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Abstract

Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill 

patients, which can occur even when systemic parameters, including cardiac output and arterial 

hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms 

at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen 

supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations 

in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and 

oxygen levels. The dynamic processes of structural adaptation and flow regulation continually 

adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to 

metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by 

conducted responses, which are generated and propagated by endothelial cells and signal upstream 

arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair 

local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic 

measures targeted to systemic parameters may not address or may even worsen tissue oxygenation 

at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend 

on restoration of endothelial cell function, including conducted responses.
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1 | INTRODUCTION

In caring for the critically ill, clinicians may face the conundrum of a patient with normal 

ventilation, cardiac output, and arterial oxygen saturation, but with evidence of renal1 or 

hepatic2 failure. Conventional clinical decision-making in these situations is often based on 

macroscopic parameters such as heart rate and blood pressure that do not provide insight 

into conditions at the microvascular level. As a result, therapeutic decisions may not address 

the underlying pathophysiological derangements leading to organ failure.
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Normal tissue function depends on adequate oxygen supply. Although cellular hypoxia can 

result from defects anywhere along the oxygen transport pathway (pulmonary uptake, blood 

flow, uptake by mitochondria), deficits not attributable to impairment of overall ventilation 

or blood flow can result from heterogeneous oxygen transport at the microvascular 

level. Tissue oxygen levels vary widely over short length scales (tens of microns). 

Microvascular networks are heterogeneous in structure (diameter, length of flow pathways) 

and function (flow velocity, oxygen content). This heterogeneity can result in impaired 

oxygen extraction,3 and regions of hypoxia or anoxia can occur even in tissue that receives 

an adequate overall oxygen supply.4,5 This review addresses the role of local regulation of 

blood flow in overcoming this heterogeneity and matching perfusion to metabolic demand 

under normal and pathological conditions.

2 | MICROVASCULAR HETEROGENEITY

2.1 | Causes of heterogeneity

Oxygen is transported throughout the body by convection in flowing blood and by diffusion 

from blood into surrounding tissue. The continuous need for oxygen together with its 

short diffusion distance4 necessitates a convective delivery system that places erythrocytes 

close to every living cell. The network of microvessels that fulfills this requirement is 

heterogeneous in structure (Figure 1). This heterogeneity, coupled with spatial and temporal 

variations in flow and demand, requires local regulation of blood flow to prevent regions 

of hypoxia. Similarly, local regulation of blood flow in the lung is needed to avoid high 

blood flow to poorly ventilated regions, which would result in impaired blood oxygenation. 

The importance for tissue oxygenation of ventilation-perfusion matching in the lungs and 

metabolism-perfusion matching in the systemic circulation is illustrated schematically in 

Figure 2A and B.

2.1.1 | Structural heterogeneity—Microvascular network structures are not 

genetically predetermined, but arise from angiogenesis,6,7 a stochastic process involving 

vessel growth in response to metabolic signals and pruning of redundant vessels. This leads 

to variations in vessel length and diameter.8–12 An additional source of heterogeneity is 

the “dimensional problem”.13 A three-dimensional delivery system can provide spatially 

uniform convective transport to a two-dimensional region by means of symmetrically 

branching networks, all flow pathways being equivalent in geometry and flow (Figure 3A). 

If, however, a three-dimensional region must be supplied, then the branching network is 

embedded within the region itself, which results in non-equivalent flow pathways. This 

problem is exacerbated when feeding and draining vessels run adjacent to each other, as 

is often the case (Figure 3B). A high degree of heterogeneity among flow pathways is 

inevitable.

2.1.2 | Flow heterogeneity—According to Poiseuille’s law, flow resistance of a blood 

vessel is proportional to segment length and inversely proportional to the fourth power 

of diameter.11 The structural heterogeneity of microvascular networks thus results in wide 

variations in flow rates.14–18 A further source of heterogeneity is the particulate nature 

of blood.19 At diverging bifurcations, erythrocytes preferentially enter the branch with 
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higher flow (phase separation), leading to wide variations in microvessel hematocrit.11,20,21 

With hemodilution,22 anemia, or other pathophysiological conditions, some microvessels 

may receive few or no red blood cells, leading to hypoxia.23 Conditions resulting 

in lowered hematocrit such as hemorrhagic shock can lead to increased temporal 

and spatial heterogeneity, particularly following fluid resuscitation.24,25 Spontaneous 

oscillations in vessel diameter, termed vasomotion, can redistribute blood flow and may 

affect oxygen transport.26,27 As measured by Poole and colleagues in skeletal muscle 

using phosphorescence quenching, a substantial oxygen gradient exists between the 

microvasculature and the interstitium,28,29 highlighting the importance of a homogeneous 

red blood cell distribution in maintaining adequate supply to tissues with high demand.

The effect of heterogeneity on hemodynamic parameters can be quantified in terms 

of capillary transit time heterogeneity (CTH), defined as the standard deviation of the 

transit time distribution,30 which increases in pathophysiological conditions. Alternatively, 

capillary outflow saturation heterogeneity has been utilized as an index of functional 

heterogeneity.31,32 Figure 2C illustrates how heterogeneity in capillary flow rates results in 

heterogeneous capillary outflow saturation, tissue hypoxia, and reduced oxygen extraction. 

Capillary flow in vivo is typically much more heterogeneous than shown in this example.8 

In this schematic representation, capillaries are shown as having equal lengths for simplicity. 

In reality, flow pathways are heterogeneous in length, and heterogeneous outflow saturation 

can be caused by poor matching of perfusion to metabolic demand. This representation does 

not include the effect of oxygen diffusion from arterioles to tissue, which affects oxygen 

delivery by capillaries and can, for example, result in reverse oxygen diffusion from tissue 

into capillaries.33,34

2.1.3 | Demand heterogeneity—In many organs, spatial and temporal changes in 

demand necessitate concomitant changes in blood flow to maintain oxygen availability. 

