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Summary.

Patients awaiting cadaveric organ transplantation face a difficult decision if offered a low-quality 

organ: accept the organ or remain on the waiting list and hope a better organ is offered in the 

future. A dynamic treatment regime (DTR) for transplantation is a rule that determines whether 

a patient should decline an offered organ. Existing methods can estimate the effect of DTRs 

on survival outcomes, but these were developed for applications where treatment is abundantly 

available. For transplantation, organ availability is limited, and existing methods can only estimate 

the effect of a DTR assuming a single patient follows the DTR. We show for transplantation that 

the effect of a DTR depends on whether other patients follow the DTR. To estimate the anticipated 

survival if the entire population awaiting transplantation were to adopt a DTR, we develop a novel 

inverse probability weighted estimator (IPCW) which re-weights patients based on the probability 

of following their transplant history in the counterfactual world in which all patients follow the 

DTR of interest. We estimate this counterfactual probability using hot deck imputation to fill 

in data that is not observed for patients who are artificially censored by IPCW once they no 

longer follow the DTR of interest. We show via simulation that our proposed method has good 

finite-sample properties, and we apply our method to a lung transplantation observational registry.
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1. Introduction

Determining an optimal rule or regime that dictates when a patient should start treatment is 

an important step in personalizing medicine (Cain et al., 2010). However, determining when 

a patient should undergo organ transplantation is challenging because the availability and the 

quality of cadaveric organs on any particular day are random and complex processes.

Because the number of people awaiting all solid organ transplants exceeds the number 

of available organs in the United States, the United Network for Organ Sharing (UNOS) 
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maintains a national list used to orderly offer available cadaveric organs to potential 

recipients. For lung transplantation, for example, cadaveric lungs are offered based on the 

blood type of the donor and recipient, location, and the lung allocation score (LAS), a 

composite score of over a dozen patient characteristic that quantifies both patients’ risk of 

death on the waiting list and their anticipated survival benefit from lung transplantation 

(Egan and Kotloff, 2005). Importantly, although the order in which organs are offered is 

deterministic, who actually receives the offered organ is random as patients may decline the 

offer (see Colvin-Adams et al. (2012) for a description of the lung allocation policy).

Poor quality of the organ is one reason patients may decline an offer. For example, patients 

transplanted with a lung from donors over age 50 or with a history of smoking generally 

have poorer post-transplant survival than patients who received lungs from younger, 

healthier patients (Reyes et al., 2010). Although accepting low-quality lungs may lead to 

poor post-transplant prognosis, declining offered lungs and remaining on the waiting list is 

not without risk: the LAS system effectively allocates lungs to patients most in need, but 

it does not guarantee that a patient who declines an organ will be offered another if her 

condition deteriorates. The challenge is to weigh the potential survival benefit to be gained 

by forgoing a low-quality organ in favor of waiting for a high-quality organ against the risk 

that the patient may die before being offered a high-quality organ.

One way to improve a patient’s anticipated survival time is to use available observational 

data to estimate the anticipated survival if the patient were to adopt a particular strategy, or 

dynamic treatment regime (DTR), that dictates which organs should be avoided. Formally, 

a treatment regime is a function that maps a patient’s treatment and covariate history to 

an action to be taken (Moodie et al., 2007). Organ transplantation is an example of a multi-

stage treatment regime because each time the patient is offered an organ, she must decide 

whether to accept it. For lung transplantation, one potential treatment regime for a patient 

would be “for any viable lung transplantation that is offered, decline the transplantation if 

the donor was ≥50 years old and the recipient’s LAS <50, otherwise accept the organ.” This 

regime is dynamic in the sense that it depends on the time-evolving characteristics (LAS) of 

the potential recipient.

Several statistical methods have been proposed to estimate the effect of complying with 

different DTRs on survival, both within the context of organ transplantation and in 

other therapeutic areas. The parametric G-formula has been proposed to estimate the 

counterfactual distribution of various outcomes if patients were to follow a particular DTR 

by developing a series of models for the waiting list and organ allocation process (e.g., 

patient arrivals to the waiting list, longitudinal changes in patient acuity and death while 

on the waiting list, organ arrivals and their quality, organ allocation, and post-transplant 

survival. See Robins and Hernán (2008) for a detailed exposition of parametric G-formula). 

This is the approach used in the Thoracic Simulated Allocation Model (Scientific Registry 

of Transplant Recipients, 2015) used by UNOS to evaluate different allocation policies 

However, this approach requires developing and correctly specifying a multitude of 

statistical models to obtain consistent estimators of the counterfactual survival.
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Other approaches have sought to avoid modeling the entire waiting list and allocation 

process. Schaubel et al. (2006) introduced a sequential stratification method to test whether 

patients awaiting kidney transplantation should accept kidneys from expanded criteria 

donors versus remaining on the waiting list and possibly receiving a kidney from a 

traditional donor in the future (see also Schaubel et al. (2009)). This method can be easily 

applied to compare the effect of accepting versus declining other marginal organs. However, 

the approach does not permit direct comparisons of different rules for declining an available 

organ (e.g., declining all organs from donors over 50 years of age versus declining all 

organs from donors over 40 years of age). Other methods include inverse probability of 

compliance weighted (IPCW) Kaplan–Meier and Cox proportional hazards models (Hernán 

and Robins, 2006; Hernán et al., 2006; Cole and Hernán, 2008; Cain and Cole, 2009; 

Cain et al., 2010; Orellana et al., 2010). In these methods, a patient’s follow-up time is 

considered only while she is “compliant” with a regime of interest. When a patient becomes 

non-compliant with the regime, her follow-up time is artificially censored. Observations are 

weighted according to the inverse of probability of compliance to correct for the potential 

selection bias introduced by the artificial censoring (Hernán et al., 2006).

