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Abstract

In humid and temperate areas, Septoria nodorum blotch (SNB) is a major fungal disease of

common wheat (Triticum aestivum L.) in which grain yield is reduced when the pathogen,

Parastagonospora nodorum, infects leaves and glumes during grain filling. Foliar SNB sus-

ceptibility may be associated with sensitivity to P. nodorum necrotrophic effectors (NEs).

Both foliar and glume susceptibility are quantitative, and the underlying genetics are not

understood in detail. We genetically mapped resistance quantitative trait loci (QTL) to leaf

and glume blotch using a double haploid (DH) population derived from the cross between

the moderately susceptible cultivar AGS2033 and the resistant breeding line GA03185-

12LE29. The population was evaluated for SNB resistance in the field in four successive

years (2018–2021). We identified major heading date (HD) and plant height (PH) variants

on chromosomes 2A and 2D, co-located with SNB escape mechanisms. Five QTL with

small effects associated with adult plant resistance to SNB leaf and glume blotch were

detected on 1A, 1B, and 6B linkage groups. These QTL explained a relatively small propor-

tion of the total phenotypic variation, ranging from 5.6 to 11.8%. The small-effect QTL

detected in this study did not overlap with QTL associated with morphological and develop-

mental traits, and thus are sources of resistance to SNB.

Introduction

Septoria nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, is

a significant necrotrophic disease of the leaves and glumes of wheat (Triticum aestivum L.).

Disease epidemics, which when severe may cause yield losses up to 50%, are most common in

wheat production regions of Australia, parts of northern Europe, North Asia, and the U.S. [1,

2]. In the U.S., SNB occurs alongside Septoria tritici blotch (caused by Zymoseptoria tritici)
and/or tan spot (Pyrenophora tritici-repentis) in the western, moist areas of the Pacific North-

west; the upper Plains states of North Dakota, South Dakota, and Minnesota; and the states
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adjacent to the Great Lakes [3–5]. By contrast, to the east of the Appalachian Mountains, P.

nodorum is both ubiquitous and greatly predominant over all other wheat leaf blight patho-

gens, making that environment ideal for field studies of SNB resistance and epidemiology [6].

There is a high degree of genetic diversity within and between P. nodorum populations

from major wheat growing regions, in part due to approximately annual cycles of sexual repro-

duction [7]. Under warm moist conditions, the pathogen infects leaves, stems, and glumes

directly through epidermal tissues. Lesions on lower leaves of plants are dark chocolate-brown

initially and eventually develop into tan, lens- or irregular-shaped lesions with a yellow halo

containing pycnidia that produce the asexual pycnidiospores. With the aid of heavy, splashy

rainfall, glume infections may occur as pycnidia release conidia that splash up and infect grain

heads, decreasing photosynthetic capacity of heads, peduncle, and flag leaf [8]. Infection

occurs over a wide temperature range in wet and humid conditions, and stubble is often the

primary source of inoculum for infection in subsequent years [9].

Genes controlling spike and foliar resistance to SNB may segregate independently [10–12].

Both seedling and adult plant resistance to SNB are quantitative and involve genes with minor

additive effects, highly affected by environmental conditions [1, 11]. Considerable

genotype × environment interaction is also expected in any genetic analysis for adult plant

resistance to SNB, making efforts to identify resistance genes challenging. Several studies have

identified leaf and glume resistance QTL accounting for less than 20% of the phenotypic varia-

tion [9]. For adult plant resistance to leaf blotch, QTL have been identified on wheat chromo-

somes 1A, 1B, 2A, 2D, 3A, 3B, 4B, 5A, 5B, 7B and 7A [12–19], and for glume blotch resistance,

on 2A, 2B, 2D, 3A, 3B, 4A, 4B, 5A, 5B, 6B, 7A and 7D [12–14, 19–22].

Nine Stagonospora nodorum necrosis (Snn) genes that interact with matching necrotrophic

effectors (NE) have been reported on wheat chromosome arms 1AS, 1BS, 2DS, 2DL, 4BL, 5BS,

5DS, 5BL, and 6AL [9, 23, 24]. These host genes were detected as quantitative trait loci (QTL)

using bi-parental mapping populations and infiltration of P. nodorum culture filtrates in seed-

lings. If available pathogen populations carry the matching NE, an Snn gene may increase the

severity of SNB in what is known as an “inverse gene-for-gene” interaction [24].

Breeding for SNB resistance in wheat is a challenging task due to complex quantitative

genetic control and environmental influence. Variation in heading date and plant height are

important determinants in breeding and selection; for example, wheat lines could be misclassi-

fied as SNB-resistant specifically if they are tall, late maturing genotypes that escape disease

infection [9]. Some studies showed that genetic factors controlling heading date and plant

height were actually linked to genes controlling SNB response rather than pleiotropic effects of

agronomic characteristics affecting disease assessment [14, 16]. Markers identified for plant

morphology and phenology in wheat include the semi-dwarf gene Rht, which controls varia-

tion for plant height, and vernalization gene Vrn1 and photoperiod response gene Ppd1, that

are major determinants of heading and flowering timing [25–30]. These diagnostic markers

can add important value by allowing discrimination between linked resistance and pleiotropy

caused by genes controlling plant height and heading date [9]. The objective of this study was

to identify QTL associated with SNB leaf and glume resistance in a double haploid (DH) wheat

population. We also investigated a QTL mapping approach that utilized DNA markers to

account for differences in morphology and phenology.

Materials and methods

Plant material

A population of 124 DH lines was developed from the cross between the soft red winter wheat

(SRWW) cultivar AGS2033, the moderately susceptible parent, and the winter breeding line
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GA03185-12LE29, the moderately resistant parent. Both parents were developed by the Uni-

versity of Georgia (UGA). The population was designated the GADH population and sub-

jected to screening for SNB resistance in the field at Raleigh, NC, along with the susceptible

SRWW cultivar Jamestown as a control.

