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Abstract
The viable closed-loop supply chain network (VCLSCND) is a new concept that integrates sustainability, resiliency, and 
agility into a circular economy. We suggest a hybrid robust stochastic optimization by minimizing the weighted expected, 
maximum, and entropic value at risk (EVaR) of the cost function for this problem. This form considers robustness against 
demand disruption. Finally, CLSC components are located, and quantity flows are determined in the automotive industry. 
The results show that the VCLSCND cost is less than not considering viability and has a − 0.44% gap. We analyze essential 
parameters. By increasing the conservative coefficient, confidence level, and the scale of the main model, decreasing the 
allowed maximum energy, the cost function, time solution, and energy consumption grow. We suggested applying the Fix-
and-Optimize algorithm for producing an upper bound for large-scale. As can be seen, the gap between this algorithm and 
the main problem for cost, energy, and time solution is approximately 6.10%, − 8.28%, and 75.01%.

Keywords Viable · Closed-loop supply chain · Eco-energy · Risk · Robustness

Introduction

The closed-loop supply chain (CLSC) is a complete SC that 
considers sustainability and a circular economy (Difrancesco 
& Huchzermeier 2016; Rafigh et al., 2021). Paying more 
attention to returned products does not allow to release of 
returned products to environments. Therefore, a CLSC net-
work design (CLSCND) that integrates sustainability, resil-
iency, and agility is the discussion of researchers. The viable 

CLSCND (VCLSCND) concept combines sustainability, 
resiliency, and agility in CLSCND (Ivanov & Dolgui 2020) 
(Fig. 1). We try to improve organizational, informational, 
technological, financial, and process-functional structure in 
VCLSCND. We can add backup suppliers, flexible capacity 
and sourcing, and increase inventory and capacity to fortify 
resiliency.

Moreover, requirements of the environment, energy con-
sumption, and social welfare can be seen in the sustainabil-
ity subject (Mehrbakhsh & Ghezavati 2020). Eventually, 
delivery on time with a responsive SC is needed as an agile 
supply chain. Using novel technology like blockchain and 
Internet-of-Thing (IoT), 3D printing aims as an agile tool in 
VCLSCND (Lotfi et al. 2021e). We should design a VCLS-
CND that enables us to cope with uncertainty and robust 
disruption.

This subject has been raised, originating from decision-
making challenges due to the COVID19 outbreak and global 
pandemic. It makes disturbance for demand and changes 
sustainability among social welfare like occupation and 
employment. We need CLSCND to be resilient against these 
fluctuations (Simchi-Levi & Simchi-Levi 2020). The advan-
tage of this network design is adapting to all situations and 
having flexibility (Paul & Chowdhury 2020). In addition, 
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this way of thinking guarantees that move toward leanness 
and agility, and their combination is Leagility. Therefore, 
researchers need a network that maintains itself and survives 
in a changing environment over a long period by redesigning 
the structures and replanning economic performance with 
long-term impacts (Ivanov 2020; Ivanov & Dolgui 2020).

If we want to move to globalization and have global SC, it 
is inevitable to redesign SC in the form of viable until improv-
ing the performance of SCND (Lotfi et al., 2021a; Zare Mehr-
jerdi & Lotfi 2019). The further we go, changing the society 
is fast; as a result, all SCND should transform to VCLSCND 
as soon as possible until they can stand (Hosseini et al. 2019).

We need to consider all requirements of resiliency that 
fortify by the flexible facility and increase suppliers to resil-
ience in complex situations. Shocks like COVID-19, natural 
disasters, unnatural disasters, and risks may disturb CLSC 
(Srivastava & Rogers 2021). We must always be ready and 
flexible with various products and services to tackle demand 
fluctuation. Therefore, if we run a VCLSCND considering 
risk and robustness, we can establish a global SC with the 
ability to face any problems.

The innovation and contribution are as follows:

1. A viable CLSCND (VCLSCND) as a circular economy,
2. Integrating sustainability, resiliency, and agility in 

VCLSCND,
3. Considering risks and robustness in VCLSCND.

We prepared this research as follows. In the “Related 
work about SCND” section, we survey the literature review 
and related work and suggest gap research in the scope 
of SCND. The “Problem statement” section determines 
the VCLSCND mathematical, linearization, and solution 
approach. In the “Results and discussion” section, the results 
and sensitivity analysis are explained. In the “Managerial 
insights and practical implications” section, the managerial 
insights are presented. In the “Conclusions and outlook” 
section, the conclusion and outlook are drawn.

Survey on related work

In this section, we survey related work about type of SCND. 
The researchers develop many contributions to this issue. 
However, this issue has many research gaps; integrating 
resiliency, sustainability, and agility is not defined.

Sustainable SCND

Santander et al. (2020) suggested the first formulation for 
CLSCND of distributed plastic recycling for 3D printing. 
They determined economic and environmental objectives. 
They utilized GAMS solver for optimizing. Pourmehdi 
et al. (2020) designed a SCLSCND considering production 
technology for the steel industry. They utilized a scenario-
based multi-objective to show uncertainty. Their objectives 
are optimizing total profit, energy, and water consumption, 
 CO2 emission, and job opportunity. They embedded a fuzzy 
goal programming approach to solve the model.

Nayeri et al. (2020) developed a SCLSCND. They inte-
grated strategic and tactical decisions in their model and 
optimized financial, environmental, and social impacts by a 
multi-objective fuzzy robust optimization approach. Their 
case study was a water tank.

Diabat and Jebali (2021) presented a CLSCND for dura-
ble products with take-back legislation. Each returned prod-
uct had three recovery options based on its quality, economic 
value, and environmental impact. Their case study was 
washing machines and tumble dryers. They found that the 
recovery of used products is not profitable for CLSCND.

Salehi-Amiri et al. (2021a, b) designed a SCLSCND 
based on a triple bottom line approach. Their model indi-
cates economic, environmental, and social impacts (created 
job opportunities). They utilized a hybrid Imperialist Com-
petitive Algorithms (ICA) and variable neighborhood search 
as a solution approach.

In other works of Salehi-Amiri et al. (2021b)they survey 
a SCLSCND in the agriculture industry. They suggested a 
bi-objective model, including cost and job creation in the 
avocado industry. They found that decreasing demand, make 
to increases cost and improve employment efficiency.