One example is differential activation of muscle fiber types during exercise.35,36 A recent 

computational model accounting for spatial heterogeneity in types and sizes of muscle 

fibers demonstrated that fiber size heterogeneity was a primary cause of local hypoxia,37 

but that non-equilibrium states and high demand conditions such as heavy exercise could 

exacerbate local discrepancies between supply and demand. A biphasic pattern of oxygen 

delivery relative to consumption has been demonstrated in skeletal muscle, with increased 

heterogeneity at low-to-moderate exercise intensities but a decrease at high exercise intensity 

corresponding to more uniform capillary perfusion.38,39 Another example is increased 

regional cerebral metabolic activity, which can occur due to localized neuronal activation. 

Increased oxygen demand is matched by increased blood flow via neurovascular coupling, 

a process that relies on multiple cell types and signaling pathways. Dysfunction in 

neurovascular coupling resulting in hypoxia is suspected in the pathophysiology of various 

diseases including vascular dementia.40

2.2 | Role of flow regulation in metabolism-perfusion matching

Active vascular responses are needed to counteract the inherent heterogeneity of 

microvascular flow and ensure adequate tissue oxygenation. These responses can be 

classified according to the time scales over which they act. Over time scales of hours to 
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weeks, all blood vessels, from capillaries to arteries, are subject to structural adaptation. 

This occurs during growth and development and in response to changing functional needs6 

and mitigates the intrinsic heterogeneity of microvascular perfusion.13 Over time scales 

of seconds to minutes, flow regulation is responsible for modulation of local perfusion.41 

Contraction and relaxation of vascular smooth muscle in small arteries and arterioles cause 

diameter changes that redirect flow via changes in flow resistance.

Vascular smooth muscle tone is modulated by local concentrations of vasoactive metabolites 

and mediators, autonomic influences, and hemodynamic factors, and conducted responses 

from downstream vessels.42 Hemodynamic factors affecting vessel diameter include 

responses to wall shear stress and circumferential wall stress generated by transmural 

pressure. Increases in wall shear stress are sensed by endothelial cells and typically 

result in vasodilation (decreased vascular tone) due to the release of mediators including 

NO, prostaglandins, and EDHF (endothelium-derived hyperpolarizing factor). Increases 

in transmural pressure activate mechanosensitive ion channels in vascular smooth muscle 

leading to vasoconstriction (increased vascular tone), termed the myogenic response.43,44 

Sympathetic stimulation causes vasoconstriction and serves to direct flow to skeletal muscle 

during exercise.45–47

2.2.1 | Metabolic signals—The mechanisms by which metabolic needs are signaled to 

the vasculature are not well understood. Multiple signaling mechanisms have been proposed, 

and more than one mechanism may be active in any given situation. Sensing of oxygen 

levels is typically involved. In the brain, however, metabolic flow regulation is considered 

to be independent of oxygen levels.48 Metabolic signals may originate in erythrocytes, in 

vessel walls, or in surrounding tissue.41 One mechanism of oxygen sensing involves the 

release of ATP by erythrocytes at a rate that depends on saturation, and ATP binding 

to receptors on endothelial cells.49–51 Erythrocyte-dependent NO vasodilator activity has 

also been implicated as a potential mechanism.52 Endothelial cells release metabolites 

under hypoxic conditions, including NO, prostaglandins, EDHF, and adenosine. Possible 

metabolites arising from tissue include carbon dioxide (resulting in decreased pH), and 

breakdown products of ATP including adenosine.53 Neural activity causes increases in 

extracellular potassium levels. This may be an important metabolic signal in neurovascular 

coupling and may also play a role in initiating vasodilation when skeletal muscle is 

stimulated. Another possible mechanism involves a direct effect of hypoxia on smooth 

muscle cell function causing vasodilation.54 The differing functional ranges of oxygen 

tension at which these mechanisms operate may imply that their effect varies depending 

on local conditions. The relative roles of signals derived from erythrocytes, vessel walls, 

and parenchyma are not known.55 Theoretical arguments imply that erythrocyte-derived 

signals alone cannot provide adequate flow regulation in heterogeneous networks.56 

Experiments have demonstrated the role of non–erythrocyte-dependent mechanisms.57 A 

similar conclusion applies with regard to the role of erythrocyte-derived signals in structural 

adaptation.41,58

2.2.2 | Role of conducted responses—The blood flow rate in any vessel depends on 

the resistance not only of that segment but also of the flow pathway feeding and draining 

Roy and Secomb Page 4

Microcirculation. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



it. The largest component of overall flow resistance resides in the arterioles. Modulation 

of capillary flow therefore requires control of the diameters of upstream arterioles.59 

This is achieved largely by conducted responses propagated along vessel walls.60,61 

Conducted responses involve changes in cell membrane potential and/or intra-cellular ion 

concentrations, which are transmitted via gap junctions along the endothelial cell layer over 

distances on the scale of mm62 and between endothelial and vascular smooth muscle cells.63 

Gap junction connexins involved in conducted responses include Cx37, Cx40, and Cx43 

in endothelium and Cx37, Cx40, Cx43, and Cx45 in vascular smooth muscle.64 Although 

other mechanisms exist for co-ordinating vascular constriction and dilation along flow 

pathways,65 upstream conducted responses play a critical role in both flow regulation63,66 

and structural adaptation.6 These findings suggest that impairment of conducted responses 

may play a role in the poor tissue oxygenation observed in pathophysiological conditions, 

even when perfusion is adequate.67

3 | IMPAIRED METABOLISM-PERFUSION MATCHING: IMPLICATIONS FOR 

OXYGEN DELIVERY AND UPTAKE

3.1 | Mechanisms and consequences of impaired flow regulation

Failure of local flow regulation can lead to local areas of inadequate oxygen delivery 

and impaired oxygen extraction.3 Acute and chronic pathophysiological conditions such 

as sepsis, peripheral vascular disease, and myocardial ischemia can impair regulatory 

mechanisms68,69 and result in local heterogeneity leading to hypoxia and potential organ 

failure. Potential modes of dysregulation include endothelial cell dysfunction70–72 and 

loss of endothelial cell coupling causing attenuation of conducted signals.73 Examples of 

clinical conditions resulting in increased microvascular perfusion heterogeneity and organ 

dysfunction are discussed below, followed by organ-specific considerations.