AGS2033 (96229/4/AGS2000�3/931433//PIO2684/�3AGS2000/3/AGS2000) was released in

2015 as a commercial cultivar and GA03185-12LE29 (97173-1-B//AGS2000�2/84202) is main-

tained by the UGA small grains breeding program [31]. AGS2033 is awned, has medium

maturity, possesses two genes conferring photoperiod insensitivity (Ppd-A1a.1 and Ppd-D1a),

and requires long periods of vernalization to flower. AGS2033 carries the Robertsonian trans-

location of the short arm of rye chromosome 1R joined with the arm of wheat chromosome

1A (t1RS�1AL) and dwarfing allele Rht-B1b.

GA03185-12LE29 is awned and possesses medium maturity, the photoperiod sensitive

alleles Ppd-A1b and Ppd-D1b, and the early flowering vrn-B1 allele from AGS2000. GA03185-

12LE29 carries the Robertsonian translocation of the short arm of rye chromosome 1R joined

with the arm of wheat chromosome 1B (t1RS�1BL).

Field phenotyping

The GADH population was phenotyped for SNB resistance in the field in four successive

experiments: 2017–18, 2018–19, 2019–20, and 2020–21 (hereafter referred to as 2018, 2019,

2020, and 2021). Genotypes were tested each year at the Lake Wheeler Road Field Laboratory

near Raleigh, North Carolina. Each genotype was planted in a single 1.3-meter row, with 3 g of

seed per row except in a few cases where seed availability was lower. There were two replicate

blocks each year, and genotypes were randomized within replicates. The field was convention-

ally plowed before planting, and plots were established with a headrow planter (Wintersteiger,

Inc., Salt Lake City, UT). Planting occurred within the normal range of dates for the region, on

3 November 2017, 24 October 2018, 1 November 2019 and 20 October 2020. Standard prac-

tices were employed for management of fertility and weeds, but no fungicides were applied.

Inoculation was provided by dispersing naturally infected wheat straw at Zadoks growth

stage 25–29 [32], prior to stem elongation but after plants were tillered sufficiently to avoid

smothering by the straw [5]. The straw was sourced from commercial wheat fields in North

Carolina, and therefore constituted a reservoir of a large, diverse set of isolates that represented

the broader P. nodorum population of North Carolina. Each year, wheat straw was obtained

from a single commercial farm. The straw was baled immediately following grain harvest and

stored under cover until it was transported to the field for inoculation. Straw was applied to

the plots at a rate of one rectangular bale per 40 plots (one headrow tray), with bale dimensions

being approximately 1 meter long, 350–400 mm high, and 460 mm wide. The straw was spread

evenly on plots by hand on 31 January 2018, 6 February 2019, 17 February 2020 and 8 Febru-

ary 2021.

During heading and anthesis, large-droplet irrigation was applied to enhance disease devel-

opment and ensure inoculum dispersal to all upper plant parts. The total of rainfall and irriga-

tion in the 40 days prior to disease assessment was 47 cm, 30 cm, 39 cm and 38 cm in the four

years, respectively.

In 2018, nursery conditions were conducive to the development of a strong SNB epidemic;

other diseases were minimal, and there was a small amount of freeze injury. In 2019, nursery

conditions and disease development were also good, with no important confounding factors.

In 2020, cool spring temperatures and low relative humidity resulted in a relatively light SNB

epidemic. In 2021, low relative humidity again resulted in a relatively mild epidemic.
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Preliminary QTL analysis of the 2018 and 2019 data identified SNB QTL coinciding with

markers for flowering time genes. Days to heading (HD) was then assessed in the 2020 and

2021 experiments and was recorded as day of year when 50% of spikes in a row had fully

emerged. Plant height (PH) was also recorded only in the 2020 and 2021 experiments, and

height of plants was measured from the soil surface to the tip of spikes, excluding awns.

Disease severity was evaluated by the same assessor in all cases and was rated on a whole-

plot basis at Zadoks growth stage 75–77 (medium to late milk stage of grain filling) [32].

Assessment dates were 19 May 2018, 10 May 2019, 22 May 2020, and 19 May 2021. Foliar and

glume symptoms were rated separately. For foliar symptoms, a 1–9 scale was used, with 1

being the lowest level of disease observed and 9 the highest; for glume symptoms, the scale was

0–9.

Marker development and high-resolution map construction

The DH population was subjected to genotyping by sequencing (GBS) for single nucleotide

polymorphism (SNP) discovery according to Poland and Rife [33]. DNA was extracted from

tissue collected from 10-day-old plants using the sbeadex plant maxi kit (LGC Genomics LLC,

Teddington, UK). Ninety-six individual samples were barcoded, pooled into a single library,

and sequenced on an Illumina HiSeq 2500. Sequencing reads were aligned to the International

Wheat Genome Sequencing Consortium (IWGSC) RefSeqv2.0 assembly (https://wheat-urgi.

versailles.inra.fr/Seq-Repository/Assemblies) using the Burrows-Wheeler Aligner v.0.7.12

[34]. The alignment information was processed by TASSEL-5GBSv2 pipeline version 5.2.35

[35] for SNP calling. The data were filtered to retain SNP with�20% missing data,�5%

minor allele frequency, and�10% of heterozygous calls per marker.

Additionally, the DH population was genotyped with KASP assays for Vrn-B1, Ppd-A1 and

Ppd-D1 [36–38]. To control for missing data due to the poor alignment of rye-derived reads

with the wheat reference genome, the short arms of t1RS�1AL and t1RS�1BL translocation

chromosomes were replaced with co-dominant KASP assays, IWA8035 and IWA6110, predic-

tive of the presence of t1RS�1AL and t1RS�1BL, respectively, under the assumption of no

recombination in those genomic regions (S1 Table). Alignment of reads to the recently pub-

lished rye genome was not used for variant calling because of duplication of the 1R short arm

in the population [39].

A genetic map was constructed with the GBS-SNP and KASP markers using the MSTmap

algorithm in the R/ASMap and R/qtl packages [40–42]. Filtering removed low-quality markers

with an excess of missing values (�15%), segregation distortion (Chi-square test;

alpha = 0.01), and co-located markers (duplicated marker information) before map construc-

tion. A total of 2,659 markers remaining after filtering were used to construct the linkage map.