Fig. 1  Concept of viability in network design
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Soleimani et al. (2021) suggested a SCLSCND by inspir-
ing from circular economy paradigm. They established a 
tradeoff between economic and environmental sustainability. 
They designed a green CLSCND to minimize cost and car-
bon emission. They utilized Augmented Weighted Tcheby-
cheff (AWT) and ε-constraint as a solution approach.

Tehrani and Gupta (2021) investigated a sustainable 
green CLSC with various capacity levels. They applied the 
proposed CLSCND in the tire industry. They used a fuzzy 
robust stochastic optimization approach (FRSO) for uncer-
tainty parameters and considered recovery options.

Resilient and sustainable SCND

Zare Mehrjerdi and Lotfi (2019) designed a resilient and 
sustainable CLSCND (RSCLSCND) by considering resil-
ience, robustness, sustainability, and risk aversion. They 
used a hybrid two-stage stochastic robust optimization by 
adding conditional VaR (CVaR). Four objectives include 
minimizing the costs,  CO2 emission, energy, and maximiz-
ing employment. They applied Lp-metric to draw the Pareto 
front. They employed fix-and-optimize and a constraint 
relaxation to generate the upper and lower bounds.

In other work, Lotfi et al. (2021d) suggested and devel-
oped two algorithms for solving a RSCLSCND. They pro-
posed a constraint relaxation and worst-case method as a 
hybrid model that contains robust stochastic optimization 
with risk.

Moreover, Lotfi et al. (2021a) contributed a new RSSCND 
by adding renewable energy for the first time. This RSSCND 
applied renewable energy to prepare the energy for SCND. 
They applied a fix-and-optimize algorithm to minimize cost 
and determine a large-scale problem’s upper bound.

Mehrjerdi and Shafiee (2021) presented a RSCLSCND 
with information sharing and multiple sourcing as resilience 
strategies. They utilized multiple sourcing and information 
sharing for resiliency strategy. They used total cost, pol-
lution, energy consumption, and job creation as objective 
functions. They embedded the Augmented ε-constraint 
(AUGMECON2) method as a solution approach.

Fazli-Khalaf et al. (2021) developed a sustainable and 
resilient tire CLSCND. They suggested four objectives func-
tion: minimizing the total costs, maximizing the coverage of 
customers’ demand, maximizing the reliability of facilities, 
and minimizing CO2 emissions. A Fuzzy Possibilistic Flex-
ible Programming (FPFP) method is contributed to coping 
with uncertainty.

Yavari and Ajalli (2021) investigated a resiliency strategy 
for a green-resilient SCND with a supplier coalition. They 
compared coalition strategy with single-source and multi-
source retailers. The green-resilient model reduced costs by 
14% compared to the non-resilient model.

Nayeri et al. (2021) contributed to a sustainable SCND 
by considering a resilience and responsiveness strategy. The 
model aims to minimize the total cost and environmental 
impact by maximizing the social effects. An improved ver-
sion of FRSO is utilized to tackle uncertainty. They used 
meta-goal programming to optimize the model. A case study 
in the water heater industry is suggested to show the model’s 
performance.

Research gap

We arranged the survey of related work in Table 1. As can 
be seen, we want to design VCLSCND that is not developed 
yet. The contribution of this research is as follows:

1. We suggest VCLSCND through sustainability con-
straints, resilience strategy (flexible capacity), and agil-
ity.

2. Finally, we proposed robust stochastic optimization as an 
uncertainty method by defining a new form that includes 
a hybrid EVaR, minimax, as a risk objective function.

In comparison between our methodology and related 
work, we cannot see VCLSND in the literature review. There 
are only (Lotfi et al., 2021d; f) and (Fazli-Khalaf et al. 2021) 
that are not considered agility and risk completely. In addi-
tion, we propose two types of resilience strategy (the flexible 
capacity facility, multi-resource) that is not applied in the 
previous study.

Eventually, this model presents a resilience strategy 
through the f lexible capacity facility, multi-resource 
(supplier and distr ibution), sustainable approach 
through presenting energy consumption constraints, 
and agile method by offering satisfaction demand. 
Also, we propose a new form of cost objective function 
for robustness against demand disruption. This form 
includes minimizing the weighted expected, maximum, 
and EVaR cost function that was not considered in the 
previous study.

Problem statement

In this research, we propose VCLSCND that consid-
ers resiliency, sustainability, and agility in CLSCND, 
and the previous section shows a lack of research. This 
study has customers, retailers, distributing centers, 
manufacturers, suppliers, recovery centers, repair cent-
ers, disposal centers, and second customers (Fig. 2). We 
applied a new form of robust stochastic optimization 
by minimizing the weighted expected, maximum, and 
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EVaR cost function. We suggest this form of robustness 
and risk-averse against demand fluctuation in a circular 

economy. We apply viable policies, including resilience 
strategy, sustainable strategy, and agile approach.

Table 1  Survey on related work

MILP, mixed-integer linear programming

Ref Type of SCND Viable Method Risk criteria Uncertainty Case study

Resilience Sustainable Agile

Zare Mehrjerdi 
and Lotfi, 
2019)

RCLSCNDR ✓ ✓ - MILP + Lp-
metric, Fix-
and-opt

CVaR Robust sce-
nario-based

Automotive

Pourmehdi et al. 
(2020)

SCLSCND - ✓ - MILP - Scenario-based Steel

Nayeri et al. 
(2020)

SCLSCND - ✓ - MILP - FRO Water tank

Santander et al. 
(2020)

SCLSCND - ✓ - MILP - - 3D printing

Salehi-Amiri, 
et al. (2021a, 
b)

SCLSCND - ✓ - MILP + 3 Meta-
heuristic

- - Numerical exam-
ple (NE)

Diabat and 
Jebali (2021)

SCLSCND - ✓ - MILP - - Washing 
machines and 
tumble dryers

Lotfi et al. 
(2021c)

RSCLSCNDR ✓ ✓ - MILP CVaR Robust sce-
nario-based

Automotive

Lotfi et al. 
(2021b)

RSSCNDRE ✓ ✓ - MILP - Robust sce-
nario-based

NE

Lotfi et al. 
(2021f)

RSCLSCNDR ✓ ✓ - MILP CVaR, EVaR 
and Minimax

Robust sce-
nario-based

Automotive

Mehrjerdi and 
Shafiee (2021)

