Skip to main content
. 2022 May 5;16:859973. doi: 10.3389/fninf.2022.859973

Table 5.

Predictive performance of different network architectures, with the mean values listed.

Methods 3DIRCADb SWMH
Liver and tumor Stroke and WMH
DC VOE RVD ASSD HD DC HD
LLRHNet1 93.51 & 89.17 6.01 & 12.37 0.81 & 7.64 1.57 & 4.16 1.21 & 4.72 69.76 & 65.31 3.89 & 4.61
LLRHNet2 96.36 & 92.31 4.97 & 9.26 0.80 & 3.08 1.05 & 2.76 1.34 & 4.37 74.83 & 72.19 3.87 & 3.08
LLRHNet3 96.29 & 91.43 5.30 & 8.86 0.91 & 4.36 0.97 & 2.43 2.37 & 3.54 75.04 & 73.47 3.41 & 2.98
LLRHNet4 98.64 & 95.06 3.13 & 6.04 0.01 & 0.43 0.28 & 0.58 2.03 & 0.71 79.10 & 78.02 2.70 & 2.27

LLRHNet1 denotes ResNet, LLRHNet2 denotes ResNet only with iterative aggregation, LLRHNet3 denotes ResNet only with transformer, and LLRHNet4 is the final model we choose. The best results are shown in bold. DC:%, HD:mm, VOE:%, RVD:%, HD:mm.