3.2 | Clinical implications of impaired flow regulation

3.2.1 | Sepsis—Sepsis results from a dysregulated systemic inflammatory response 

to an infectious pathogen.74 Global vasodilation resulting from inflammation results in 

maldistribution of oxygen delivery and impaired oxygen extraction.75 The syndrome has 

been defined based on a set of clinical criteria.76 If not treated aggressively within an 

appropriate time, it can lead to hypoperfusion, organ failure, and death.77 Failure of one or 

more organ systems (most commonly respiratory, cardiovascular, and renal) correlates with 

mortality, and survivors often require continued care.78

Features of sepsis include a decrease in systemic vascular resistance (distributive shock) and 

impaired oxygen extraction despite increased cardiac output and increased systemic oxygen 

delivery.77 Although cardiac output is often preserved or even increased following fluid 

resuscitation, sepsis can also cause reversible depression in left ventricular ejection fraction 

and diastolic dysfunction,79 leading to superimposed cardiogenic shock. Various classes of 

sepsis biomarkers have been proposed and used for prognostication,80 reflecting the variable 

presentation and course of this condition.
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At the microcirculatory level, derangements in microvascular flow regulation, erythrocyte 

deformability, leukocyte and platelet activation, and microvascular permeability result in 

increased heterogeneity of microvascular flow and oxygen delivery, which in combination 

with increased oxygen demand and mitochondrial dysfunction can result in regional hypoxia 

and organ failure.81–83 Furthermore, inflammation and increased capillary permeability can 

cause hypovolemic shock and tissue edema as fluid leaks out of the microcirculation84; this 

can be exacerbated by damage to the glycocalyx.85 In resistance vessels, altered vascular 

reactivity86 due to increased release of vasoactive substances such as adenosine and nitric 

oxide87,88 along with impairment of autonomic tone89 and conducted responses result in 

altered patterns of blood flow including shunting.90

The term shunting refers to partial diversion of oxygen delivery away from target tissues, 

which can result in inadequate oxygen utilization.91 It is characterized by values of venous 

PO2 higher than microcirculatory PO2, and this difference (termed the PO2 gap) has been 

observed in hemorrhagic shock.92 Anatomical shunting via collaterals has been observed in 

several organs.93–95 Functional shunting can result from (i) diffusive transfer of oxygen from 

arterioles to venules33,96,97; (ii) failure of flow regulation and increased flow heterogeneity 

(the focus of this review); or (iii) the theoretical inability of Hb to unload rapidly enough 

as it passes through the capillaries due to rapid transit times.98,99 The poor matching of 

perfusion and oxygen delivery to metabolic needs is a hallmark of sepsis and a likely 

cause of tissue damage and organ failure.91 A classic study investigating blood flow under 

conditions of sepsis and endotoxemia using microspheres in dogs showed little evidence 

of systemic shunting but demonstrated the presence of splanchnic and renal shunting.100 

As illustrated in Figure 2, heterogeneity in capillary flow can lead to an oxygen extraction 

deficit, suggesting the use of vasodilators to open up these “weak microcirculatory units”.101 

Alternatively, the use of oxygen carriers including perfluorocarbons102 and hemoglobin-

based oxygen carriers to improve transport from these vessels has been investigated.92,103

The role of mitochondrial dysfunction in sepsis also remains unclear. The presence of 

impaired organ function in sepsis in the face of adequate oxygen delivery naturally leads 

to impaired cellular respiration as a possible explanation. Singer and colleagues assessed 

muscle biopsies for levels of ATP along with markers of mitochondrial activity, NO 

production, and oxidative stress in critically ill patients relative to controls104 and found 

that shock severity (as measured by pressor requirement) correlated with mitochondrial 

dysfunction. Impaired oxygen extraction as a result of impaired cellular respiration has been 

termed cytopathic hypoxia.105

Several other mechanisms have also been implicated in the impaired oxygen extraction 

seen in sepsis. Heterogeneity of perfusion75,90 can lead to impaired metabolism-perfusion 

matching.106 Aggregation and plugging of microvessels due to altered erythrocyte and 

leukocyte rheology77,90,107 can occur along with vascular microthrombosis.108 Decreased 

sensitivity of adrenergic receptors to norepinephrine with acidosis and hypoxia can 

lead to impairment of the autonomic regulation that contributes to metabolism-perfusion 

matching. Also, in spite of increased sympathetic activity,109 widespread vasodilation 

may occur due to various mechanisms, including adenosine88 and increased NO 

production due to upregulation of iNOS,110 causing decreased whole body and regional 
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extraction. These characteristics are consistent with the paradigm of sepsis as a disease 

of the microcirculation.81,111–113 Since the severity of microcirculatory dysfunction is 

associated with poor outcome in critical illness,114,115 several interventions including fluid 

resuscitation,116–118 vasoactive agents,115,119,120 and NOS inhibition110 have been proposed 

and utilized to optimize oxygen delivery at the microcirculatory level.84,121

Mathematical models of the microcirculation in sepsis have simulated heterogeneity in 

tissue perfusion by assuming populations of capillaries with stopped flow, and have 

demonstrated its detrimental effect on oxygen transport.122,123 As models increase in 

sophistication, the ability to quantitatively characterize the mechanisms of decreased 

extraction and response to interventions may allow optimization of pharmacologic 

management (ie, choice of vasopressors) to reverse maldistribution of flow in vasodilatory 

states.