RCLSCND ✓ ✓ - MILP + AUG-
MECON2

- Scenario-based Tire

Salehi-Amiri 
et al. (2021b)

SCLSCND - ✓ - MILP - - Avocado

Soleimani et al. 
(2021)

SCLSCND - ✓ - MILP + AWT - Robust optimi-
zation

NE

Fazli-Khalaf 
et al. (2021)

RSCLSCND ✓ ✓ - MILP - FPFP Tire

Yavari and Ajalli 
(2021)

RSSCND ✓ ✓ - MILP - - Dairy

Nayeri et al. 
(2021)

RSCND ✓ ✓ ✓ MILP - FRSO Water heater 
industry

Tehrani and 
Gupta (2021)

SCLSCND - ✓ - MILP - FRSO Tire

Fu et al. (2021) Couple CLS-
CND

- ✓ - MILP - - NE

Tirkolaee et al. 
(2022a, b)

CLSCND - ✓ - MILP + Pareto-
based algo-
rithms

- - NE

Salehi-Amiri 
et al. (2022)

CLSCND - ✓ - MILP - - Avocado industry

Kim and Do 
Chung (2022)

CLSCND - ✓ - MILP - - NE

This research VCLSCND ✓ ✓ ✓ MILP EVaR minimax Robust sce-
nario-based

Automotive
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Eventually, we suggested VCLSCND based on this 
scope:

1. Resilience strategy: we present resilience strategy 
through the flexible capacity facility, multi-resource 
(supplier and distribution),

2. Sustainable strategy: we present energy consumption 
constraints,

3. Agile approach: we offer satisfaction demand.

Therefore, this assumption is needed as follows:
Assumption

• All demands should be satisfied, and the shortage is not 
allowed (agility),

• Flow and capacity constraints in forwarding and back-
ward SC are established (agility),

• Sustainability constraint includes energy consumption 
are determined (sustainability),

• Flexible capacity based on scenarios for each facility 
is a resilience strategy (resiliency),

• Robust stochastic optimization is applied to cope with 
demand fluctuation (resiliency) (Ivanov 2020; Lotfi 
et al. 2021d).

Notation list.

Indices: 

i Index of suppliers i ∈ I = {1, 2, ..., i},

m Index of producer (manufacturers)m ∈ M = {1, 2, ...,m},

d Index of Distributing Centers (DC)d ∈ D = {1, 2, ..., d},

r Index of retailers r ∈ R = {1, 2, ..., r},

u Index of collection centers u ∈ U = {1, 2, ..., u},

k Index of repairing centers k ∈ K = {1, 2, ..., k},

e Index of disposal centers e ∈ E = {1, 2, ..., e},

v Index of second customers v ∈ V = {1, 2, ..., v},

Supplier (i)
Manufacturer 

(m)

Distributing 

center (d)
Retailer (r) Customer

Collection centers 

(u)
Repairing 

centers (k)

Disposal 

centers (e)

Second 

customers (v)

Fig. 2  VCLSCND with considering robustness and risk
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i Index of suppliers i ∈ I = {1, 2, ..., i},

p Index of commodity (products)p ∈ P = {1, 2, ..., p},

t Index of time period t ∈ T = {1, 2, ..., t},

s Index of scenario s ∈ S = {1, 2, ..., s}.

Parameters 

Value for case 
study

Unit

ddrpts Demand in 
retailer r for 
commodity  
p in period 
t  under 
scenario s,

(s-1).40 + U(20,60) Number

Costs:
fii Activation 

cost for sup-
plier i,

U(1,2).1000 Thousand
Dollars (TDol-

lar)
fmm Activation 

cost for 
manufacture

U(4,5).10000 TDollar

fdd Activation 
cost for 
DC d,

U(3,4).1000 TDollar

frr Activation 
cost for 
retailer r,

U(1,2).1000 TDollar

fuu Activation 
cost for 
collection 
centers u,

U(2,3).1000 TDollar

fkk Activation 
cost for 
repairing 
centers k,

U(2,3).1000 TDollar

fee Activation 
cost for 
disposal 
centers e,

U(1,2).1000 TDollar

vimimpts Variable cost 
for ship-
ment from 
supplier i 
to manufac-
ture m for 
commodity  
p in period 
t  under 
scenario s,

U(3,4)/1000 TDollar

vmdmdpts Variable cost 
for shipment 
from manu-
facturer m 
to DC d for 
commodity  
p in period 
t  under 
scenario s,

U(3,4)/1000 TDollar

Value for case 
study

Unit

vdrdrpts Variable cost 
for shipment 
from DC d 
to retailer 
r for com-
modity  p 
in period 
t  under 
scenario s,

U(3,4)/1000 TDollar

vrurupts Variable cost 
for ship-
ment from 
retailer r to 
collection 
centers u for 
commodity  
p in period 
t  under 
scenario s,

U(3,4)/1000 TDollar

vukukpts Variable cost 
for ship-
ment from 
collection 
centers u to 
repairing 
centers k for 
commodity  
p in period 
t  under 
scenario s,

U(3,4)/1000 TDollar

vkekepts Variable cost 
for shipment 
from repair-
ing centers 
k to disposal 
centers e for 
commodity  
p in period 
t  under 
scenario s,

U(3,4)/1000 TDollar

vkmkmpts Variable cost 
for shipment 
from repair-
ing centers k 
to manufac-
turer m for 
commodity  
p in period 
t  under 
scenario s,

U(3,4)/1000 TDollar

vkvkvpts Variable cost 
for shipment 
from repair-
ing centers 
k to second 
customers 
v for com-
modity  p 
in period 
t  under 
scenario s,

U(3,4)/1000 TDollar
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Value for case 
study

Unit

Energy:
eii Fix energy 

consump-
tion for 
supplier i,

U(0.4,0.5)/3 Mega Watt 
(MW)

emm Fix energy 
consump-
tion for 
manufacture 
m,

U(5,6)/3 MW

edd Fix energy 
consump-
tion for 
DC d,

U(0.4,0.5)/3 MW

err Fix energy 
consump-
tion for 
retailer r,

U(0.4,0.5)/3 MW

euu Fix energy 
consump-
tion for 
collection 
centers u,

U(0.4,0.5)/3 MW

ekk Fix energy 
consump-
tion for 
repairing 
centers k,

U(0.4,0.5)/3 MW

eee Fix energy 
consump-
tion for 
disposal 
centers e,

U(0.4,0.5)/3 MW

eimimpts Variable 
energy for 
forward 
quantity 
from sup-
plier i to 
manufacture 
m for com-
modity  p 
in period 
t  under 
scenario s,