Recombination frequencies were estimated in centiMorgans (cM) using the Kosambi mapping

function. For each linkage group, a recombination plot (Heatmap) was drawn using R and

standard functions.

Data analysis and QTL analysis

Analyses of variance (ANOVA) were performed using the lme4 and lmerTest packages for R

[43, 44]. Adjusted means for individual and combined years of disease ratings of leaf severity

(LS) and glume severity (GS), as well as heading date (HD) and plant height (PH), were esti-

mated using the emmeans package for R [45]. The adjusted means were subjected to the Sha-

piro-Wilk normality test.

Quantitative trait loci (QTL) analysis was performed using the composite interval mapping

(CIM) and standard interval mapping (SIM) approaches, with the significance LOD
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(logarithm of the odds) threshold for an alpha = 0.05 determined using 5,000 permutations

with the R/qtl package [46]. When major developmental genes (Ppd-A1, Ppd-B1 and Vrn-B1)

were found to be significant for HD, PH and SNB resistance using CIM, markers targeting

these genes were used as covariates in the QTL analyses using SIM, and the estimation of each

QTL effect on the phenotype was done using the Haley-Knott regression method (function

“fitqtl”) in the R/qtl package [42].

Results

Phenotypic analysis

Significant differences in HD, PH, and leaf and glume severity (LS and GS) ratings were

observed for the DH lines, AGS2033, GA03185-12LE29 and the susceptible control Jamestown

(P< 0.001). The parent GA03185-12LE29 was significantly later and taller than the parent

AGS2033, with HD of 107.4 vs 100.0 days and PH of 107.8 vs. 88.4 cm, respectively (P< 0.001;

Fig 1). Across years, the parent GA03185-12LE29 displayed mean ratings of 3.8 and 0.4 for LS

and GS, respectively, qualifying it as moderately resistant to both foliar and glume disease. The

mean ratings of parent AGS2033 were 5.1 and 3.3 for LS and GS, respectively, making it mod-

erately susceptible in both categories. In comparison, ratings of 6.4 for LS and 4.5 for GS were

observed for susceptible cultivar Jamestown. The differences between parents in mean ratings

for both leaf and glume severity were also highly significant (P< 0.001; Fig 1). The GADH

population showed continuous variation for HD, PH, LS and GS.

Combined across years, the HD and PH dataset deviated significantly from a normal distri-

bution (P< 0.01), suggesting that major QTL might be involved. The multi-year LS and GS

Fig 1. Means across years for parents and DH lines of PH, HD, LS and GS. Dashed vertical line indicates the GADH population mean for each trait.

GA03185-12LE29 = moderate resistant parent. AGS2033 = moderate susceptible parent. Jamestown = susceptible control. Disease severity scale = 0–9.

https://doi.org/10.1371/journal.pone.0268546.g001
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data were normally distributed, and they were significantly correlated (P< 0.01; Table 1 and

S1 Fig). There was a strong negative correlation (P< 0.01) between LS and both HD and PH

(r� -0.69), and between GS and both HD and PH (r� -0.62), in the combined-year analysis

(Table 1). Similar results were obtained for the within-year correlation analysis (S2 Table).

These findings suggest that in the GADH population, late tall plants would be more resistant

than early short plants (S2 Fig).

Genetic map construction

A genetic map with 2,659 SNP markers was constructed for the GADH population. The map

comprised 26 linkage groups assigned to 21 wheat chromosomes, of which markers aligning to

2B, 4A, 5A, 5D, 6D, and 7A comprised more than one linkage group and a linkage group for

chromosome 3D was not assigned (S3 Table). The B genome had the largest number of mark-

ers, 1,400 (52.7%), followed by A with 1,025 (38.5%) and D with 234 (8.8%). Gaps greater than

30 cM were observed for chromosomes 2B (38.0 cM), 3B (35.1 cM), and 5A (36.0 cM) (S3

Table and S3 Fig). The linkage map spanned 2,936.3 cM, with 1,123.5, 1,435.8, and 410.2 cM

in the A, B, and D genomes, respectively.

QTL detection for HD, PH, and SNB disease resistance

Major QTL for HD, PH, and SNB resistance (LS and GS) were identified in the GADH popula-

tion using the CIM approach (Table 2 and Fig 2). Heading date and plant height were evalu-

ated in the Raleigh 2020 and 2021 environments. Three significant QTL associated with HD

located in linkage groups 2A (Ppd-A1), 2D (Ppd-D1), and 5B (vnr-B1) explained 23.5, 44.2,

and 29.1 percent of the phenotypic variation, respectively. Two significant QTL associated

with PH located in linkage groups 2A and 2D explaining 16.7 and 45.7 percent of the pheno-

typic variation, respectively, co-located with HD QTL Ppd-A1 and Ppd-D1. The Ppd-D1 locus

accounted for almost half of the phenotypic variation for both traits (Table 2). For most of the

HD and PH QTL, the allele from the moderate susceptible AGS2033 parent had a positive

effect on PH and HD, except Qncb.hd-5B which had a negative allele effect on HD. This is con-

sistent with the presence of photoperiod-insensitive alleles in AGS2033 at the Ppd-A1 and

Ppd-D1 loci located on chromosomes 2A and 2D, respectively. The negative allele effect on the

Qncb.hd-5B QTL was consistent with the presence in the GA03185-12LE29 parent of the vrn-
B1 allele, which is associated with earlier flowering after shorter periods of vernalization [38].

The CIM analysis across years detected three significant QTL associated with LS located in

linkage groups 1A, 2A, and 2D that explained 7.3, 27.4, and 37.2 percent of the phenotypic var-

iation, respectively (Table 2). Four significant QTL associated with GS located in linkage

Table 1. Pearson’s correlation coefficients (r) and mean estimates with standard errors for heading date, plant

height, and Septoria nodorum blotch leaf and glume disease severity in the GADH population.