In organ transplantation, the anticipated survival for a given DTR depends on the quality and 

availability of organs, and these depend on the strategies that other patients follow to accept 

or decline an organ. This is conceptually similar, although not identical, to the “spillover” 

(Rubin, 1980) effect described in other contexts. The effect of an intervention that “spills 

over” is not limited to the individual who receives the intervention; this creates interference 

between subjects where the potential outcomes of one subject are affected by the treatment 

allocation another subject receives. An important limitation of sequential stratification and 

IPCW methods in transplantation applications is that they estimate the anticipated survival if 

a randomly selected patient were to follow a treatment regime, and all other patients made 
no changes to their behavior. This may be of great interest to particular patients, but it may 

have less public health relevance. A policy dictating that certain organs should be avoided 

would change the dynamics of the waiting list. For example, because patients would decline 

organs, the size of the waiting list may increase, thus reducing each patients probability of 

getting a transplant. A meaningful analysis would, therefore, estimate the causal effect of a 

treatment strategy on survival if the entire population of patients were to follow the strategy.

We demonstrate how we can estimate the causal effect of following a DTR, assuming that all 

patients are following the DTR of interest, by re-weighting patients based on the probability 

of following their transplant history in the counterfactual world in which all patients follow 

the DTR of interest. We investigate the finite-sample properties of our proposed estimators 

with a simulation study, and we demonstrate the method using lung transplantation data 

from UNOS.

2. Statistical Framework

To aid the reader, we have included a summary of the notation used throughout the 

manuscript in Web Appendix A.
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2.1. Potential Outcomes

Consider a hypothetical population of patients eligible for organ transplantation. Let 

T*(∞) denote the survival time from listing (i.e., entry on the waiting list) if the patient, 

possibly contrary to fact, were to never receive a transplanted organ. Define T*(b, q) as 

a random patient’s counterfactual survival time from listing if the patient were to receive 

an organ b days after listing with organ characteristics q ∈ Q, where Q is the set of 

all donor characteristics. Define X*(b) to be the covariates collected b days after listing 

for a random patient if she had remained untransplanted including whether or not the 

patient had previously died prior to time b. Throughout, we use the overbar notation to 

denote history, so that X∗(b) is the history of time-dependent covariates through b days 

after listing. Assume that X*(b) contains all the information that will be used to accept 

or decline organs or order patients on the waiting list in any counterfactual scenarios 

considered below. Because, we do not observe T*(b, q) for all possible b and q, these 

are known as potential outcomes. Let the set of potential outcomes for the ith patient be 

Pi = {T i
∗ (∞), T i

∗ (b, q), X∗(b)∀b ≤ Ti
∗(∞), q ∈ Q).

Inferring the distribution of T*(b, q) is not of primary interest, because there may not be 

an organ offered to a particular patient b days after listing with characteristics q. Formally, 

define a transplant regime for whether or not to accept an organ b days after entering the 

waiting list as a function g which maps from X∗(b) and q to an indicator for whether or not 

the patient should decline an offered organ. We further elaborate of the regimes of interest in 

Section 2.3.

The quality and the availability of organs will vary depending on the rules other patients use 

to accept or decline organs and the order in which cadaveric organs are offered to potential 

recipients (i.e., the allocation rules). Therefore, when (or if) a patient receives a transplant 

while following regime g is random and depends on the regimes other patients use to accept 

or decline organs. We refer to this as “transplant regime spillover.” With this in mind, define 

T(g,g′) to be the time a randomly selected patient would have lived if she followed regime g 
for declining offered organs and all other patients follow regime g′. Note that, in principle, 

each patient could follow a different regime, but for simplicity we only consider the scenario 

in which all other patients follow a common regime g′. We make precise what we mean by 

“all other patients follow regime g′” in Section 2.3. Finally, for the purposes of this article, 

we assume the allocation rules are the ones currently used and do not change and, therefore, 

do not index outcomes by the allocation rules used.

The goal of this analysis is to estimate Pr{T(g,g′) ≥ t} for a given g, g′ ∈ G, where G is the 

set of all possible treatment regimes. The distribution of T(g,g′) is a mixture distribution of 

well-defined counterfactual survival times. If we let B(g,g′) and Q(g,g′) be, respectively, the 

random time from listing until organ transplantation and vector of organ characteristics for a 

random subject if she followed regime g for declining offered organs and all other patients 

follow regime g′, then fT(g,g′)(t), the density of T(g,g′), is equal to
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∑
x(t)

fT∗(∞) ∣ X∗(t){t ∣ x(t)} ∏
s = 1

t
1 − ∑

q
ρ(g, g′){s, q ∣ x(s)} fX∗(t){x(t)}

+ ∑
b = 1

t
∑

q
∑
x(b)

fT∗(b, q) ∣ X∗(b){t ∣ x(b)} ∏
s = 1

b − 1
1 − ∑

q
ρ(g, g′){s, q ∣ x(s)}

× ρ(g, g′){b, q ∣ x(b)}fX∗(b){x(b)},

(1)

where fT∗(b, q) ∣ X∗(b) is the conditional density of T*(b, q) given X∗(b), fX∗(t) is the density 

of time-dependent covariates, and ρ(g, g′){b, q ∣ x(b)} is the probability a patient receives a 

transplant b days after listing with organ characteristics q given she is untransplanted b−1 

days after listing with covariate history x(b), and given that she follows regime g while all 

others follow regime g′. In the preceding, for simplicity of exposition, we have assumed 

that the organ and patient characteristics are discrete, but equation (1) is easily generalized 

to allow for continuous characteristics. The first term in equation (1) gives the conditional 

distribution of the survival time assuming the subject remains untransplanted weighted by 

the likelihood of remaining untransplanted given covariates. The second term gives the 

survival distribution given a subject was transplanted b days after listing with characteristics 

q weighted by the probability of being transplanted then with those characteristics.