U(2,3)/100/3 MW

emdmdpts Variable 
energy for 
forward 
quantity 
from manu-
facturer m 
to DC d for 
commodity  
p in period 
t  under 
scenario s,

U(2,3)/100/3 MW

Value for case 
study

Unit

edrdrpts Variable 
energy for 
forward 
quantity 
from DC d 
to retailer 
r for com-
modity  p 
in period 
t  under 
scenario s,

U(2,3)/100/3 MW

erurupts Variable 
energy for 
backward 
quantity 
from 
retailer r to 
collection 
centers u for 
commodity  
p in period 
t  under 
scenario s,

U(2,3)/100/3 MW

eukukpts Variable 
energy for 
backward 
quantity 
from col-
lection 
centers u to 
repairing 
centers k for 
commodity  
p in period 
t  under 
scenario s,

U(2,3)/100/3 MW

ekekepts Variable 
energy for 
backward 
quantity 
from repair-
ing centers 
k to disposal 
centers e for 
commodity  
p in period 
t  under 
scenario s,

U(2,3)/100/3 MW

ekmkmpts Variable 
energy for 
backward 
quantity 
from repair-
ing centers k 
to manufac-
turer m for 
commodity  
p in period 
t  under 
scenario s,

U(4,5)/100/3 MW

70291Environmental Science and Pollution Research (2022) 29:70285–70304



1 3

Value for case 
study

Unit

ekvkvpts Variable 
energy for 
backward 
quantity 
from repair-
ing centers 
k to second 
customers 
v for com-
modity  p 
in period 
t  under 
scenario s,

U(2,3)/100/3 MW

Emaxts Maximum 
energy con-
sumption 
in period 
t  under 
scenario s,

120 MW

Capacity:
Capiipts Capacity of 

supplier i 
for com-
modity  p 
in period 
t  under 
scenario s,

U(500,600).((s-
1)0.0.5 + 1)

Num

Capmmpts Capacity of 
manufac-
ture m for 
commodity  
p in period 
t  under 
scenario s,

U(1000,1100).((s-
1)0.0.5 + 1)

Num

Capddpts Capacity of 
DC d for 
commodity  
p in period 
t  under 
scenario s,

U(200,220).((s-
1)0.0.5 + 1)

Num

Caprrpts Capacity of 
retailer r for 
commodity 
p in period 
t  under 
scenario s,

U(300,330).((s-
1)0.0.5 + 1)

Num

Capuupts Capacity of 
collection 
centers u for 
commodity  
p in period 
t  under 
scenario s,

U(200,220).((s-
1)0.0.5 + 1)

Num

Capkkpts Capacity of 
repairing 
centers k for 
commodity  
p in period 
t  under 
scenario s,

U(50,55).((s-
1)0.0.5 + 1)

Num

Value for case 
study

Unit

Capeepts Capacity of 
disposal 
centers e for 
commodity  
p in period 
t  under 
scenario s,

U(30,33).((s-
1)0.0.5 + 1)

Num

Other parameters
ps Probably of 

scenario s,
1/|S| %

� Conservative 
coefficient,

50 %

� Confidence 
level,

5 %

�′ Flow rate to 
manufactur-
ing from 
repairing 
center,

70 %

�′′ Flow rate to 
disposal 
center from 
repairing 
center,

20 %

�′′′ Flow rate to 
the second 
customer 
from repair-
ing center,

10 %

�� Flow rate 
from sup-
plier to 
manufactur-
ing

90 %

prii Availability 
coefficient 
of supplier i,

U(95,98) %

prmm Availability 
coefficient 
of manufac-
ture m,

U(95,98) %

prdd Availability 
coefficient 
of DC d,

U(95,98) %

pruu Availability 
coefficient 
of collection 
centers u,

U(95,98) %

prkk Availability 
coefficient 
of repairing 
centers k,

U(95,98) %

pree Availability 
coefficient 
of disposal 
centers e,

U(95,98) %

� Agility 
(responsive) 
rate

85 %
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Value for case 
study

Unit

�1 Minimum 
amount of 
suppliers is 
needed to 
activate,

3 Num

�2 Minimum 
amount of 
distributing 
centers is 
needed to 
activate,

3 Num

Decision variables

Binary variables 

xii Equal 1, if supplier i is estab-
lished; else 0,

xmm Equal 1, if manufacture m is estab-
lished; else 0,

xdd Equal 1, if DC d is established; 
else 0,

xuu Equal 1, if collection centers u is 
established; else 0,

xkk Equal 1, if repairing centers k is 
established; else 0,

xee Equal 1, if disposal centers e is 
established; else 0,

Continues variables 

qimimpts Forward quantity from supplier i 
to manufacture m for commodity  
p in period t  under scenario s,

qmdmdpts Forward quantity from manufac-
ture m to DC d for commodity  p 
in period t  under scenario s,

qdrdrpts Forward quantity from DC d to 
retailer r for commodity  p in 
period t  under scenario s,

qukukpts Backward quantity from collection 
centers u to repairing centers 
k for commodity  p in period t  
under scenario s,

qkekepts Backward quantity from repairing 
centers k to disposal centers e for 
commodity  p in period t  under 
scenario s,

qkmkmpts Backward quantity from repairing 
centers k to manufacturer m for 
commodity  p in period t  under 
scenario s,

qimimpts Forward quantity from supplier i 
to manufacture m for commodity  
p in period t  under scenario s,

qkvkvpts Backward quantity from repairing 
centers k to second customers 
v for commodity  p in period t  
under scenario s,

Auxiliary variables 

FC Summation of fixed cost,

VCs Summation of variable cost for scenario s,
Γs Summation of fixed and variable cost for scenario s,
� Covariate variables for linearization of the max function
Γ�
ts

Summation of fixed and variable energy for scenario s,
FE Summation of fixed energy,
VEts Summation of variable energy for scenario s,

Model 1 VCLSCND with considering robustness and 
risk.

subject to:
Forward flow quantity constraints:

Backward flow quantity constraints:

(1)min Z = (1 − �)
∑

s

psΓs + �
(max(Γs) + EVaR(Γs))

2
,

(2)Γs = FC + VCs,

(3)

FC =
∑

i

fiixii +
∑

m

fmmxmm +
∑

d

fcdxdd

+
∑

u

fuuxuu +
∑

k

fkkxkk +
∑

e

feexee,

(4)

VCs =
∑

p

∑

t

(
∑

i

∑

m

vsmimptsqimimpts +
∑

m

∑

d

vmcmdptsqmdmdpts

+
∑

d

∑

r

vdrdrptsqdrdrpts +
∑

r

∑

u

vruruptsqrurupts

+
∑

c

∑

k

vckckptsqckckpts +
∑

k

∑

e

vkekeptsqkekepts

+
∑

k

∑

m

vkmkmptsqkmkmpts +
∑

k

∑

v

vkvkvptsqkvkvpts),

∀s

(5)
∑

d

qdrdrpts + wwwdrpts ≥ drpts, ∀r, p, t, s

(6)
∑

m

qmdmdpts =
∑

r

qdrdrpts, ∀d, p, t, s

(7)
∑

i

qimimpts +
∑

k

qkmkmpts ≥
∑

d

qmdmdpts, ∀m, p, t, s

(8)
∑

u

qrurupts ≥ �drpts, ∀r, p, t, s
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Resiliency strategy with multi-resource strategy and flex-
ible capacity:

Sustainability constraint (allowed energy consumption):

(9)
∑

k

qukukpts =
∑

r qrurupts, ∀u, p, t, s

(10)
∑

m

qkmkmpts ≥ �
�

pt

∑

u

qukukpts, ∀k, p, t, s

(11)
∑

e

qkekepts ≥ �
��

pt

∑

u

qukukpts, ∀k, p, t, s

(12)
∑

v

qkvkvpts ≥ �pt
∑

u

qukukpts, ∀k, p, t, s

(13)
∑

i

qimimpts ≥ ��
∑

d

qmdmdpts, ∀m, p, t, s

(14)
∑

m

qimimpts ≤ priiCapsiptsxii, ∀i, p, t, s

(15)
∑

d

qmdmdpts ≤ prmmCapmmptsxmm, ∀m, p, t, s

(16)
∑

r

qdrdrpts ≤ prddCapddptsxdd, ∀d, p, t, s

(17)
∑

r

qrurupts ≤ pruuCapuuptsxuu, ∀u, p, t, s

(18)
∑

u

qukukpts ≤ prkkCapkkptsxkk, ∀k, p, t, s

(19)
∑

k

qkekepts ≤ preeCapeeptsxee, ∀e, p, t, s

(20)
∑

i

xii ≥ �1,

(21)
∑

d

xdd ≥ �2,

(22)Γ
�

ts ≤ Emaxts, ∀t, s

(23)Γ
�

ts = FE + VEts, ∀t, s

(24)
FE =

∑

i

eiixii +
∑

m

emmxmm +
∑

d

ecdxdd

+
∑

u

euuxuu +
∑

k

ekkxkk +
∑

e

eeexee,

Agile constraint (satisfaction demand):

Decision variables:

The objective function (1) minimizes a hybrid of the 
weighted expected, maximum, and EVaR of the cost func-
tion. This objective function improves robustness against 
demand fluctuation and considers the worst-case with max 
and EVaR function. Constraint (2) shows fixed and vari-
able costs for each scenario. Constraints (3) are the fix-
cost of running facilities. Constraints (4) have the variable 
cost of flow between facilities. Constraints (5) to (7) show 
the forward balance between facilities. Constraints (8) to 
(13) show the backward balance between reverse logistic 
facilities. Constraints (14) to (21) show resiliency strategy 
include the flexible facility capacity dependent on sce-
nario, multi-supplier, and multi-distribution. Constraints 
(22)–(25) guarantee that total energy consumption is less 
than maximum energy as a sustainability strategy (Pahl-
evan et al. 2021). Constraints (26) show the agile approach 
and ratio of total transshipment from DC d to retailer r 
for all demand in retailer is greater than the threshold. 
Constraints (27) are location variables, and if equal to one, 
the pillar of CLSC is established. Constraints (28) are flow 
forward and backward variables.

Linearizing of max and absolute function

Linearizing max function and absolute function is as 
follows:

If k = max(Ωs), therefore, we can replace these con-
straints with k ≥ Ωs, ∀s.

If  k = |

|

Ωs
|

|

, therefore,  we can replace abso-
lu te  funct ion wi th  these  const ra in ts  to  the 
model:k = �s + �s, Ωs = �s − �s, �s, �s ≥ 0, ∀s.

(25)

VEts =
∑

p

(
∑

i

∑

m

esmimptsqimimpts +
∑

m

∑

d

emcmdptsqmdmdpts

+
∑

d

∑

r

edrdrptsqdrdrpts +
∑

r

∑

u

eruruptsqrurupts

+
∑

c

∑

k

eckckptsqckckpts +
∑

k

∑

e

ekekeptsqkekepts

+
∑

k

∑

m

ekmkmptsqkmkmpts +
∑

k

∑

v

ekvkvptsqkvkvpts),

∀t, s

(26)

∑

d

∑

r

∑

p

∑

t

∑

s

qdrdrpts

∑

r

∑

p

∑

t

∑

s

drpts
≥ � ,

(27)
xii, xmm, xdd, xrr, xuu, xkk, xee ∈ {0, 1}, ∀i,m, d,

r, u, k, e

(28)
qimimpts, qmdmdpts, qdrdrpts, qrurupts,

qckckpts, qkekepts, qkmkmpts, qkvkvpts ≥ 0,

∀i,m, d,

r, u, k, e.
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Linearizing of VCLSCND

It is better to change objective function (1) from Non-Linear 
to Linear Programming (LP) by operational research method 
in a two-step to decrease the time solution (Lotfi et al. 2021a; 
Tirkolaee et al. 2022b). We can add covariate variable for min-
imax function and use formulation EVaR (Lotfi et al. 2021f):

Step 1 Linearizing of model 1

Subject to:

Constraints (2)-(28).
Step 2 Linearizing of model 1

Subject to:

Constraints (2)–(28).