Trait HD PH LS Mean ± S.E.

HD - 102.7 ± 0.34

PH 0.69�� 98.0 ± 0.69

LS -0.80�� -0.69�� 4.8 ± 0.09

GS -0.77�� -0.62�� 0.81�� 2.2 ± 0.10

Abbreviations: HD = heading date (days); PH = plant height (cm); LS = leaf severity (1–9 scale); GS = glume severity

(0–9 scale). S.E. = standard error.

�� P-value is less than 0.01.

https://doi.org/10.1371/journal.pone.0268546.t001
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groups 1A, 2A, 2D, and 5B explained 12.7, 32.1, 31.9, and 14.0 percent of the phenotypic varia-

tion, respectively. Phenological QTL coincided with disease severity QTL on chromosomes

2A, 2D, and 5B, as follows. On chromosome 2A, the major QTL Ppd-A1 for HD and PH co-

located with the SNB QTL for LS (Fig 2). For GS, by contrast, while Ppd-A1 was near the 2A

QTL, the photoperiod locus was not included in the confidence interval (CI) for the GS-linked

marker Qncb.sng-2A (Fig 2). On chromosome 2D, the HD and PH QTL that were associated

with Ppd-D1 at position 86 cM also co-located with the SNB QTL for both LS and GS.

Table 2. Quantitative trait loci (QTL) in the GADH population associated with heading date, plant height, and SNB severity combined across years, using the com-

posite interval mapping approach.

Trait QTL LG cM Confidence interval (cM) LOD P-value PVE (%) Allele effecta

HD Ppd-A1 2A 13 10–16 9.1 0.0000 23.5 2.1

Ppd-D1 2D 86 83–89 14.3 0.0000 44.2 2.9

Qncb.hd-5B 5B 153 152–157 11.4 0.0000 29.1 -2.3

PH Ppd-A1 2A 13 10–16 4.8 0.0034 16.7 2.7

Ppd-D1 2D 86 83–89 6.0 0.0004 45.7 4.4

LS Qncb.snl-1A 1A 25 22–28 5.0 0.0006 7.3 0.3

Ppd-A1 2A 13 10–16 8.0 0.0000 27.4 -0.5

Ppd-D1 2D 86 83–89 13.3 0.0000 37.2 -0.6

GS Qncb.sng-1A 1A 0 0–3 4.7 0.0020 12.7 0.4

Qncb.sng-2A 2A 34 30–36 7.5 0.0000 32.1 -0.7

Ppd-D1 2D 86 83–89 7.8 0.0000 31.9 -0.7

Qncb.sng-5B 5B 153 143–182 4.5 0.0022 14.0 0.5

Abbreviations: LG = linkage group; cM = centimorgan; HD = heading date (days); PH = plant height (cm); LS = leaf severity (1–9 scale); GS = glume severity (0–9

scale). LOD = logarithm of the odds at 0.05 probability level, using a 5,000-iteration permutation test; PVE = percentage of phenotypic variance explained.
aEstimated allele effect reported in terms of the AGS2033 parent. The estimated allele effect unit corresponds to each trait unit.

https://doi.org/10.1371/journal.pone.0268546.t002

Fig 2. Genetic map location of QTL detected in this study. QTL locations and interval sizes are indicated by bars and brackets, respectively, on the

right-hand side of each chromosome, and are based on the genetic marker information in Tables 2 and 3. c = covariate in standard interval mapping

analysis; numbers after the underscore correspond to physical positions based on Chinese Spring RefSeq v2.0.

https://doi.org/10.1371/journal.pone.0268546.g002
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Similarly, on chromosome 5B, a major HD QTL Qncb.hd-5B associated with the Vrn-B1 locus

co-located with the 5B QTL for GS. GA03185-12LE29 alleles located in linkage groups 2A and

2D that had a positive allele effect on HD and PH had a negative allele effect on both LS and

GS. Conversely, the GA03185-12LE29 allele at Qncb.hd-5B was associated with early heading

with a positive effect on GS. This suggests that these QTL influenced SNB resistance through

their effect on heading date and also plant height. Overall, the QTL located on linkage groups

2A, 2D, and 5B combined accounted for the majority of the variation for HD (96.8%), PH

(62.4%), LS (64.6%), and GS (78.0%) in the GADH population (Table 2). The QTL on 1A was

of smaller effect and was not associated with phenology.

In the within-year QTL analysis using CIM, Ppd-A1 explained approximately 20% of the

phenotypic variation for HD20, HD21, and PH20, and had no significant effect on PH21 (S4

Table). Ppd-D1 explained 34.0 and 42.5 percent of the phenotypic variation for HD20 and

HD21, respectively, and it was in close proximity to Qncb.ph-2D, at position 88 cM, for PH20

and PH21. Qncb.hd-5A and Qncb.ph-5A were located in close proximity with overlapping CIs

and explained 7.9% and 4.0% of the phenotypic variation for HD20 and PH20, respectively.

Qncb.hd-5B explained 12.2% and 36.1% of the phenotypic variation for HD20 and HD21,

respectively.

The within-year CIM analysis also detected two major QTL for SNB resistance in linkage

groups 2A and 2D, associated with the Ppd-A1 and Ppd-D1 loci, respectively (S5 Table). In

2018 and 2019, a QTL associated with Ppd-A1 explained a large percentage (20.1% to 27.8%)

of the phenotypic variation for LS, and in 2019 the same QTL explained 29.6% of GS variation.

In addition, in 2021 a QTL on 2A for LS (Qncb.snl-2A) explaining 18.3% of the phenotypic var-

iation was detected at 25cM. A QTL for GS (Qncb.sng-2A) explaining 18.2% to 27.7% of the

phenotypic variation was also detected proximal to Ppd-A1, with peaks at 26 cM and 31 cM for

GS18 and GS21, respectively. The 2D QTL explained a larger percentage (19.4%-41.4%) of the

phenotypic variation for LS: for LS18 and LS21, the QTL co-located with Ppd-D1 at position

86 cM, while for LS19 and LS20, it was detected at 88 cM. In addition, near the Ppd-D1 locus

at 85–88 cM, the QTL Qncb.sng-2D explained 35.7% to 40.9% of the phenotypic variation in

GS in 2018 and 2019.