3.2.2 | Metabolic syndrome—A recurring theme in microvascular dysfunction is 

the role of oxidative stress. Metabolic syndrome represents a constellation of clinical 

conditions including obesity, hypertension, dyslipidemia and atherosclerosis, and impaired 

glycemic control that is associated with chronic inflammatory and prothrombotic states.124 

The underlying pathophysiology of metabolic syndrome is thought to originate with 

impaired vascular reactivity, decreased perfusion, and microcirculatory dysfunction, causing 

peripheral vascular disease (PVD) and affecting the brain, heart, and skeletal muscle. 

Although many pathways are involved in the generation of reactive oxygen species (ROS) 

in affected individuals, a major mechanism is the uncoupling of nitric oxide production 

by eNOS so that superoxide is formed instead. This occurs when necessary cofactors are 

unavailable and/or peroxynitrite (generated by NO scavenging) is present.125 The presence 

of superoxide along with other ROS (such as hydrogen peroxide) and reactive nitrogen 

species interferes with the regulation of vascular tone. Overproduction of NO can also lead 

to endothelial dysfunction by causing peroxynitrite formation. The resultant oxidative stress 

leads to a blunting of the vasodilatory response in hypoxia due to increased endogenous 

vasoconstrictor production via the cyclooxygenase pathway.126 These changes manifest as 

structural and functional alterations in the vascular wall in affected patients, leading to 

limitations in skeletal muscle and cerebral blood flow. In an animal model of metabolic 

syndrome (the obese Zucker rat), cerebral arteries were found to be stiffer and narrower 

with impaired vasodilatory capacity and decreased nitric oxide availability relative to 

controls.124 Similarly (in a range of rat models with increasing risk), vascular reactivity 

and NO bioavailability were found to be progressively more impaired with increasing PVD 

risk. Additionally, the perfusion distribution coefficient (a measure of temporal perfusion 

heterogeneity at arteriolar bifurcations) was found to be higher in higher-risk rats and 

trended toward affecting larger vessels as risk increased.127 Finally, in a study using the 

obese Zucker rat, Frisbee and colleagues investigated the nature of vascular dysfunction by 

using adrenergic stimulation in addition to pressor response and endothelium-dependent 

vasodilation; blocking the adrenergic response to simply improve blood flow did not 

improve oxygen uptake and muscle performance as much as also restoring endothelial 

function,128 suggesting distinct mechanisms of dysfunction affecting different calibers 
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of vessels.129 Modeling results for skeletal muscle confirm that perfusion heterogeneity 

adversely affects tissue oxygenation in the metabolic syndrome.130

3.2.3 | Diabetes mellitus—Diabetes is characterized by high glucose levels either due 

to inadequate insulin production (T1D) or due to insulin resistance in peripheral tissues 

(T2D) as seen in metabolic syndrome.131 Many of its common complications (retinopathy, 

nephropathy, neuropathy,132 myocardial dysfunction) are vascular in origin and result 

from oxidative stress and inflammation. Abnormal angiogenesis results from increased 

VEGF (vascular endothelial growth factor) levels in the retina and kidneys, and may also 

destabilize vascular walls.133 Advanced glycation end products (AGEs) and microRNAs 

have been implicated in the development of vascular disease in T2D.134 Walls of large 

vessels show structural changes secondary to inflammation (cell proliferation, hypertrophy), 

with decreased compliance. Both small and large vessels show impaired endothelium-

dependent vasodilation, increased endothelial permeability, and oxidative stress. In an 

animal model of T2D, the observed decreased vascular reactivity and blunted active 

hyperemia were attributed to increased thromboxane production and oxidative stress131; 

muscle perfusion was partially restored with antioxidant and anti-thromboxane therapy. The 

significant role that oxidative stress and inflammation play in diabetic microangiopathy 

suggests that targeting these mediators and controlling comorbid conditions such as 

hypertension may be as important as normalizing glucose levels.134 This is corroborated by 

differences in functional abnormalities of the microvasculature in T1D vs T2D.135 Finally, 

diabetes may influence muscle glucose uptake via a direct effect on muscle perfusion,136 

although this remains controversial.137

3.3 | Organ-specific considerations

3.3.1 | Kidney—The kidney receives a disproportionate amount of blood flow for its size 

and has one of the highest oxygen consumption rates in the body.138 Its high metabolic 

demand required to facilitate sodium transport, and its complex vascular architecture makes 

it particularly vulnerable to hypoxic injury. The renal cortex receives the majority of renal 

blood flow (RBF) relative to the medulla and renal PO2 decreases from the cortex to the 

medulla as the osmotic gradient increases.139 Acute kidney injury (AKI) in the critically 

ill can result from ischemic or nephrotoxic insults, but is also common in sepsis even 

among patients who have not experienced hypoxemia or hypotension resulting in decreased 

RBF and/or oxygen delivery to the kidney.140 The severity of AKI is characterized by 

the degree of oliguria, an increase in serum creatine, and the need for renal replacement 

therapy (KDIGO–Kidney Disease: Improving Global Outcomes Criteria),141 but these are 

often late signs and highlight the need for early diagnosis and treatment. Since histological 

studies of AKI particularly in sepsis may not show overt evidence of structural injury such 

as tubular necrosis,142,143 focus has shifted to possible proinflammatory and prooxidant 

effects causing microcirculatory dysfunction and alterations in vascular reactivity. This is 

corroborated by studies showing that simply targeting higher perfusion pressures does not 

lead to improvements in oxygenation.144

The inflammatory response that characterizes sepsis is thought to initiate a cascade 

culminating in the release of cytokines, chemokines, and other mediators that cause 
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endothelial cell activation and microvascular dysfunction.145 Consequences include 

impaired flow regulation due to regional deficits in NO-mediated vasodilation causing 

heterogeneity in perfusion and oxygen levels, enhanced release of ROS, platelet aggregation, 

and damage to the glycocalyx and endothelial junctions146 leading to increased vascular 

permeability and edema. Regional variations in renal perfusion and oxygen levels were 

recently observed in renal injury using pimonidazole staining,147 suggesting that shunting 

of oxygen might explain the impaired oxygen utilization and extraction seen in AKI.91 This 

is supported by a study showing that arteriovenous shunting was an important contributor 

in maintaining renal PO2 in the face of changing RBF.148 Since renal oxygen delivery 

normally exceeds demand, the possibility that preglomerular shunting could serve to spare 

the renal parenchyma from exposure to high oxygen levels and ROS was proposed.149,150 