Complexity of VCLSCND

When linearization is done, the problem changes from 
Mixed-Integer Nonlinear Programming (MINLP) to LP, and 
the model complexity and speed of solving decrease for the 
commercial solver. The complexity of the main model is cal-
culated in Eqs. (36) to (39) and includes the amount of binary, 
free, non-negative variables and numbers of constraints:

(29)min Z = (1 − �)
∑

s

psΓs + �
(� + EVaR(Γs))

2
,

(30)

EVaR(Γs) =
�

s

psΓs +
�

s

ps

�

�

�

�

�

Γs −
�

s

psΓs

�

�

�

�

�

√

−2Ln(�),

(31)� ≥ Γs, ∀s

(32)min Z = (1 − �)
∑

s

psΓs + �
(� + EVaR(Γs))

2
,

(33)EVaR(Γs) =
�

s

psΓs +
�

s

ps(vas + vbs)
√

−2Ln(�),

(34)Γs −
∑

s

psΓs = vas − vbs, ∀s

(35)vas, vbs ≥ 0, ∀s

(36)Binary variables = |I| + |M| + |D| + |U| + |K| + |E|,

(37)

Positive variables = |P|.|T|.|S|(|M|(|I| + |D|) + |R|(|D| + |U|) + |K|(|U|

+|E| + |V| + |M|) + |R|) + 2|S|,

(38)Free variables = 7 + 2|S|(1 + |T|),

The number of constraints and positive and free variables 
is dependent on the scenario and uses algorithms for sce-
nario reduction like fix-and-optimize to solve and generate 
the best upper in minimum time.

Fix‑and‑optimize (upper bound)

The fix-and-optimize is an algorithm to decrease the scale 
of this problem and produce the best upper bound in mini-
mum time. The steps of the new fix-and-optimize that are 
proposed a suitable upper bound are shown in Fig. 3.

You know that constraint relaxation produces an upper 
bound, and the model’s output is equal to or greater than 
the main objective function ((Lotfi et al. 2021d). By fixing 
the binary variables, we obtain an appropriate upper bound 
that is bigger or equal to the main model (Helber & Sahling 
2010).

The steps of fix-and-optimize are as follows:

(39)

Constraints = 7 + |S|(4 + 3|T|) + |P|.|T|.|S|(2|R| + 2|D|

+3|M| + |I| + 2|U| + 4|K| + |E|).

Start

Solve the model by 

relaxing binary decision 

variables and change to 

between zero and one 

(lower bound)

Summation on binary 

variables for every index 

that now positive 

variables and round to up,

Feasible and 

optimal?
Yes

Check Terminate 

Condition?

No

Yes
Sort output based on kind 

of objective

Finish

Run and solve the model 

with number of fix 

summation binary 

variable based on the 

previous step

Take upper 

bound, and save 

it

No

Fig. 3  Fix-and-optimize solution approach (upper bound)
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1. Selecting and changing binary variable to linear 
(between zero and one) and obtaining optimal linear 
(relax constraint (27)),

2. We gain a lower bound after solving step 1, and our 
model is entirely linear,

3. Loop:

a. Summarizing linear variables that we calculate in 
the previous step for each index and rounding them 
up,

b. Solving the model with a new linear variable,
c. If the model gains optimal value, we save the objec-

tive function as an upper bound in a list,
d. Loop until stop criteria,

4. Sorting list based on ascending objective function and 
report list.

Using this algorithm makes to decreases the time solu-
tion. Therefore, this algorithm’s complexity includes 

removing binary variables, but free, non-negative vari-
ables and constraints are the same as Eqs. (37)–(39).

Results and discussion

The case study of this research is the automotive indus-
try. We mine data by running meetings with managers 
of the SC. Therefore, we assign parameter values in 
the notation list based on the case study information 
because there are many parameters. The automotive 
industry has value-added because of the process of 
materials. Consequently, we should keep these materi-
als and return them to the economy. This subject is one 
of the circular economy pillars. In this case, we have 
a new company that wants to establish all components 
of CLSC, including customers, retailers, distributing 
centers, manufacturers, suppliers, recovery center, 
repairing center, disposal center, and second customer 

Supplier (i)

Manufacturer 

(m)

Distributing 

center (d)

Retailer (r)

Customer

Collection 

centers (u)

Repairing 

centers (k)

Disposal 

centers (e)

Second 

customers (v)

Fig. 4  Suitable locations for the facilities
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(Fig. 4). We applied the configuration: CPU 3.2 GHz, 
Processor Core i3-3210, 6.00 GB RAM, 64-bit oper-
ating system. We utilized the GAMS-CPLEX solver 
to attain optimal value. After running the model, we 
received cost and energy consumption and determined 
them in Table 2, Table 3, and Fig. 5. As can be seen, 
the cost function is 61369.620, and the energy con-
sumption is 37.1553.

Comparing viability and without viability

We compare the main problem in the situation with viability 
and without viability. As can be seen, the cost of P1-viable is 
less than P1-without considering viability and has a − 0.44% 
gap, and the energy consumption is greater than P1-without 
viable and has a 47.94% gap (cf. Table 4).

Effects on the conservative coefficient

This section changes the conservative coefficient ( � ) 
between 0 and 100%. The cost function and energy con-
sumption increase by increasing the conservative coeffi-
cient, and the time solution grows and then grows down (cf. 
Table 5, Fig. 6, Fig. 7, and Fig. 8).

Effects on the confidence level

We change the confidence level (�) between 1 and 10% in 
this section. The cost function and energy consumption 
increase by increasing the confidence level, and the time 
solution first increases and then grows down (cf. Table 6, 
Fig. 9, Fig. 10, and Fig. 11).

Effects on the maximum energy

This section changes the maximum energy (Emaxts) between 
20 and 37 MW. Increasing the maximum allowed energy 
decreases the cost function (Table 7 and Fig. 12).

Effects on the scale of the main model

In this section, we change the scale of the main model. By 
increasing the scale of the main model, the cost function, 
time solution, and energy consumption grow smoothly (cf. 
Table 8, Fig. 13, Fig. 14, and Fig. 15).

Upper bound for the main model

This section produces an appropriate upper bound for 
the large-scale problem. We suggested applying the Fix-
and-Optimize algorithm (Lotfi et al., 2021b). As can be 
seen, the gap between this algorithm and the main prob-
lem for cost, energy, and time solution is approximately 
6.10%, − 8.28%, and 75.01% (cf. Table 9, Fig. 16, Fig. 17, 
and Fig. 18).