The derivation of the density of T(g,g′) given in equation (1) is similar to the density of 

following a probabilistic DTR given in Murphy et al. (2001). However, the key difference 

is that the probability of initiating treatment depends on the treatment regime other patients 

follow. “Spillover” typically refers to situations in which the distribution of well-defined 

potential outcomes depends on the treatment assignment of others, which is not the case 

here. However, we refer to this as transplant regime spillover.

2.2. Observed Data

Assume that we observe a cohort of n patients listed for organ transplantation over a period 

of p days. Let Ti be the observed time from entering the waiting list to death for the ith 

patient, and Xij be the vector of covariates collected on the ith patient on the jth study day, j 
= 1, …, p, including whether or not the subject was eligible (i.e., active on the waiting list) 

for transplantation. We assume that after transplantation no additional covariate information 

is collected. For the purposes of this analysis, we will assume that death information and 

transplant information are recorded daily as they are in the UNOS registry and that the 

temporal ordering of events on a given day is (1) time-dependent covariates are updated, (2) 

organs are assigned to patients and are transplanted, and then (3) patients die. Define Nij = 

I(Li + Ti = j) and Yij = I(Li + Ti ≥ j) to be the indicators for whether or not the ith patient 

died on the jth day of the study and whether the ith patient was at risk for death on the jth 

day of the study, respectively, where Li is the day of the study subject i entered the waiting 

list. In this study, because we use national death registries to monitor patients’ vital statuses, 

all patients are followed until death or study day p so that Nij and Yij are observed (i.e., not 

subject to right-censoring) for all patients for j = 1, …, p.

Let Sj be the number of organs available for transplant on the jth day of the study, let Qjk be 

the characteristics of the kth organ transplanted on the jth day, and let Aijk be the indicator 
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for whether or not the ith person received the kth organ on study day j. Define the filtration 

Eijk = { (Ailm, Qlm, Xil)l=1,…,j−1;m=1,…,Sl , Xij, Sj, (Aijm, Qjm)m=1,…,k−1 , Qjk, }. That is, Eijk 

is the collection of all information on the ith subject at the time of the kth transplant on the 

jth day but excluding whether the ith patient actually receives the kth organ. Similarly define 

E·jk to be the collection of information on all subjects i = 1, … , n prior to assigning the kth 

organ on the jth study day.

Given the data in the observational registry, one can determine the order in which patients 

were offered the organ. Let Rijk be the rank of the ith patient on the waiting list for the 

kth organ on the jth day of the study, and assume smaller Rijk indicates higher rank, that 

is, Rijk < Ri′ jk implies that patient i will be offered the kth organ before patient i′. Let 

Oijk = ∏i′:Ri′jk < Rijk1 − Ai′jk be the indicator that the ith subject is offered the kth organ on 

the jth day.

2.3. Transplant Regimes

Because transplantation involves many logistical and clinical considerations (e.g., 

crossmatching, physical examination of the organ anatomy), it is not practical to dictate that 

a patient/physician must accept an offered organ. For the same reason, we do not attempt 

to infer the distribution of survival times under a regime that dictates when a patient should 

receive an organ, for example, “receive a transplant the first day LAS > 50,” because an 

organ may not be available on that particular day. Instead, we are interested in transplant 

regimes that dictate whether or not an available organ should be declined based on the organ 

quality and patient characteristics. We colloquially refer to these organs as “low-quality” 

organs. Let Dijk (g, Eijk) be an indicator for whether or not the kth organ on day j should 

be avoided by patient i under regime g based on the organ and patient characteristics. To be 

precise, if the ith patient is “following” or “compliant with” regime g, then the probability 

of accepting the organ is πijk
A(g)(Eijk) = πijk

A(∅)(Eijk) 1 − Dijk (g, Eijk) , where πijk
A(∅)(Eijk) is the 

probability of accepting the organ if no changes are made to her organ acceptance policy. 

We will frequently refer to the transplant regime where patients make no changes to their 

propensity to accept or decline organs, that is, they accept or decline organs with the same 

probability that they accept or decline organs in the observed data. We refer to this regime as 

∅.

Similarly, let πijk
O(g, g′)(E ⋅ jk) denote the conditional probability given the observed data that 

the ith patient is offered the kth organ on day j given that she is following regime g and 

all other patients are following regime g′. Note that πijk
O(g, g′)(E ⋅ jk) is the probability that all 

patients who would have ranked higher than the ith decline the organ in the counterfactual 

world in which they are all following regime g′. Finally, let πijk
(g, g′)(aijk, E ⋅ jk) be the 

probability that ith person receives and does not receive if aijk = 1 and aijk = 0, respectively, 

the kth available organ on the jth day given all the observed information up until the time of 

assigning that organ, assuming the ith patient is following regime g and all other patients are 

following regime g′. Note that
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πijk
(g, g′)(aijk, E ⋅ jk) = aijkπijk

A(g)(Eijk)πijk
O(g, g′)(E ⋅ jk)

+ (1 − aijk){1 − πijk
A(g)(Eijk)πijk

O(g, g′)(E ⋅ jk)} .
(2)

Similarly, define πij
(g, g′)(aij, E ⋅ jSj) = ∏m = 1

j ∏k = 1
Sm πimk

(g, g′)(aimk, E ⋅ mk), the probability that 

the ith patient has her treatment history through study day j given that she is following 

regime g and all other patients follow regime g′.

2.4. Identifying Assumptions

To estimate the causal effect of a treatment regime on the survival probability t days after 

entering the waiting list, we must make the following assumptions to relate the observed 

data to the distribution of the potential outcomes (Robins and Hernán, 2008).

We assume that 1 − πijk
A(g)(E ⋅ jk) > 0 ∀i, j, k. That is, there is some non-zero probability that 

a patient will remain compliant with a particular regime g of the form discussed in Section 

2.3. This is known as the positivity assumption.

We make the so-called sequential ignorability or no unmeasured confounders assumption 

that the probability of receiving an organ at any time depends only on the observed data up 

until that time and not additionally on any potential outcomes. This assumption implies Aijk 

is conditionally independent of P given E·jk for all i = 1, …, n, j = 1, …, p, and k = 1, …, Sj, 

where P = (P1, …, Pn).