Arteriovenous oxygen transport may be facilitated by the anatomical arrangement of the 

renal vasculature.151,152 This concept is supported by mathematical modeling94,153,154 

although recent models153,155 predict a relatively small shunt fraction under normal 

conditions. With regard to the role of mitochondria in AKI, a recent in vitro study showed 

that mitochondrial function was impaired in renal tissue exposed to endotoxin140 and that 

mitochondrial damage may occur even in the absence of tubular injury.156

3.3.2 | Skeletal muscle—In skeletal muscle, autonomic regulation modulates flow 

distribution to recruited motor units.35 The baseline diameter of skeletal muscle arterioles 

is determined in part by resting sympathetic nerve activity (SNA).157 Increased SNA (eg, 

during exercise) leads to increased cardiac contractility and arteriolar vasoconstriction, 

which maintains systemic blood pressure as the skeletal muscle vasculature dilates. The 

local metabolic vasodilation (termed functional sympatholysis) serves to direct blood to 

metabolically active areas.158–160 This interaction is mediated by the differential response 

of larger vs. smaller arterioles to vasodilatory metabolites46,161 due to the distribution 

of α adrenergic receptor subtypes. The sympathetic vasoconstriction of smaller vessels 

with higher concentrations of α2 receptors appears to be more susceptible to inhibition 

by vasodilatory metabolites as compared to larger vessels with higher concentrations 

of α1 receptors,162,163 providing a mechanism for increasing perfusion to metabolically 

active areas. Attempts to increase oxygen delivery by pharmacologic vasodilation have 

resulted in either no improvement in maximal aerobic capacity164 or decreased oxygen 

extraction.165 Despite an increase in blood flow, vasodilation via adenosine results in 

impaired metabolism-perfusion matching (ie, decreased extraction), likely due to shunting 

of blood to non-exercising tissue.164,166 Similarly, experiments performed at altitude with 

adenosine vasodilation show a paradoxical worsening of oxygen uptake with reduced 

extraction due to shunting.165 These results indicate that adrenergic tone is important 

for directing flow to metabolically active areas.167,168 Implications for impaired vascular 

reactivity (as seen in metabolic syndrome) include the development of peripheral vascular 

disease and mitigation of this risk by exercise training.169

3.3.3 | Brain—Under normal conditions, increases in regional cerebral metabolic demand 

either increase extraction170 or increase perfusion via neurovascular coupling.171,172 This 

involves conducted responses that vasodilate upstream arterioles and small arteries.171 

Several disorders have been linked to cerebrovascular dysfunction and impaired 
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neurovascular regulation including vascular dementia,40 stroke,171 and Alzheimer’s 

disease.171,173–176 Cerebral autoregulation maintains blood flow under a wide range of 

perfusion pressures.40 The cerebral blood supply arises from the Circle of Willis, and 

the vascular arrangement in the deep white matter is such that the watershed regions 

between the anterior and middle cerebral artery distributions have poor collateral flow. 

This area is vulnerable to disruptions in perfusion and can be affected by decreases in 

global cerebral perfusion and neuropathological small vessel lesions affecting arterioles.177 

Vascular dementia is often functional but is sometimes associated with pathological 

features including leukoaraiosis, lacunar infarcts, microbleeds, microinfarcts, and cerebral 

amyloid angiopathy.40 In many cases, these lesions are accompanied by attributes of 

neurodegenerative diseases such as the neurofibrillary tangles and amyloid plaques seen 

in Alzheimer’s disease. These processes may be synergistic in that vascular insufficiency 

promotes amyloid deposition and impaired clearance, and amyloid reduces cerebral 

blood flow and impairs functional hyperemia.40 Both vascular dementia and Alzheimer’s 

disease exhibit vascular dysfunction including impaired reactivity, altered cerebrovascular 

autoregulation, and disruption of the blood-brain barrier.174,178 The demyelinated neurons 

and damaged glia are unable to support the endothelium, leading to capillary rarefaction. 

The underlying cause of vascular dysfunction is thought to be oxidative stress and 

inflammation leading to endothelial damage and disruption of neurovascular coupling.40,176 

Since no effective treatment has been identified, efforts have focused on preventive measures 

such as control of hypertension and other risk factors.40 Ischemic strokes result in similar 

impairment of reactivity and autoregulation177 and can even result in decreased blood flow 

and metabolism in intact areas.171 Eventual consequences of impaired cerebral blood flow 

(as seen in metabolic syndrome for example) can include cognitive decline and stroke.124

3.3.4 | Heart—The myocardium is characterized by regional flow heterogeneity179,180 

and regional variations in oxygen demand.10 These variations lead to heterogeneity in 

oxygen levels at the microvascular level.10 Recent evidence suggests that the fractal 

nature of myocardial blood flow correlates more with metabolic activity than vascular 

structure,181 suggesting the strong influence of metabolic flow regulation in the heart. 