Discussion

As can be seen, we show a CLSCND with a viable approach 
that integrates resiliency, sustainability, and agility for the 
first time. The case study is automotive production. The 
advantages of the model against the others given in the 
literature, we cannot see VCLSND in the literature review 
when surveying related work. There are only Lotfi et al. 
2021d, f and Fazli-Khalaf et al. (2021) that are close to our 
research, but they did not consider agility and risk com-
pletely. We suggest both resilience strategies (the flexible 
capacity facility, multi-resource) that is not applied in the 
previous studies.

In addition, this model integrates resilience strat-
egy through the f lexible capacity facility, multi-
resource (supplier and distr ibution), sustainable 
approach through presenting energy consumption 
constraints, and agile method by offering satisfaction 

Table 2  Number of sets, variables, and constraints of the case study

Problem |i|.|m|.|d|.|r|.|u|.

|k|.|e|.|v|.|p|.|t|.|s|

Binary var Positive var Free var Constraint Cost (TDollar) Energy (MW) Time (second)

P1-main 3.3.3.3.3.3.3.3.3.3.3 18 2031 31 1263 61,369.620 37.1553 1.758

Table 3  Final location for the facility of VCLSC

Problem Variables City

P1 Supplier ( xii) Chabahar Bandarabas Abadan
1 1 1

Manufacture
(xmm)

Zahedan Esfahan Ilam
0 1 0

Distributing
(xdd)

Khoramabad Esfahan Birjand
1 1 1

Collection
(xuu)

Zanjan Tehran Mashhad
0 1 0

Repairing ( xkk) Qazvin Tehran Sabzevar
0 1 0

Disposal ( xee) Rasht Semnan Ghochan
0 1 0
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demand. Also, we suggest a new form of cost function 
for robustness against demand disruption. This form 
includes minimizing the weighted expected, maximum, 
and EVaR cost function that was not considered in the 
previous study.

This research includes a VCLSCND that contains cus-
tomers, retailers, distributing centers, manufacturers, sup-
pliers, recovery centers, repairing centers, disposal centers, 
and second customers. We want to locate a resilience facil-
ity and determine flow quantity. Because we add agility con-
straints (satisfaction demand), resiliency constraints (multi-
resource strategy and flexible capacity), and sustainability 

constraints (maximum allowed energy consumption), this 
model has a novel contribution and cannot compare with 
other models. As a result, we compare our model with a 
situation in which we do not consider viability. We found 
that the cost function of VCLSCND is almost − 0.44% less 
than without viability.

In addition, we run sensitivity analysis on essential 
parameters. Variation on the conservative coefficient shows 
that rising the conservative coefficient increases the cost 
function and energy. Variation in confidence level explains 
that the cost function and energy will decrease by increas-
ing the confidence level. Increasing the maximum allowed 
energy reduces the cost function, too.

While variation on the scale of the model increases 
the cost function, time solution, and energy consump-
tion grow smoothly. Finally, we produce an appropriate 
upper bound by the Fix-and-Opt algorithm for large-scale 
models. The gap between the upper bound and primary 
model is tiny.

Viable closed loop supply 

chain

Forward

Backward

Supplier (i)

Manufacturer 

(m)

Distributing 

center (d)

Retailer (r)

Customer

Collection 

centers (u)

Repairing 

centers (k)

Disposal 

centers (e)

Second 

customers (v)

Fig. 5  Final location of the facility for VCLSC

Table 4  Compare model P1-viable and without viable

Model P1-viable P1-without viable Gap

P1 Cost (TDollar) 61,369.6 61,637.3 -0.44%
Energy (MW) 37.1553 19.3413 47.94%
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Managerial insights and practical 
implications

In this section, we attract managers’ attention to mana-
gerial insights and practical implications. According to 
the environmental, energy, and social impacts on people’s 
lives, designing SCN is very important because SC affects 
production, employment, welfare, and posterity’s fate. One 
of the best models in this scope is the CLSC. The CLSC 
considers forward and backward products and returned 
products. This research shows VCLSC includes resiliency 

in facilities, environmental sustainability, and energy and 
agility in responsibility for the first time. Paying attention 
to resiliency makes it robust again demand and risk vari-
ation. The requirements of sustainability force to observe 
energy consumption, emission, and waste management. 
Although, we focus on the energy problem, one of Iran’s 
sustainable problems. Finally, we try to limit CLSC by 
energy constraints. Regarding resiliency, we utilized flex-
ible capacity as a resiliency strategy. We added the rate of 
responsiveness as an agile constraint.

As a result, we compare our model with a situation in 
which we do not consider viability. We found that the cost 
function of VCLSCND is almost − 0.44% less than without 
viability. Also, Variation on the conservative coefficient 
shows that rising the conservative coefficient increases the 
cost function and energy. A variation in confidence level 
explains that the cost function and energy will decrease by 
increasing the confidence level. Increasing the maximum 
allowed energy reduces the cost function, too.

As SC managers, we should move to the viable SC and 
use methods to improve resiliency. Moreover, considering 
environmental requirements increase social responsibility. 
Finally, we need to design a global CLSC that observes 
all helpful concepts until resisting demand fluctuation and 
natural disasters.

Table 5  Effects of conservative 
coefficient ( �)

Problem Conservative 
coefficient ( �)

Cost (TDollar) Energy (MW) Time (second) Cost variation

P1 0% 61,366.123 29.4147 0.408  − 0.01%
25% 61,368.001 25.5527 0.933  − 0.003%
50% 61,369.620 37.1553 1.758 0%
75% 61,369.661 37.178 2.096 0.0001%
100% 61,369.662 37.7643 1.078 0.0001%

Fig. 6  Effects of cost function based on conservative coefficient ( �)

Fig. 7  Effects of energy based on conservative coefficient ( �) Fig. 8  Effects of time solution based on conservative coefficient ( �)
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Conclusions and outlook

This research suggests sustainability, agility, and resil-
iency for CLSC and develops VCLSC by considering risk 
and robustness in the circular economy for the first time. 
We applied a new robust stochastic optimization and a new 
form of robustness for the objective function. By mini-
mizing the weighted expected, maximum, and EVaR cost 
function, we suggest robustness against demand fluctua-
tion. Finally, we located suppliers, manufacturers, distrib-
uting, collection, repairing, and disposal centers. Eventu-
ally, we assigned flow on the forward and backward of 
CLSC.