We assume that Ti = Ti
∗(t, q) if ∑k = 1

SLi + tAi, Li + t, k = 1 and ∑k = 1
SLi + tAi, Li + t, kQLi + t, k = q, 

and similarly Ti = Ti
∗(∞) if ∑m = 1

p ∑k = 1
Sm Aimk = 0. This assumption is referred to as the 

consistency assumption.

Finally, we assume that the availability and the characteristics of cadaveric organs and when 

patients enter the waiting list does not depend on the characteristics of the patients on the 

waiting list or the regimes that patients use to accept or decline organs. We refer to this as 

the waiting list stability assumption.

3. Class of Estimators

To estimate Sr (g, g′), the survival probability r days after entering the waiting list for a 

random patient who follows regime g while all other patients follow regime g′, we first 

estimate λt
(g, g′), the discrete-time hazard of death t days after entering the waiting list, t = 

1, …, r, for a randomly selected patient if she were to following regime g and all other 

patients followed regime g′. Assuming for now that πij
(∅, ∅)(Aij, E ⋅ jSj) and πij

(g, g′)(Aij, E ⋅ jSj)

are known, we can estimate λt
(g, g′) by solving the estimating equation
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∑
j = 1

p
∑
i = 1

n πij
(g, g′)(Aij, E ⋅ jSj)

πij
(∅, ∅)(Aij, E ⋅ jSj)

Nij − Y ijλt
(g, g′) I(j − Li = t) = 0, (3)

where we remind the reader that j indexes the study day but t indexes the day since listing. 

The vector of estimated discrete-time hazards λ(g, g′) = λ1
(g, g′), …, λr

(g, g′) T
 is the solution 

to the corresponding r-dimensional estimating equation. The survival probability Sr
(g, g′)

can easily be estimated as Sr
(g, g′) = ∏t ≤ r 1 − λt

(g, g′) , which is equivalent to a weighted 

Kaplan–Meier survival estimator. Note that the IPCWs, 
πij

(g, g′)(Aij, E ⋅ jSj)

πij
(∅, ∅)(Aij, E ⋅ jSj)

, are a ratio of the 

probability of observing the transplant history under regime g while all others follow regime 

g′ to the probability of the observed treatment history for the ith patient. The purpose of 

the numerator of these weights is not stabilization (i.e., reduction in variance). Instead the 

numerator of the weights allows us to estimate a different causal survival distribution; one 

which corresponds to the regime other subjects on the waiting list adopt. This estimator 

could be adapted using inverse probability of censoring weights if we considered an 

outcome other than overall survival in which subjects may be lost to follow-up; we discuss 

this in the Web Appendix B.

We have implicitly argued that the estimating function is not the sum of independent 

observations, because individuals’ actions on the waiting list impact others. However, if 

we are willing to assume that the waiting list “turns over” after m individuals (i.e., none 

of the same individuals remain on the waiting list after m have been added, a reasonable 

assumption for this acutely ill population), then, we prove in Web Appendix B under 

standard regularity conditions (DasGupta, 2008), λ(g, g′)
 is a consistent and asymptotically 

normal estimator for λ(g, g′) as n → ∞.

3.1. Estimating the Denominator of the Inverse Probability Weights

In most applications, the numerator and denominator of the weights are unknown and 

must be estimated. We discussed in Section 2.3 that the probability a particular patient is 

offered an organ depends on the probability that all others who rank higher on the waiting 

list decline the organ. The denominator of the weights, however, is just the probability of 

observed treatment history assuming all patients follow regime ∅ (the regime in which all 

patients make no change in their propensity to accept or decline organs). To estimate this 

probability, we only require a model for the probability that patients accept organs given that 

they are offered based on the observed data. Although many models are possible, a natural 

model for accepting an organ given the organ is offered is the logistic model

πijk
A(∅)(Eijk; φ) = 1 + e− φ0 + φ1

TXij + φ2
TXijQjk + φ3

TQjk
−1

, (4)
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where XijQjk is a vector of donor-patient interaction characteristics. The estimated 

coefficient vector φ = (φ0, φ1
T , φ2

T , φ3
T )T  can now be used to estimate πijk

A(g)(Eijk; φ) and 

πijk
O(∅, ∅)(E ⋅ jk; φ) = ∏i:Ri′jk < Rijk{(1 − πi′jk

A(∅)(Ei′jk; φ) in equation (2) to estimate the 

denominator of the weights in equation (3), that is, πij
(∅, ∅) Aij, E ⋅ jSj .

3.2. Estimating the Numerator of the Inverse Probability Weights

To estimate Sr(g, ∅), estimating the numerator of the weights is straightforward. In this case, 

πijk
(g, ∅)(aijk, Ejk) = aijkπijk

A(g)(Eijk)πijk
O(g, ∅)(E ⋅ jk) + (1 − aijk) 1 − πijk

A(g)(Eijk)πijk
O(g, ∅)(E ⋅ jk) . 

Although we wrote πijk
O(g, ∅) for consistent notation, note that if subject i is compliant 

with regime g through study day j, then πijk
O(g, ∅)(E ⋅ jk) = πijk

O(∅, ∅)(E ⋅ jk) (the conditional 

probability of being offered an organ depends on the actions of other patients, all of whom 

are following regime ∅) which can be is easily estimated as described above. Similarly, 

πijk
A(g)(Eijk) = πijk

A(∅)(Eijk; φ) 1 − Dijk (g, Eijk) .

When g′ ≠ ∅, estimating the numerator of the weights is more challenging. Although 

estimating πijk
A(g) using Model 4 is straightforward, if all patients are following regime g′, we 

can no longer use ∏i:Ri′jk < Rijk{(1 − πi′jk
A(g′)(Ei′jk; φ)} to estimate the probability of being 

offered an organ, because the number of patients on the waiting list and their characteristics 

at the time the organ is offered would be different than in the observed data. That is, in 

the counterfactual world in which patients follow regime g′ the ordering of patients to be 

offered an available organ would be different from the rank, Rijk, in the observed data.