Failure of flow regulation is seen in a condition called microvascular angina (previously 

referred to as cardiac syndrome X)182,183 in which patients (women more often than men) 

experience angina in response to microvascular dysregulation without arterial occlusion184; 

these symptoms may or may not be accompanied by ECG changes and/or regional wall 

motion abnormalities. The pathophysiology involves endothelial and autonomic dysfunction 

resulting in vasoconstriction and/or inadequate vasodilation in response to metabolic 

demand.183,185 The condition is difficult to diagnose since patients typically have normal 

coronary angiograms. Noninvasive methods such as vasodilator stress cardiac MRI185 and 

invasive methods such as coronary flow reserve (CFR) and the index of microcirculatory 

resistance (IMR) have been used.183,186,187 Patients with symptoms of microvascular 

angina are typically treated with drugs used for ischemia such as beta-adrenergic blocking 

agents, calcium channel blockers, and nitrates185 as well as preventative measures, 

since microvascular angina can coexist with atherosclerotic heart disease. Microvascular 

dysfunction is often associated with atherosclerotic heart disease183,188 and can persist even 

after revascularization of large coronary vessels189; capillaries experience oxidative stress 
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and in some cases exhibit loss of pericytes and rarefaction, limiting blood flow. The systemic 

implications of the atherogenic, inflammatory, and prothrombotic state seen in the metabolic 

syndrome include impaired vascular reactivity and peripheral vascular disease, culminating 

in angina or heart failure from hypertension and increased afterload.127

3.3.5 | Lung—Efficient uptake of oxygen through the alveolar-capillary membrane 

requires a normal diffusing capacity190 and intact flow regulation to match perfusion 

to ventilation.191 ARDS (acute respiratory distress syndrome) is characterized by severe 

hypoxemia resulting in high mortality among critically ill patients. Its pathogenesis 

includes pulmonary endothelial injury resulting in increased vascular permeability and 

pulmonary edema as well as alveolar epithelial injury and increased interstitial fluid.192–194 

Inflammation and accumulation of protein-rich edema fluid impair gas exchange and 

cause alveolar flooding.195 The increased diffusion distance across the alveolar-capillary 

membrane coupled with impaired flow regulation and local or regional heterogeneity of 

ventilation and perfusion contributes to decreased arterial oxygenation.196

Lung injury in patients with ARDS is associated with changes in ventilation at the regional 

and local levels, leading to heterogeneity at multiple scales. Increased heterogeneity is 

associated with increased dead space fraction.197,198 Ventilation changes in distal aspects 

of the tracheobronchial tree can occur due to mucous plugging, particularly in cases of 

infection. Pulmonary edema due to alveolar epithelial injury can alter alveolar mechanics 

(preventing alveoli from opening during tidal ventilation); alveolar flooding (an extreme 

case of increased alveolar-capillary membrane thickness) can prevent ventilation altogether.

In the absence of well-distributed ventilation, adequate matching of perfusion to ventilation 

through flow regulation is crucial. Hypoxic vasoconstriction (HPV) is a key mechanism for 

matching perfusion to ventilation.199–202 Capillary endothelial cells act as the sensors of 

local oxygen tension203 along with pulmonary artery smooth muscle cells (PASMC).204 

Upstream conduction of this signal via gap junctions in endothelial cells has been 

proposed as the mechanism for the vasoconstriction of upstream arterioles via contraction 

of PASMC.205 Endothelial injury and/or decreased Cx40 expression may explain the 

impairment of HPV and failure of flow regulation in ARDS206 and illnesses such as 

COVID-19.207 In addition, the cystic fibrosis transmembrane conductance regulator (CFTR) 

has been shown to be necessary for an intact HPV response, and recent evidence 

demonstrates that some lung infections block HPV by inhibiting CFTR.208 The extent to 

which HPV is impaired in ARDS and is attenuated by various agents used in the treatment 

of critically ill patients remains unclear.196

Inhaled NO (iNO) and inhaled prostacyclin (PGI2) have been used to improve ventilation/

perfusion matching in mechanically ventilated patients209,210; although these agents can 

improve oxygen saturation, they have not been shown to decrease mortality.210,211 Regional 

changes in blood flow with iNO have been observed in hypoxia and normoxia on 

imaging.212 Other agents that have been used to redistribute blood flow include almitrine, 

a selective pulmonary vasoconstrictor of nonventilated lung areas,213 and phenylephrine, 

an α-receptor agonist causing vasoconstriction.214,215 Further investigation is needed to 

determine optimal pharmacologic combinations to improve arterial oxygen saturation.
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When supplemental oxygen is not sufficient to raise arterial oxygen saturation, patients are 

placed on positive pressure ventilation (PPV). Mechanical ventilation itself can cause lung 

injury216 and was shown to worsen ventilation-perfusion matching and oxygenation in an 

animal model of lung injury by decreasing blood flow to poorly ventilated areas during 

inspiration.217 Flow-controlled ventilation has been proposed to attenuate lung injury and 

improves homogeneity of aeration in dependent portions of the lung.218

In summary, local regulation of pulmonary blood flow is crucial for maintaining 

oxygen saturation in critically ill patients. In ARDS, the combination of impaired flow 

regulation and impaired diffusing capacity results in severe hypoxemia and requires 

judicious application of pharmacologic interventions and appropriate ventilator strategies 

to redistribute blood flow.

3.3.6 | Tumors—As a tumor develops, angiogenesis is stimulated by its need for oxygen 

and nutrients, and enables tumors to grow to sizes larger than the diffusion distances 

for those substances.219 Angiogenic activators such as VEGF are instrumental in this 

process; the expression of VEGF and its receptor is induced by the effects of hypoxia 

on HIF-1α (hypoxia-inducible factor 1, α subunit).220 Tumor microvessel networks have 

an aberrant structure and exhibit increased vascular permeability, resulting in heterogeneous 

blood flow and oxygenation.4,221,222 The abnormal conditions in tumors cause hypoxia 

and affect the transport of anticancer drugs, often limiting their effectiveness.223 Strategies 

to mitigate these effects include limiting stromal development to minimize microvascular 

compression and improve flow, normalizing the vascular network by using VEGF inhibitors, 

and using supplemental oxygen or pharmacologic therapies to reduce oxygen consumption 

to minimize hypoxia.224

3.4 | Implications for therapeutic interventions

Optimizing tissue oxygenation and perfusion at the microvascular level in addition to 

restoring systemic physiological parameters (‘hemodynamic coherence’225) is the objective 

of ‘microvascular resuscitation’.115,226–228 Several strategies have been proposed and 

employed to address the spatial and temporal heterogeneities in flow and oxygenation 

(‘microcirculatory shock’229) seen at the microvascular level.230–233 Methods for monitoring 

the microvascular response to these interventions234–236 are also discussed.