In linkage group 5B, the within-year analysis detected QTL (Qncb.snl-5B and Qncb.sng-5B)

associated with SNB resistance for LS19, LS21, GS18 and GS19, and located near the Vrn-B1
locus (S5 Table). The Qncb.snl-5B explained 8.9% to 22.9% of the phenotypic variation for leaf

SNB resistance, and the Qncb.sng-5B explained 13.6% to 14.7% of the phenotypic variation for

glume SNB resistance. Further, two QTL in linkage group 1A (Qncb.snl-1A and Qncb.sng-1A)

were associated with SNB resistance for LS18, LS20, GS18 and GS20. The Qncb.snl-1A
explained 12.0% to 12.2% of the phenotypic variation for foliar SNB resistance, and Qncb.sng-
1A explained 17.8% to 20.4% of the phenotypic variation for glume resistance. Additionally,

QTL were detected for LS only in 2019 in linkage groups 5A.1 (Qncb.snl-5A) and 6B (Qncb.

snl-6B) at positions 196 cM and 49 cM, respectively. These QTL explained up to 14% of the

phenotypic variation for LS19.

QTL analysis using flowering time genes as covariates

Given the large and highly significant correlation of HD with LS and GS in the population and

detection of large-effect QTL for both phenology and disease reaction associated with the Ppd-
A1, Ppd-D1 and Vrn-B1 loci, a standard interval mapping (SIM) approach was investigated

using the marker data for these three major flowering time genes as covariates. QTL detected

in these analyses were designated with a superscript “c” (Table 3, Fig 2, S4 and S5 Tables).

Once the effects of the major HD genes Ppd-D1, Ppd-A1 and Vrn-B1 were accounted for, no
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further QTL for heading date were detected. However, a significant QTL associated with PH

located in linkage group 2D, Qncb.ph-2Dc, was revealed at 53 cM, accounting for 33.2% of the

variation in PH (Table 3). This locus was distal to the PH QTL associated with Ppd-D1 locus

(86 cM), suggesting segregation of a separate PH QTL on 2D in the population (Fig 2). A sig-

nificant QTL of small effect on linkage group 7A.2 (84 cM) was also detected explaining 3.8

percent of the phenotypic variation for PH in the analysis including covariates (Table 3).

This new analysis using combined-year means for LS and GS detected significant QTL on

1A and 1B, along with QTL in linkage groups 5A.1 and 6B that were detected only in single

environment analyses using CIM (Table 3, Fig 2 and S5 Table). The QTL Qncb.snl-1Ac, Qncb.

snl-1Bc, Qncb.snl-5Ac and Qncb.snl-6Bc explained 10.2, 6.7, 4.0 and 11.8 percent of the pheno-

typic variation in LS, respectively. Significant QTL associated with GS located in linkage

groups 1A (Qncb.sng-1Ac, 17 cM) and 1B (Qncb.sng-1Bc, 20 cM) explained 11.8 and 5.6 percent

of the phenotypic variation, respectively. The QTL had a positive allele effect on LS and GS,

suggesting alleles from the resistant parent GA03185-12LE29 were associated with increased

disease resistance, except the QTL located in linkage group 5A.1 that had a negative allele effect

for LS (Table 3).

The within-year QTL analysis using SIM with covariates detected Qncb.hd-5Ac for HD20

and a new locus Qncb.hd-5Bc for HD21 in linkage groups 5A.1 and 5B, respectively (S4 Table).

For PH20, the analysis also detected Qncb.ph-2Dc at position 40 cM and Qncb.ph-5Ac at posi-

tion 181 cM in linkage groups 2D and 5A.1, respectively. The QTL in linkage group 1A (Qncb.

snl-1Ac and Qncb.sng-1Ac) associated with SNB resistance were detected for LS18, LS20, GS18

and GS20 (S5 Table). Two QTL were revealed in linkage group 1B (Qncb.snl-1Bc and Qncb.

sng-1Bc) for LS20 and GS20, explaining up to 12% of the phenotypic variation for both traits.

The Qncb.snl-1Bc was distal to the Qncb.sng-1Bc at positions 11 cM and 46 cM, respectively.

One QTL at linkage group 5A.1 (Qncb.snl-5Ac at position 201 cM), and one QTL at linkage

group 5B (Qncb.sng-5Bc at position 154 cM) were detected for LS19 and GS18, respectively. A

QTL was detected in linkage group 6B (Qncb.snl-6Bc) for LS19 and LS20, explaining up to 14%

of the phenotypic variation in both years.

Regardless of the analytical approach, the QTL Qncb.snl-1Ac (CI 0–36 cM) was consistently

associated with LS within and across years, and the QTL Qncb.sng-1Ac (CI 0–48 cM) was con-

sistently associated with GS within and across years (Table 3 and Fig 2). On the other hand,

Table 3. Quantitative trait loci (QTL) in the GADH population associated with heading date, plant height, and disease severity combined across years, using the

standard interval mapping (SIM) approach with three major phenology genes as covariates for SNB resistance.