Note that πijk
O(g, g′)(E ⋅ jk) = E{πijk

O(g, g′)(E ⋅ jk
(g, g′), E ⋅ jk) ∣ E ⋅ jk} = E{πijk

O(g, g′)(E ⋅ jk
(g, g′)) ∣ E ⋅ jk}, 

where E ⋅ jk
(g, g′) is the data we would have observed up to the allocation of the kth organ 

on the jth day had all patients followed regime g′ and the ith patient followed regime g, 

and πijk
O(g, g′)(E ⋅ jk

(g, g′)) is the probability the ith subject is offered the kth organ on the jth day 

given the counterfactual data. Note that given E ⋅ jk
(g, g′), calculation of the probability of being 

offered an organ is straightforward and would follow a similar approach to that outlined for 

the observed data.

However, analytically evaluating the outer expectation is challenging. Therefore, we propose 

to estimate this quantity using Monte Carlo integration/summation. To do so, we must be 

able to simulate E ⋅ jk
(g, g′) given the observed data E·jk. We describe how one can simulate such 

a hypothetical dataset with minimal assumptions.

Given E·jk, patient and organ arrival times and their characteristics are fixed. To allocate 

organs, we assume that if in the observed data Oijk = 0 (i.e., we do not know whether or 

not the ith subject would have accepted the kth organ on the jth day) patients accept offered 

organs in the hypothetical dataset with probability 1 − Dijk(g, Eijk
(g, g′)) × πijk

A(∅)(Eijk
(g, g′)) for 
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the ith subject and with probability 1 − Dijk(g′, Eijk
(g, g′)) πijk

A(∅)(Eijk
(g, g′)) for all others. If in the 

observed data the patient was offered the organ, then in the hypothetical dataset the patient 

accepts the organ with probability 1 if Aijk = 1 and with probability 0 if Aijk = 0 (i.e., if in 

the observed data we know a patient accepted or declined an organ than this is preserved in 

the simulated dataset).

Similarly, because we condition on E·jk, patients in the simulated dataset begin with the 

same covariate trajectory as in the observed dataset. However, it is possible for a subject 

in the observed dataset to remain on the waiting list in the simulated dataset longer than 

in the observed one. In such a case, we need to simulate their covariate trajectory until 

death or transplant. Rather than postulate a parametric model for Xij given Xij′, Aij′Sj′ = 0

(for j′ < j), we use hot deck imputation. When discussing the imputation, we avoid the 

“donor-recipient” verbiage common in the literature (for example, see Andridge and Little 

(2010)), because that can obviously create confusion here. We refer to an individual whose 

values are to be filled in as the “borrower” and the pool of potential patients whose values 

could be used as the “lenders.”

If the ith patient was transplanted on the jth day in the observed data, the data for the eligible 

lenders is the set

{Xi′j′, Xi′(j′ + 1), …}, (Ai′j′k)k = 1, …, Sj′, (Ai′(j′ + 1), k)k = 1, …, S(j′ + 1), … ,
Ti′ i′ ≠ i: j − Li = j′ − Li′, ,

that is, the potential data are the covariate history, transplantation history, and death time 

for each lender, taken from the time where the lender had been on the waiting list for as 

long as the borrower, but not necessarily concurrently. The lender can be selected as the 

patient whose Xi′ minimizes (Xij − Xi′ j′)T (Xij − Xi′ j′) or some other distance metric for 

multi-dimensional covariates (including past history of patient covariates). The borrower’s 

information from time j is replaced by the lender’s data beginning at time j′. If the lender 

received a transplant, the process may be repeated.

Typically, in Monte Carlo integration one would simulate several datasets and average the 

integrand across them to estimate πijk
O(g, g′)(E ⋅ jk). However, in this application, simulating 

such a dataset can be computationally intensive when combined with resampling methods 

for standard error estimation, and we have found that simulating a single dataset to estimate 

πijk
O(g, g′)(E ⋅ jk) for all i, j, and k is sufficient. Note that to estimate πijk

O(g, g′)(E ⋅ jk) we do not 

need to simulate post-transplant outcomes.

Because estimating the numerator of the weights is a complicated function of the observed 

data, we recommend estimating the standard error of Sr
(g, g′) using the nonparametric 

bootstrap (Efron, 1979).
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4. Defining Lower Quality Organs

In some applications the definition of a “low-quality” organ may be defined a priori. For 

example, we may define an organ as low-quality if the donor has smoked more than 20 

pack-years. Here, however, we consider treatment regimes of the type “decline all organs 

in the lowest d percentile of donor quality.” In this scenario we define “low-quality” as a 

continuous measure depending on donor and donor-recipient interaction characteristics, and 

we estimate those combinations of characteristics that lead to poorer survival. We can then 

estimate the anticipated survival if a patient were to avoid organs below a certain threshold 

of the donor quality score. We assume that, given X∗(b), the distribution of T ∗(b, q) − b (the 

potential residual lifetime after transplantation) follows a discrete-time proportional hazards 

model. That is, Pr T ∗(b, q) − b = t = λt
PT exp ξ1

TX∗(b) + ξ2
TQ + ξ3

TX∗(b)Q , where λt
PT  is the 

baseline post-transplantation discrete-time hazard of death t days after transplantation. We 

can estimate ξ = ξ1
T , ξ2

T , ξ3
T T

 using the observed data. For an organ with characteristics 

q and a potential recipient with characteristics X∗(b), we define the organ quality score 

as − ξ2
TQ + ξ3

TX∗(b)Q . We may now define a low-quality organ as one that is below a 

threshold h, that is Dijk(g, Eijk) = I − ξ2
TQ + ξ3

TX∗(j − Li)Q < ℎ . For example, because we 

assume that each of organ is of different quality for each patient due to patient-donor 

interaction characteristics, we can define the collection of potential donor scores for the ith 

participant as Qi = − ξ2
TQjk + ξ3

TX∗(j − Li)Qjk j = 1, …, p, k = 1, …, Sj . The threshold hi for 

the ith patient can be defined as a quantile of Qi.