3.4.1 | Vasoactive agents—Pharmacologic agents commonly used in critically 

ill patients include vasopressors (to increase systemic perfusion pressure),119,120,237 

vasodilators (to increase microvascular flow and decrease shunting),119,238 and inotropes 

(to increase cardiac output).119,120 Clinically, these therapies are typically used following 

intravascular volume resuscitation, but can be used concurrently with fluid239–241 or in 

combination with each other.242,243 Despite multiple clinical trials involving pharmacologic 

agents, no definitive correlation has been found between achieving systemic hemodynamic 

endpoints and improved microcirculatory metabolism-perfusion matching.119,244

Vasoactive drugs differentially affect vessels of different caliber due to differing distributions 

of adrenergic receptors.120,245–247 Many vasopressors (and vasodilators) also have systemic 

effects.101,119,248 For example, norepinephrine has significant α-adrenergic properties 
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and causes peripheral vasoconstriction, and also increased cardiac output due to its β-

adrenergic effects.119,120 Phenylephrine (a selective α1-adrenergic agonist) causes peripheral 

vasoconstriction and an increase in mean arterial pressure (MAP), but may decrease cardiac 

output via increased afterload.120 Epinephrine increases MAP via α- and β-adrenergic 

effects on the peripheral circulation as well as cardiac output; β-effects predominate at 

lower doses.119,120 Vasopressin causes contraction of vascular smooth muscle and increases 

sensitivity to catecholamines.120

Although some of these drugs preserve or improve systemic perfusion pressure,249–251 their 

effect on microvascular perfusion remains unclear,119,248,252–254 especially in conjunction 

with fluid resuscitation. In fact, the use of vasodilators has also been proposed to 

increase overall microvascular perfusion and reduce stopped-flow capillaries and/or plasma 

channels.255,256 Another proposed unconventional therapy is inhaled nitric oxide to 

stimulate nitrite and S-nitrosothiol production, causing release of NO by erythrocytes and 

potentially improving flow regulation in sepsis.257 Potential exists for personalized therapy 

based on patient phenotype (adrenergic receptor subtypes, responses to pharmacologic 

agents). Similar techniques could be used in other conditions that involve inflammatory 

responses and heterogeneity of flow. Hemorrhagic shock and free flap perfusion are 

conditions in which elucidating the microcirculatory response to fluid resuscitation and 

vasoactive agents would be of interest.

3.4.2 | Fluid therapy—Intravenous crystalloid administration has long been the 

mainstay of therapy in patients with sepsis or distributive shock, to restore intravascular 

volume, maintain stroke volume and cardiac output, and preserve blood pressure in the 

context of vasodilation and capillary leak. However, the optimal amount and type of fluid 

remain a subject of debate.258,259 Judicious fluid resuscitation is the initial component 

of protocol-based management (“early goal-directed therapy”)260 as formalized in the 

commonly utilized “Surviving Sepsis” guidelines,74,261 although these are controversial.262 

Various systemic hemodynamic endpoints for fluid resuscitation have been proposed,263 

including central venous pressure, mean arterial pressure, cardiac index, oxygen delivery, 

oxygen consumption, and mixed venous oxygen saturation. Clinical trials utilizing such 

endpoints have not reliably demonstrated improved outcomes, however264,265 implying 

that restoring systemic hemodynamics may be insufficient to restore oxygen delivery to 

tissue.266 One possible cause may be endothelial damage due to the effect of crystalloids 

on the integrity of the glycocalyx, a luminal barrier layer that plays a role in regulation 

of vascular permeability, immune function, cellular adhesion, and flow regulation.267–269 

Additionally, alterations in plasma viscosity and erythrocyte deformability induced by 

administered crystalloids and colloids can alter the flow and distribution of blood and cause 

heterogeneity in oxygen transport.270–272 In summary, potential detrimental effects from 

fluid resuscitation include hemodilution (decreased hematocrit), damage to the glycocalyx 

resulting in increased permeability leading to tissue and pulmonary edema (and therefore 

increased diffusion distances),116 altered hemorheology, shunting/malperfusion (resulting in 

plasma channels and poor tissue oxygenation), and venous congestion.85,116,273,274

Risks of under-resuscitation include hypotension, hypoperfusion, and inadequate oxygen 

delivery leading to organ failure, but over-resuscitation, even if indicated by systemic 
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hemodynamic parameters, may be detrimental.116,275 Studies of microvascular oxygenation 

using phosphorescence techniques in rat intestinal microcirculation have demonstrated 

the preservation of tissue oxygen levels with crystalloid resuscitation.276 Increased flow 

may improve perfusion and oxygen delivery at the microcirculatory level only up to a 

point, at which the effect of hemodilution would supervene and result in hypoxia due 

to redistribution of erythrocytes, the development of plasma channels,277 and decreased 

oxygen delivery.22,278 This is consistent with evidence of shunting seen in experimental 

models.279,280 Due to the lack of correlation between systemic hemodynamics and 

microcirculatory flow, the optimal fluid resuscitation endpoint remains unclear274 and 

individualized therapy may be indicated.266,281 Observations of microvascular flow have 

therefore been used to identify candidates for fluid resuscitation282 based on measured 

microvascular flow parameters.116

3.4.3 | Blood transfusion—Blood transfusion improves sublingual microcirculatory 

density (as measured by video microscopy) and oxygenation (as measured by 

spectrophotometry).283,284 Administering whole blood or packed red blood cells prevents 

hemodilution and may increase vascular tone via the myogenic mechanism, while increasing 

oxygen delivery. Increased delivery has been shown to improve oxygen utilization in 

patients with poor baseline extraction285 but may be counteracted to some extent by the 

increase in flow resistance resulting from hemoconcentration.286,287 Furthermore, less tissue 

edema would likely result since more administered volume would be retained within the 

vasculature. Transfusion of blood with altered oxygen affinity may also serve to improve 

oxygen unloading in peripheral tissues.288–290

3.4.4 | Anesthetic agents—Agents used for sedation and anesthesia comprise another 

class of commonly used drugs in critically ill patients and are known to affect the 

vasculature.291 However, the effects of anesthetic agents on the microcirculation are 

variable292 and poorly understood. Effects of inhalational and intravenous agents on 

erythrocyte deformability,293,294 integrity of the glycocalyx,295 vascular permeability,296 

and vascular reactivity to vasoactive agents297,298 have all been variously reported.299 As an 

example, results of a recent study evaluating the effect of general anesthesia on attenuation 

of renal perfusion and oxygen delivery in an ovine model suggest that the use of IV 

anesthetics may be preferable to volatile agents if subjects are at risk of renal injury.300 