Trait QTL LG cM Confidence interval (cM) LOD P-value PVE (%) Allele effecta

PH Qncb.ph-2Dc 2D 53 32–63 4.6 0.0044 33.2 3.6

Qncb.ph-7Ac 7A.2 84 8–130 3.3 0.0390 3.8 1.3

LS Qncb.snl-1Ac 1A 4 0–36 5.7 0.0000 10.2 0.3

Qncb.snl-1Bc 1B 11 0–30 3.3 0.0322 6.7 0.3

Qncb.snl-5Ac 5A.1 201 10–201 3.5 0.0216 4.0 -0.2

Qncb.snl-6Bc 6B 43 35–279 3.7 0.0146 11.8 0.3

GS Qncb.sng-1Ac 1A 36 0–48 7.2 0.0000 11.8 0.4

Qncb.sng-1Bc 1B 20 0–51 4.6 0.0022 5.6 0.3

Abbreviations: LG = linkage group; cM = centimorgan; HD = heading date (days); PH = plant height (cm); LS = leaf severity (1–9 scale); GS = glume severity (0–9

scale). LOD = logarithm of the odds at 0.05 probability level, using a 5,000-iteration permutation test; PVE = percentage of phenotypic variance explained.
aEstimated allele effect reported in terms of the AGS2033 allele. The estimated allele effect unit corresponds to each trait unit.
c = covariate.

https://doi.org/10.1371/journal.pone.0268546.t003
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Qncb.snl-1Bc and Qncb.sng-1Bc, associated with LS and GS respectively on linkage group 1B,

were revealed only when SIM with covariates was performed. Additionally, Qncb.snl-6Bc, with

a large CI of 36–279 cM, was consistently associated with LS within and across years when HD

covariates were used in the SIM analyses (Table 3, Fig 2 and S5 Table).

Discussion

SNB resistance is an important breeding target in wheat cultivar development in the spring

and winter regions of the U.S, as well as other parts of the world. Avoiding host sensitivity

(Snn) genes that match necrotrophic effectors (NE) produced by local P. nodorum populations

is a goal of many wheat breeders [9, 24]. However, the actual role of NE relative to other types

of P. nodorum genes in determining wheat resistance levels in the field is not well understood

[6]. Numerous studies found that field resistance to SNB was controlled by several QTL with

small, additive effects that are not known to correspond to characterized Snn genes [12, 47]. In

this study, we focused on investigating the field reaction of the GADH population

AGS2033 × GA03185-12LE29 at the adult plant stage to detect genomic regions associated

with SNB resistance in winter wheat. Plants of breeding line GA03185-12LE29 exhibited very

little SNB glume blotch in the field and were moderately resistant to leaf symptoms. Winter

wheat cultivar AGS2033 had more intermediate reactions to both leaf and glume blotch. How-

ever, these lines also differed in final PH and days to heading (Fig 1). Therefore, our analyses

also explored the effect on SNB reaction of major genes for plant development segregating in

the population.

Co-location of major effect HD and PH variants with SNB resistance QTL

Our marker analysis indicated that major genes for HD were segregating in the population. In

diagnostic KASP assays, AGS2033 and GA03185-12LE29 differed for alleles of the photoperiod

loci Ppd-A1 and Ppd-D1 as well as winter alleles of the Vrn-B1 locus. Both cultivars possessed

the Rht-D1b semi-dwarfing allele. Initial analysis of phenotypic collected in 2018 and 2098

located SNB resistance QTL near major heading data variants, days to heading and PH were

recorded for the GADH population in the 2020 and 2021 environments. Over years, Ppd-A1,

Ppd-D1 and a QTL in close proximity to Vrn-B1 jointly explained 69% of the phenotypic varia-

tion for heading date. In 2020, a QTL explaining an additional 7.9% of variation in HD was

also detected on the long arm of linkage group 5A.1 in the interval between 579.7 Mbp and

579.8 Mbp containing the Vrn-A1 locus. These data are consistent with other studies reporting

the large role of PPD1 and VRN1 genes on winter wheat flowering time in environments in the

Mid-Atlantic and Southern U.S. [38, 48, 49].

Moreover, these heading date variants were associated with QTL for plant height in the

GADH population. Plant height QTL were identified in close proximity to the photoperiod

loci on 2A and 2D in both years and near Qncb.hd-5A.1 in 2020; combined, they explained

more than 60% of genetic variation for PH in the population, suggesting pleotropic effects of

the heading date loci on mature PH. Subsequent analyses using the Ppd-A1, Ppd-D1 and Vrn-
B1 markers as covariates revealed the presence of an additional 2D QTL distal to Ppd-D1 asso-

ciated with PH that explained 33% of variation after accounting for the effect of these major

genes. There are reports of PH loci on the short arm of chromosome 2D, most famously the

Rht8 locus (see below) that is linked to the Ppd-D1 photoperiod insensitivity locus [50, 51].

Similar to HD and PH, our analysis identified QTL associated with variants of Ppd-A1,

Ppd-D1 and Vrn-B1 for LS and GS. Plant height and HD were highly negatively correlated

with LS and GS in the 2020 and 2021 environments, the years in which height and heading

were assessed, and also with disease ratings in the previous years 2018 and 2019. Similar results
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were reported by four other groups [14, 16, 52, 53]. They found significant, moderately nega-

tive correlation of heading date and plant height with leaf and glume disease severity within

and across environments. These results suggest a significant role of heading date and plant

height in the accurate assessment of SNB resistance in wheat.

In the context of the CIM approach, co-location of HD and PH QTL with SNB resistance

QTL suggests that in the GADH population, loci underlying plant development are having a

pleiotropic effect on disease severity or are tightly linked with SNB resistance loci (Fig 2). The

Ppd-D1 loci precisely co-located with both LS and GS QTL in chromosome 2D. Similarly, the

vrn-B1 allele, associated with earlier flowering after shorter periods of vernalization, was in

close proximity to Qncb.sng-5B for GS. Other researchers also observed QTL for leaf and

glume SNB resistance in chromosomes 2D and 5B in close proximity to the Ppd-D1 and Vrn-
B1 loci, respectively. In chromosome 2D, several studies detected LS resistance QTL distal to

the Ppd-D1 loci [15, 54, 55] while other studies [12, 14] reported similar QTL proximal to the

Ppd-D1 loci. In addition, three studies reported GS QTL proximal to the Ppd-D1 loci [12, 19,

21]. Most of these QTL explained a small portion of the resistance to SNB [56]. In those stud-

ies, LS and GS QTL did not co-locate with the Ppd-D1 loci as we report in this study, although

they were found in similar genomic regions. Once the flowering loci were taken into account,

our QTL analysis did not locate additional QTL for SNB resistance on 2DS but did locate a

plant height locus on the chromosome arm. This suggest that disease resistance associated

with plant height was due primarily to pleiotropic effects of HD on both PH and disease. In

our nursery, irrigation was applied specifically to reduce escapes due to tallness by regularly

splashing inoculum up the canopy.

