/accessory protein genes was used to 

perform a batch search for pathogenic variants identified in those genes using HGMD 

database. Variants were then manually cross referenced for clinical phenotypes related to 

epilepsy or seizures (including SUDEP that was not cardiac associated). (C) Numbers 

of variants reported to ClinVar database within each gene SCN1A, KCNQ2 and SCN2A 
separated by their pathogenicity profile.
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Figure 2. Flowchart of research practices for iPSC disease modeling and therapeutic discovery.
Here we present an example flowchart using a patient, heterozygous for a disease-associated 

mutation (+/−), although this process can be applied to patients with other types of 

mutations. Somatic cells obtained from a patient or alternatively a healthy control subject 

are reprogrammed into iPSCs (See Table S2). Several clones can be screened at QC (Quality 

Control) checkpoint 1 (See Text box 1). Genetic editing technology, such as CRISPR/Cas9 

can be used to generate isogenic controls where a pathogenic variant is corrected in patient-

derived lines or inserted in healthy control iPSCs. Several clones of each should be screened 

at QC checkpoint 2. iPSCs can then be differentiated into disease relevant cell types using 

2D or 3D protocols (See Table S3). Each type of differentiation protocol must be optimized 

and screened at QC checkpoint 3. At this point, in vitro phenotype discovery is initiated in 

which any number of assays relevant to the disease (functional, morphological, biochemical) 

are performed and multi-dimensional metrics are compiled into an ultimate phenotype score. 

Ideally, there should be overlap in the phenotypes scores between patient lines that have 

been corrected (P->I) and healthy control lines that have been mutated (H->M). Once 

a robust, reproducible in vitro phenotype is established, drug discovery can be initiated. 

This workflow should be repeated ideally with multiple patients and healthy controls. The 

approximate timeline for completing each step is noted throughout the figure.
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Figure 3. Longitudinal assessment of neurons on multiple phenotypic platforms.
The use of iPSC-based 2D or 3D models allows for the characterization of cells over time 

(i.e., disease progression; top panel). Functional, morphometric, and biochemical assays 

as highlighted here can be used to define a robust phenotype in disease-relevant cells. 

The application of multiple assays in delineating an in vitro phenotype allows for the 

accumulation of rich datasets to ultimately generate complex multidimensional data analyses 

(bottom panels). The choice of assay depends on the predicted disease- and cell-specific 

mechanisms, for example choosing a single cell versus network assay. The power of any 

measured phenotype, however, lies in both the number of measurements acquired to account 

for any sample-to-sample or cell-to-cell variability, as well as including appropriate isogenic 

controls.
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