Much work remains to be done to define the most appropriate sedative or anesthetic agents 

for a particular patient.

3.4.5 | Monitoring—Conventional methods of monitoring the progress of septic patients 

include so-called “upstream” variables reflecting oxygen delivery (cardiac output, mean 

arterial pressure) and “downstream” variables reflecting oxygen utilization (mixed venous 

oxygen saturation,301 lactate levels, urine output). Because these measures may not reflect 

microcirculatory derangement, methods of clinically evaluating the microcirculation have 

been developed302–306 (eg, sublingual capnometry, sidestream dark-field video microscopy, 

orthogonal polar spectral imaging307–313). While imaging methods are not in widespread 

clinical use, algorithms to analyze such images314,315 can provide serial measurements of 

local flow velocities, the percentage of perfused vessels, and effective vessel density.316,317 
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Derived quantities used to monitor therapy include microvascular flow index (MFI),282,318 

perfused vessel density (PVD),59 proportion of perfused vessels (PPV), and a heterogeneity 

index as well as functional measurements of local tissue oxygen tension as obtained by near-

infrared spectroscopy (NIRS).318 These measurements are often site-specific117 but have 

been found to reflect conditions at other sites.319 The significance and relevant therapeutic 

endpoints for these measures are still under investigation.144,320–323

4 | DISCUSSION

When considered at the whole-organ level, the occurrence of tissue hypoxia in 

a well-perfused tissue may seem paradoxical. However, this paradox is resolved 

when microvascular-scale behaviors are considered. The microcirculation is inherently 

heterogeneous in structure, and active vascular responses on short and long time scales 

are essential to overcome this heterogeneity and provide adequate oxygenation throughout 

tissues. Any disturbance of flow regulation can cause local hypoxia. In patients with 

sepsis or other critical illness, flow regulation may be disturbed due to effects of 

pathophysiological conditions on endothelial cell function. Conducted responses, which play 

a vital role in flow regulation, require not only the normal function of individual endothelial 

cells but also maintenance of their connectivity via intact gap junctions. This aspect of 

endothelial function is likely to be particularly vulnerable to disruption in abnormal states 

such as inflammation. Therapeutic measures targeted to systemic parameters may not 

address or may even worsen such dysfunction. The goal of therapy should therefore be 

restoration of endothelial cell function, including conducted responses. Further investigation 

of these aspects of microvascular function with theoretical, experimental, and clinical studies 

could lead to improved therapies for improving oxygen transport and preventing organ 

failure in critically ill patients.

5 | PERSPECTIVES

Critically ill patients depend on adequate oxygen availability at the microvascular level to 

prevent tissue and organ damage, and regions of hypoxia or anoxia can occur even in a 

tissue that receives an adequate overall convective oxygen supply. Intact local regulation 

of blood flow is required to counteract the structural and functional heterogeneity of 

microcirculatory networks and prevent hypoxia. Given that endothelial injury in critical 

illness can impair the upstream conducted responses that mediate arteriolar vasodilation and 

that correcting systemic parameters alone may not improve microvascular oxygen delivery, 

restoring endothelial function and flow regulation may be the key to preventing organ failure 

in these “diseases of the microcirculation.”
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FIGURE 1. 
Representative microvascular network derived from observations of rat mesentery 

illustrating structural heterogeneity. A, Main arteriolar inflow. V: Main venular outflow 

(reprinted from Roy et al.56)
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FIGURE 2. 
Schematic diagrams indicating how lack of ventilation-perfusion matching or metabolism-

perfusion matching can cause hypoxia. A, (a) In the lungs, if poorly ventilated alveoli 

(indicated by small shaded shape) receive high perfusion, then blood may be poorly 

oxygenated. Thicknesses of lines represent relative distribution of blood flow. (b) In 

the systemic circulation, if tissue regions with high metabolic demand by mitochondria 

(represented by large shaded shape) receive low perfusion, then oxygen supply may 

be inadequate. B, (c) Redistribution of flow in the lungs, for example, by hypoxic 

vasoconstriction, reduces flow to poorly ventilated regions, improving overall blood 

oxygenation. (d) Redistribution of flow in peripheral circulation, for example, by local 

metabolic regulation of blood flow, increases flow to regions of high metabolic demand, 
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improving tissue oxygenation (represented by large unshaded shape). C, Effects of 

heterogeneous capillary flow rates on oxygen delivery. Oxygen saturation in arteriole A 

is set to 1. In the homogeneous case, capillaries C1-C4 all have flow of 2.5 (arbitrary 

units). Saturation in venule V is 0.2, that is, 80% extraction. In the heterogeneous case, 

the same flow is distributed (1, 2, 3, 4) to capillaries C1-C4. Mixed saturation in V is 0.3 

(dashed line), that is, 70% extraction. C1 is anoxic along its downstream half, implying 

tissue hypoxia. For simplicity, oxygen delivery per unit length is held constant if saturation 

is above zero
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FIGURE 3. 
Schematic illustrating the “dimensional problem.” A, Network supplying a two-dimensional 

region. B. Network supplying a three-dimensional region
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