Although the Ppd-A1 locus co-located with LS QTL on 2A, it was distal to the glume blotch

resistance QTL Qncb.sng-2A in this study. Whether this reflects an additional locus on 2A for

resistance to GS is not clear. Francki et al. (2018) used a high-density genetic map to discrimi-

nate between previously mapped SNB resistance QTL in hexaploid wheat [12]. They reported

two QTL associated with LS in close proximity to the Ppd-A1 locus. On the other hand, Shan-

kar et al. (2008) and Jighly et al. (2016) reported GS QTL proximal to the Ppd-A1 locus, per-

haps similar to the one we identified in this study in chromosome 2A [14, 19].

When the major QTL controlling plant growth and developmental traits were used as

covariates in the SIM analysis, none of the co-located QTL for SNB resistance on 2A, 2D and

5B were detected. This suggests that the flowering time loci are either having a pleiotropic

effect on disease resistance or are closely linked to loci affecting disease such that their effect

was not detectable in this analysis. Although plant growth and developmental traits do not

trigger defense reactions, they provide mechanical barriers or escape mechanisms under SNB

field outbreaks [13, 57]. In our study, around 28% of the DH lines were tall and late, and

showed better resistance than short and early lines during SNB epidemics in Raleigh (S2 Fig).

Our findings support the hypothesis that plant growth and development traits indeed provide

escape mechanisms under biotic stresses in wheat.

Although major developmental loci segregating in the population were affecting disease lev-

els, the population displayed normal continuous distribution for LS and GS reflecting the

quantitative nature of the SNB resistance in wheat. Moreover, our analysis detected additional

QTL associated with SNB resistance, indicating polygenic inheritance, which also was reported

in previous studies on field SNB resistance in wheat [12, 17, 18].

Identification of SNB resistance QTL of small effect

The use of major genes as covariates in a SIM approach was justified as Ppd-A1, Ppd-D1 and

Vrn-B1 accounted for at least two-thirds of the variation in HD and PH in 2020 and 2021, and
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likely played a large role in these traits in Raleigh during 2018 and 2019. Additionally, QTL

near or co-located with the phenology genes on chromosomes 2A, 2D, and 5B accounted for

64.6% of variation for LS and 78% for GS in the combined analysis (Table 2). Use of the Ppd-
A1, Ppd-D1 and Vrn-B1 markers as covariates revealed QTL for LS and GS on linkage groups

1A, 1B, 5A and 6B (Table 3). Of these, Qncb.snl-1Bc, Qncb.snl-5Ac, Qncb.snl-6Bc and Qncb.sng-
1Bc, which were previously identified only in single environments, proved significant in multi-

ple years and in the combined analysis. This suggest that QTL of smaller effect segregating in

the population could be revealed by accounting for heading time with predictive markers for

the underlying genes in environments where HD was not recorded.

Interestingly, the direction of effects for these smaller-effect SNB QTL indicated that alleles

for reduced LS and GS were contributed by the more susceptible AGS2033 parent. The QTL

Qncb.snl-5Ac, associated with reduced LS, co-located with Qncb.hd-5Ac, which was significant

for HD only in the 2020 environment, with AGS2033 having the later heading allele (Table 3

and S4 Table). It is possible that this SNB QTL may also be related to heading time, as is it

coincides with the Vrn-A1 locus and we did not account for variation at Vrn-A1 in our model.

Markers within the Vrn-A1 coding sequence were not polymorphic between parents of the

population. However, effect of Vrn-A1 on flowering in winter wheat can be associated with

copy number variation in addition to sequence variation [58].

Each parent of the GADH mapping population possessed a translocation involving the

short arm of rye chromosome 1R. The t1RS�1AL was detected in AGS2033 and t1RS�1BL in

GA03185-12LE29. Under the assumption of no recombination between 1RS and wheat chro-

mosome arms 1AS and 1BS, we used a single co-dominant KASP assay to represent the rye

short arms in construction of our linkage maps. Confidence intervals for the QTL for LS and

GS identified on chromosomes 1A and 1B included these KASP assays, indicating that Qncb.

snl-1Ac and Qncb.sng-1Ac QTL are linked to the t1RS�1AL wheat-rye chromosomal transloca-

tion, and the Qncb.snl-1Bc and Qncb.sng-1Bc QTL are linked to the t1RS�1BL rye-wheat chro-

mosomal translocation. Small amounts of recombination were noted between the KASP assays

for 1RS and the peak QTL markers. However, the peak QTL markers and confidence intervals

extended into distal portions of both chromosome arms 1AL and 1BL based on physical dis-

tances (Fig 2), reflecting suppressed recombination in proximal portions of the chromosome

arms. This impedes our ability to resolve the QTL positions in this doubled haploid popula-

tion. Other studies have reported QTL for field resistance to SNB on group one chromosomes

[9, 12, 47], as well as the presence on 1A and 1B of Snn genes that interact with matching

necrotrophic effectors [59–63]. However, these loci were located distally on 1AS and 1BS,

whereas our peak QTL markers were located in the long arms of 1A and 1B. Given the broad

QTL intervals observed, we are not able to speculate about the role of the wheat-rye transloca-

tions and their relationship with previously identified QTL in disease resistance/susceptibility

in this population.

A new QTL associated with LS on linkage group 6B, Qncb.snl-6Bc at position 43 cM, was

revealed after using major developmental loci segregating in our mapping population as covar-

iates. This new QTL explained ~12% of the phenotypic variation for LS across years. Based on

a recent review by Downie et al. 2021, no QTL associated with SNB adult plant resistance has

been reported on chromosome 6B.