5. Simulation Study

We designed a simulation study to test the small-sample performance of the proposed 

estimators. Patients entered the waiting list and organs arrived according to independent 

Poisson processes with rate parameters 0.5 and 0.32, respectively. Participants were assigned 

a time-dependent scalar covariate Xij representing disease severity, with higher scores 

indicating a greater hazard of death on the waiting list and a greater need for transplantation. 

For each subject, we generated bi0 ~ N(−1, 1) and bi1 ∼ N 1
365 , 1

(4.365)2
. For study day j and 

a subject who arrived to the waiting list on day Li, we let Xij = bi0 + bi1 ⋅
j − Li

30 ⋅ 30, where 

⌊·⌋ is the floor function, so that covariate values were updated every 30 days. Patients and 

organs were randomly assigned an ABO blood-type based on the probability observed in the 

analysis in Section 6. Each organ was assigned a binary indicator variable for “low-quality” 

with probability 0.5. For each organ arrival on study day j, the waiting list ranking was 

based on patient-donor blood-type match (exact match and then compatible) and then by 

the Xij value similar to the ordering for cadaveric lungs. Patients accepted the organ with 

probability {1 + e(−φ0−xijφ1)}−1 with φ0 = −2.5 and φ1 = 0.25. In the results reported, here, 

we analyzed data collected over a 10 year observational period during which the waiting list 

had reached a steady state.
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We estimated the survival distribution assuming a randomly selected patient follows the 

treatment regime g = decline all low-quality organs while (a) all other subjects followed 

their current propensity to accept or decline an offered organ (followed regime ∅), or (b) all 

other subjects follow regime g. In addition to the IPCW estimators proposed in Section 3 to 

estimate St
(g, ∅) and St

(g, g) we considered an ad hoc estimator, St
(NC), that censors individuals 

at the time of non-compliance from the regime g but does not use any weights. This is not 

a consistent estimator for any causal effect of interest; we include this ad hoc estimator as 

it is used commonly in practice. For each estimator, we report results for 1000 Monte Carlo 

datasets. We estimated the standard error of the estimators using 100 bootstrap re-sampled 

datasets.

St
(g, ∅) and St

(g, g), the true survival probabilities t days after entering the waiting list for 

following regime g, are not available in closed form. Therefore, the survival curves were 

estimated via Monte Carlo simulation. To estimate St
(g, ∅), for each simulated dataset, 

we randomly selected one observation and forced it to decline all low-quality organs, 

whereas high-quality organs were accepted with probability {1 + e(−φ0−xijφ1)}−1. Similarly, 

to estimate St
(g, g), for each Monte Carlo dataset, we forced all individuals to decline all 

low-quality organs. The Monte Carlo datasets were independent of the ones to evaluate the 

proposed estimators.

Table 1 shows the true survival probabilities, the bias of the estimators, and coverage 

probabilities of 95% Wald-type confidence intervals for four time points. Although St
(NC)

is a convenient and frequently used estimator, it does not consistently estimate any causal 

effect of interest, and the bias is large for all time points for both causal estimands. For 

all time points, St
(g, ∅) is greater than St

(g, g), indicating that in this example, the causal 

estimand varies based on the question of interest. Importantly, St
(g, ∅) and St

(g, g) are not 

interchangeable: the mean of each estimator is close to its target, but St
(g, ∅) is a substantially 

biased estimator for St
(g, g), and St

(g, g) is a substantially biased estimator for St
(g, ∅). The 

simulation results demonstrate the good performance of the estimators, but, perhaps more 

importantly, they highlight the danger of a naive analysis that fails to carefully specify the 

target of estimation: an analyst attempting to estimate St
(g, g) by using the more common 

estimator St
(g, ∅) may draw erroneous conclusions.

6. Application to UNOS Data

We illustrate our method with data from the UNOS national registry of lung transplants and 

use the continuous measure of lung quality described in Section 4. The observational period 

included transplants between May 4, 2005 and September 30, 2011.

We estimated ξ, the coefficients for the lung quality model, following the approach in 

Section 4. To be eligible for inclusion in the analysis of the lung quality score, patients 

must have been older than 18, not received a previous lung transplant, and not listed for 
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simultaneous heart transplant. A total of 9091 patients contributed to the lung quality model. 

With these patients, we modeled post-transplant survival with recipient, donor, and recipient-

donor interaction characteristics as predictors. These included recipient age, donor-patient 

age difference, an indicator for donor age >50, LAS at time of transplant (LAS-T), an 

indicator for donor history of diabetes, patient native disease group, transplant type (single 

vs. double lung), an indicator for patient being on life support at time of transplant, donor 

race, donor-patient height difference, recipient body mass index, an indicator for donor 

history of smoking ≥20 pack-years, and rank on the waiting list. The rank was meant to 

capture the declining viability of the organ for transplantation after numerous declines. 

Restricted cubic spline (RCS) basis functions with four knot points were used for continuous 

covariates to model nonlinear associations with the log hazard. We selected variables using 

grouped lasso with 5-fold cross validation, with the result that all variables were retained. 

Web Appendix C shows estimated coefficients from the model (Web Table S1), plots 

illustrating the effect on survival of variables modeled with RCS (Web Figure S1), and 

survival plots showing the effect of donor quality on post-transplant survival (Web Figure 

S2). We estimated the organ quality for each potential recipient for each possible donor in 

the dataset, and the distribution of these scores was used to define the qth percentile for 

each patient. The intraclass correlation coefficient for the estimated donor quality scores was 

0.153, indicating most of the variability in donor quality scores is attributable to differences 

among the donors.

To compare treatment regimes based on donor quality, inclusion criteria were the same as 

above except that we now included both transplanted and non-transplanted patients. The 

total number of patients was 13,039. As predictors in the logistic regression model for 

the probability of accepting we included patient age, current LAS, time on the waiting 

list, native disease, patient-donor height difference, an indicator for donor smoking ≥20 

pack-years, and an indicator for donor age ≥50 and its interaction with the patient age. As 

before, we used RCSs to allow for a nonlinear association with the log odds of accepting a 

donor organ. Estimated coefficients from the model and illustrations of the RCS coefficients 

are shown in Web Appendix C, Web Table S2 and Web Figure S2, respectively. We created 

the simulated dataset used in estimating the numerator of the IPCWs as described in Section 

3.2. For the ith patient transplanted on the jth day, the lender i′ was selected as arg min 

(∣LASij − LASi′ j′∣ : j − Li = j′ − Li′). If patient i′ later received a transplant, the process was 

repeated until the ith patient’s LAS trajectory was imputed through time of death with no 

transplantation. Because LAS was the only time-varying covariate considered in the organ 

acceptance model, no other variables aside from LAS were imputed.

We considered treatment regimes of the form “decline all donor organs below the pth 

percentile of donor quality scores if LAS is below M; if LAS ≥ M, any donor organ is 

acceptable,” where p and M can vary. LAS ranges from 0 to 100 (median LAS-T 38.79; 25th 

and 75th percentiles: 34.23, 47.27) with greater score indicating greater patient acuity and 

anticipated benefit for transplant. Examining these regimes allows us to investigate the effect 

of avoiding low quality organs while the patient is less acute. Importantly, we considered 

scenarios in which either a single patient adopts, or all patients adopt, the treatment regimes 

to investigate the effect of “transplant regime spillover.”
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We illustrate the estimators with four scenarios. For each, we compare the estimates to the 

estimated survival if no subjects were to alter their propensity to accept an organ using the 

Kaplan–Meier estimator where all patients have a weight of 1. The results are shown in 

Figure 1 and in Table 2, with standard errors estimated using the bootstrap. Plot (a) shows 

that the estimated survival distribution for the treatment regime “decline all organs when 

the LAS is less than 40” is different depending on whether all patients follow the regime 

or only the single individual does. In both cases, the regime may offer a survival benefit, 

but the benefit is increased if all patients follow the regime rather than if only a single 

individual does. The survival benefits for both cases are statistically significant at 1 and 2 

years of follow-up, but not at 3 years. The survival benefit for a single random patient who 

adopts the regime only comes from avoiding transplantation, a procedure with significant 

peri-operative mortality while the patient is less acute. But if all patients adopt the regime, 

this prevents relatively healthy patients (ones who are unlikely to die soon on the waiting 

list) from receiving cadaveric organs and ensures that more organs are available for the most 

acute patients.

Plot (b) shows the anticipated survival when all patients follow the regime with p fixed 

at 100 (i.e., regimes in which patients declined all organs) and M varying from 35 to 50 

in increments of 5. At lower values of M, there is an anticipated survival benefit. That 

is, patients with less acuity may benefit from delaying organ transplant until their LAS 

increases, a finding consistent with previous research which found no anticipated survival 

benefit for those transplanted at low LAS (Vock et al., 2013, 2017). However, as M increases 

above 40, the anticipated survival declines by 3 years of follow-up. Web Table S3 in Web 

Appendix C shows the estimated proportion of donor lungs that would be declined and the 

estimated mean time until transplantation for treatment regimes considered in plot (b).

Plots (c) and (d) demonstrate that the effect of an organ quality threshold depends on the 

LAS threshold M. Plot (c) shows that for M at 35, as p increases (i.e., declining a greater 

number of organs) the survival benefit increases. That is, patients with relatively low LAS 

may be best served by avoiding all organ transplants, even high-quality organs. In plot (d), 

we consider the same scenario but with M = 50. Here, there is a modest survival benefit 

until p = 100, at which point the anticipated survival is worse than with the Kaplan–Meier 

estimate. Here, it appears that patient with high LAS scores may gain a modest survival 

benefit by declining the worst organs, but declining all organs has a negative impact on 

survival. The small difference in expected survival among different regimes with different 

organ quality thresholds is consistent with previous work demonstrating the poor predictive 

ability of many donor factors on post-transplant survival (Reyes et al., 2010; Chaney et al., 

2014).

7. Discussion

We demonstrated how we can approach the problem of testing treatment regimes when 

treatment is available stochastically and when the effect of the treatment regime depends 

on whether other patients follow the proposed regime. Specifically, we introduced a novel 

IPCW-based estimator developed to test the efficacy of a treatment regime when either only 

a single individual uses a strategy versus the efficacy when the entire population uses a 
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strategy. We restricted our attention to the extreme cases where either only one patient or all 

patients adopt a strategy, but the estimator can be used for intermediate cases using simple 

modifications to the method. Web Appendix D shows results for the case where 50% of 

patients adopt a treatment regime. Furthermore, our analysis only considered survival which 

is only one component of patient well-being. The effect of these regimes considered here 

may be different if we considered a composite endpoint which incorporated quality of life 

measures.

The method relies heavily on correctly specifying the model for patients’ probability 

of accepting organs. However, the method is attractive because many other processes 

need not be modeled at all to obtain reasonable estimates of the anticipated survival for 

following different regimes. In contrast to commonly used methods, we need not specify 

models for the stochastic organ arrival process, patient additions to the waiting list, the 

distribution of patient characteristics over time, survival on the waiting list in the absence 

of transplantation, or for post-transplant survival, as is the case for the thoracic simulated 

allocation model.

Although the method was developed in the context of treatment regimes for accepting organ 

transplants, an area in which data are publicly available, the method is relevant for many 

other to other applications. We could, for example, use the proposed method to develop 

strategies on how to prioritize operating rooms in a hospital, provided that we have access 

to an observational dataset and can devise a means to estimate the probability of observing 

treatment history in the observed data and in the counterfactual world.