Identification of Rht8
When we used the Ppd-D1 locus as a covariate in the SIM analysis, additional QTL Qncb.ph-
2Dc and Qncb.ph-7Ac, which explained 33.2% and 3.8% of the phenotypic variation for PH

respectively, were revealed at 53 cM in linkage group 2D and 84 cM in linkage group 7A.2.
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The Qncb.ph-2Dc is likely the gibberellic acid responsive semi-dwarfing gene Rht8 that was

previously mapped by Liu et at. (2015) at position 20 cM and Czembor et al. (2019) at position

29 cM [57, 64]. DeWitt et al. (2021) also detected a PH QTL on 2DS at an interval of 23.3 to

32.2 Mbp, postulated as Rht8, when using Ppd-D1 as a cofactor in QTL analysis of a bi-parental

winter wheat population [49]. Likewise, Qncb.ph-2Dc was located at an interval of 16.5 to 24.0

Mbp in our study.

Similar to the other Green Revolution semi-dwarfing genes, Rht8 has been widely used in

wheat breeding programs and reduces PH by up to 10 cm [50, 51]. Rht8 and the photoperiod-

insensitive Ppd-D1 QTL often occur together, but Ppd-D1 itself has also been reported to have

pleiotropic effects on PH [65–67]. In a study conducted by Chebotar et al. (2013), the positions

of Rht8 and Ppd-D1 on the 2D chromosome of winter bread wheat were clarified using SSR

markers [68]. They reported a ~25 cM distance between Rht8 and Ppd-D1. Similarly, in our

GBS-SNP based genetic map, we observed a distance of ~31 cM between Rht8 (Qncb.ph-2Dc)

and Ppd-D1 (Fig 2).

Conclusion

Resistance to SNB results in part from variation in plant development and morphology, which

could provide escape mechanisms during natural SNB epidemics, and resistance QTL of small

additive effects linked to genetic factors controlling development traits. Here, we show that

after accounting for the effects of major flowering time genes segregating in the population, six

QTL of small effect providing resistance to SNB were revealed. Interestingly, the majority of

small-effect QTL for LS and GS resistance to SNB were provided by the shorter and earlier-

heading parent. Although the majority of taller and later-flowering lines displayed resistance

to SNB through escape mechanisms, there were a few short-stature and early-heading lines dis-

playing moderate resistance to SNB across environments. Further research is warranted on the

potential of this germplasm as a source of moderate resistance to SNB. In the meantime, plant

breeders will rely on recurrent screening of wheat nurseries to identify and retain favorable

alleles for plant development combined with SNB resistance QTL for their specific

environment.
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S2 Fig. Scatter plots of combined-year plant height and heading date vs. combined-year

leaf and glume disease severity in the GADH population. Dashed vertical and horizontal

lines indicate the GADH population mean for each trait.
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S3 Fig. Genotyping by sequencing single nucleotide polymorphism (GBS-SNP) marker dis-

tribution for the 26 linkage groups of the GADH population derived from the AGS2033 x
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Abbreviation: Chr = chromosome.

(PDF)

PLOS ONE Detection of small-effect QTL associated with resistance to Septoria nodorum blotch

PLOS ONE | https://doi.org/10.1371/journal.pone.0268546 May 19, 2022 13 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268546.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268546.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268546.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268546.s004
https://doi.org/10.1371/journal.pone.0268546


S2 Table. Pearson’s correlation coefficients of heading date, plant height, leaf and glume

disease severity in the GADH population. Abbreviations: PH20 = plant height 2020 (cm);

PH21 = plant height 2021 (cm); PH = combined-year plant height (cm); HD20 = heading date

2020 (days); HD21 = heading date 2021 (days); HD = combined-year heading date (days);

LS18 = leaf severity 2018; LS19 = leaf severity 2019; LS20 = leaf severity 2020; LS21 = leaf sever-

ity 2021; LS, combined-year leaf severity; GS18 = glume severity 2018; GS19 = glume severity

2019; GS20 = glume severity 2020; GS21 = glume severity 2021; GS = combined-year glume

severity. �� P-value is less than 0.01.

(PDF)

S3 Table. Summary statistics of the genetic linkage map of the GADH population. Abbrevi-

ations: LG = linkage group; cM = centiMorgans; Chr = chromosome; Ave. = average; Max. =

maximum; bp = base pairs.
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S4 Table. Within-year QTL associated with heading date and plant height in the GADH

population using the CIM and SIM with major genes as covariates. Abbreviations:

CIM = composite interval mapping; SIM = standard interval mapping; QTL = quantitative

trait loci; LG = linkage group; cM = centimorgan; HD = heading day (days); PH = plant height

(cm); HD20 = heading date 2020; HD21 = heading date 2021; PH20 = plant height 2020;

PH21 = plant height 2021; LOD = logarithm of the odds at 0.05 level of probability, obtained

through a 5,000-iteration permutation test; PVE = percentage of phenotypic variance

explained by the QTL. aEstimated allele effect reported in terms of the AGS2033 parent. The

estimated allele effect unit corresponds to each trait unit. c = covariate.

(PDF)

S5 Table. Within year quantitative trait loci (QTL) associated with leaf disease severity

(LS) and glume disease severity (GS) in the GADH population using the CIM and SIM

with major genes as covariates. Abbreviations: CIM = composite interval mapping;

SIM = standard interval mapping; QTL = quantitative trait loci; LG = linkage group;

cM = centimorgan; LS = leaf severity (1–9 scale); GS = glume severity (0–9 scale); LS18 = leaf

severity 2018; LS19 = leaf severity 2019; LS20 = leaf severity 2020; LS21 = leaf severity 2021;

GS18 = glume severity 2018; GS19 = glume severity 2019; GS20 = glume severity 2020;

GS21 = glume severity 2021; LOD = logarithm of the odds at 0.05 level of probability, obtained

through a 5,000-iteration permutation test; PVE = percentage of phenotypic variance

explained by the QTL. aEstimated allele effect reported in terms of the AGS2033 parent. The

estimated allele effect unit corresponds to each trait unit. c = covariate.
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