The results of the simulation and the application demonstrate the care an analyst must use 

in specifying the target of estimation when attempting to estimate the efficacy of a treatment 

regime when individuals are competing for treatment. In particular, we demonstrated that 

substantively different conclusions on the effectiveness of a policy for declining cadaveric 

organs can be reached depending on whether or not others on the waiting list adopt the same 

policy. We did not make any attempt in this manuscript to identify an optimal treatment 

regime that would be of the greatest benefit to an individual, or a (possibly different) 

treatment regime that would be of the greatest benefit to the population. We plan to address 

this issue in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors thank two anonymous referees for very useful comments that improved the presentation of the article. 
This work was supported by US National Institutes of Health grants (R01CA225190 and R01CA225190).

References

Andridge RR and Little RJ (2010). A review of hot deck imputation for survey non-response. 
International Statistical Review 78, 40–64. [PubMed: 21743766] 

Boatman and Vock Page 15

Biometrics. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cain LE and Cole SR (2009). Inverse probability-of-censoring weights for the correction of time-
varying noncompliance in the effect of randomized highly active antiretroviral therapy on incident 
aids or death. Statistics in Medicine 28, 1725–1738. [PubMed: 19347843] 

Cain LE, Robins JM, Lanoy E, Logan R, Costagliola D, and Hernán Miguel, A. (2010). When to start 
treatment? A systematic approach to the comparison of dynamic regimes using observational data. 
The International Journal of Biostatistics 6, 18.

Chaney J, Suzuki Y, Cantu E, and van Berkel V (2014). Lung donor selection criteria. Journal of 
Thoracic Disease 6, 1032–1038. [PubMed: 25132970] 

Cole SR and Hernán MA (2008). Constructing inverse probability weights for marginal structural 
models. American Journal of Epidemiology 168, 656–664. [PubMed: 18682488] 

Colvin-Adams M, Valapour M, Hertz M, Heubner B, Paulson K, Dhungel V, et al. (2012). Lung 
and heart allocation in the United States. American Journal of Transplantation 12, 3213–3234. 
[PubMed: 22974276] 

DasGupta A (2008). Asymptotic Theory of Statistics and Probability. New York, NY: Springer Science 
& Business Media.

Efron B (1979). Bootsrap methods: Another look at the jackknife. The Annals of Statistics 7, 1–26.

Egan TM and Kotloff RM (2005). Pro/con debate: Lung allocation should be based on medical 
urgency and transplant survival and not on waiting time. Chest 128, 407–415. [PubMed: 16002964] 

Hernán MA, Lanoy E, Costagliola D, and Robins JM (2006). Comparison of dynamic treatment 
regimes via inverse probability weighting. Basic & Clinical Pharmacology & Toxicology 98, 237–
242. [PubMed: 16611197] 

Hernán MA and Robins JM (2006). Estimating causal effects from epidemiological data. Journal of 
Epidemiology and Community Health 60, 578–586. [PubMed: 16790829] 

Moodie EEM, Richardson TS, and Stephens DA (2007). Demystifying optimal dynamic treatment 
regimes. Biometrics 63, 447–455. [PubMed: 17688497] 

Murphy SA, van der Laan MJ, and Robins JM (2001). Marginal mean models for dynamic regimes. 
Journal of the American Statistical Association 96, 1410–1423. [PubMed: 20019887] 

Orellana L, Rotnitzky A, and Robins JM (2010). Dynamic regime marginal structural mean models for 
estimation of optimal dynamic treatment regimes, part 1: Main content. The International Journal 
of Biostatistics 6, 8.

Reyes KG, Mason DP, Thuita L, Nowicki E, Murthy SC, Petterson GB, et al. (2010). Guidelines 
for donor lung selection: Time for revision? The Annals of Thoracic Surgery 89, 1756–1765. 
[PubMed: 20494023] 

Robins JM and Hernán MA (2008). Longidtudinal Data Analysis, chapter 23: Estimation of the Causal 
Effects of Time-Varying Exposures. Boca Raton: Chapman & Hall/CRC.

Rubin DB (1980). Discussion of “Randomization analysis of experimental data in the Fisher 
randomization test” by D. Basu. Journal of the American Statistical Association 75, 591–593.

Schaubel DE, Wolfe RA, and Port FK (2006). A sequential stratification method for estimating the 
effect of a time-dependent experimental treatment in observational studies. Biometrics 62, 910–
917. [PubMed: 16984335] 

Schaubel DE, Wolfe RA, Sima CS, and Merion RM (2009). Estimating the effect of a time-dependent 
treatment by levels of an internal time-dependent covariate: Application to the contrast between 
liver wait-list and post-transplant mortality. Journal of the American Statistical Association 104, 
49–59.

Scientific Registry of Transplant Recipients (2015). Thoracic simulated allocation model, url http://
srtr.org/sam/content/tsam.pdf, last accessed May 25, 2018.

Vock DM, Durheim MT, Tsuang WM, Copeland CAF, Tsiatis AA, Davidian M, et al. (2017). Survival 
benefit of lung transplantation in the modern era of lung allocation. Annals of the American 
Thoracic Society 14, 172–181. [PubMed: 27779905] 

Vock DM, Tsiatis AA, Davidian M, Laber EB, Tsuang WM, Finlen Copeland CA, et al. (2013). 
Assessing the causal effect of organ transplantation on the distribution of residual lifetime. 
Biometrics 69, 820–829. [PubMed: 24128090] 

Boatman and Vock Page 16

Biometrics. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://srtr.org/sam/content/tsam.pdf
http://srtr.org/sam/content/tsam.pdf


Figure 1. 
Anticipated cumulative probability of death while following the treatment regime “decline 

worst p% of organs until LAS exceeds M.” This figure appears in color in the electronic 

version of this article.
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