The findings are as follows:

Table 6  Effects of confidence 
level (�) 

Problem Confidence 
level ( �)

Cost (TDollar) Energy (MW) Time (Second) Cost variation

P1 1% 61,369.632 37.178 1.792 0.00%
2% 61,369.627 37.178 0.693 0.000%
5% 61,369.620 37.1553 1.758 0%
8% 61,369.613 25.5527 1.043 0.0000%
10% 61,369.496 25.5527 0.807  − 0.0002%

Fig. 9  Effects of cost function based on confidence level (�) 

Fig. 10  Effects of energy based on confidence level (�) 

Fig. 11  Effects of time solution based on confidence level (�) 

Table 7  Effects of the allowed maximum energy

Problem Maximum 
energy 
(MW)

Cost (TDol-
lar)

Time (sec-
ond)

Cost variation

P1 20.000 61,370.200 4.346 0.00095%
21.667 61,369.635 6.479 0.00002%
23.333 61,369.625 1.536 0.00001%
33.333 61,369.620 1.27 0.00000%
37.155 61,369.620 1.758 0%

Fig. 12  Effects of the cost function based on allowed maximum 
energy
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1. As can be seen, the cost of P1-viable is less than 
P1-without viable and has a − 0.44% gap and the energy 
consumption is greater than P1-without viable and has a 
47.94% gap (cf. Table 4).

2. The cost function and energy consumption increase by 
increasing the conservative coefficient, and the time 
solution grows and then grows down (cf. Table 5, Fig. 6, 
Fig. 7, and Fig. 8).

3. The cost function and energy consumption increase by 
increasing the confidence level, and the time solution 
increases and then grows down (cf. Table 6, Fig. 9, and 
Fig. 10).

4. Increasing the allowed maximum energy decreases the 
cost function (cf. Table 7 and Fig. 12).

5. By increasing the scale of the main model, the cost 
function, time solution, and energy consumption grow 
smoothly (cf. Table 8, Fig. 13, Fig. 14, and Fig. 15).

6. We suggested applying Fix-and-Optimize algorithms. 
As can be seen, the gap between this algorithm and 
the main problem for cost, energy, and time solution is 
approximately 6.10%, − 8.28%, and 75.01% (cf. Table 9, 
Fig. 16, Fig. 17, and Fig. 18).

The limitation of this research is solving the large-
scale in minimum time. It is better to use exact algo-
rithms like Benders decomposition, Lagrange relaxation, 
and meta-heuristic algorithms (Fakhrzad & Lotfi 2018; 
Lotfi et al. 2017; Lotfi et al. 2021f). Eventually, we can 
suggest using other resilience and sustainable strategies, 
including green backup suppliers, decreasing node com-
plexity, and trading carbon to increase resiliency and 
sustainability.

Table 8  Cost and time solution for several problems

Problem |I|.|M|.|D|.|R|.|U|.

|K|.|E|.|V|.|P|.|T|.|S|

Binary 
variable

Positive variable Free variable Constraint Cost (TDollar) Energy (MW) Time (second)

P1 3.3.3.3.3.3.3.3.3.3.3 18 2031 31 1263 61,369.6 37.1553 1.813
P2 4.4.4.4.4.4.4.4.4.4.3 24 6342 37 2937 63,735.2 68.194 11.866
P3 5.5.5.5.5.5.5.5.5.5.3 30 15,381 43 5691 68,872.3 146.085 30.37
P4 5.5.5.5.5.5.5.5.5.5.5 30 25,635 67 9479 63,577.8 194.781 141.752
P5 6.6.6.6.6.6.6.6.6.6.5 36 52,930 77 16,319 66,152.4 264.549 488.459
P6 7.7.7.7.7.7.7.7.7.7.3 42 58,659 55 15,519 63,755 225.192 331.039
P7 7.7.7.7.7.7.7.7.7.7.7 42 136,871 119 36,199 60,187.3 263.24 1999.56

Fig. 13  Effects of scale on cost function

Fig. 14  Effects of scale on energy consumption

Fig. 15  Effects of scale on-time solution
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Furthermore, applying other risk criteria like robust 
conditional value at risk (RCVaR) helps consider the risk 
method (Lotfi et al. 2021b; Zare Mehrjerdi & Lotfi 2019). 
Other uncertainties like stochastic programming and robust 
optimization (convex) make it close to the real world (Lotfi 
et al. 2021c; Tirkolaee et al. 2021). In addition, fuzzy and a 
data-driven robust optimization approach is advantageous 
for a risk-averse decision-maker in the recent decade. Even-
tually, applying open innovation, learning, Internet-of-Thing 
(IoT) (De Vass et al. 2021), RFID, renewable energy (Lotfi 
et al. 2021b), and blockchain will improve SC agility, viabil-
ity, and antifragility.

Author contribution Reza Lotfi: conceptualization, supervision, soft-
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Table 9  Comparing the main model with the fix-and-opt algorithm

Problem Main model (A) Fix and opt. Upper bound (B) Gap1% Gap2% Gap3%

Cost (TDollar) Energy (MW) Time (second) Cost (TDollar) Energy (MW) Time (second)

P1 61,369.6 37.1553 1.813 62,379.371 25.552 1.26 1.65%  − 31.23%  − 30.50%
P2 63,735.2 68.194 11.866 68,429.45 53.964 3.963 7.37%  − 20.87%  − 66.60%
P3 68,872.3 146.085 30.37 75,416.461 142.684 8.167 9.50%  − 2.33%  − 73.11%
P4 63,577.8 194.781 141.752 67,567.129 188.597 8.792 6.27%  − 3.17%  − 93.80%
P5 66,152.4 264.549 488.459 70,046.681 269.233 19.792 5.89% 1.77%  − 95.95%
P6 63,755 225.192 331.039 69,033.324 202.309 88.976 8.28%  − 10.16%  − 73.12%
P7 60,187.3 263.24 1999.56 62,457.67 284.295 160.723 3.77% 8.00%  − 91.96%

Average 6.10%  − 8.28%  − 75.01%

Fig. 16  Comparing cost function of main model and fix-and-opt

Fig. 17  Comparing energy consumption of main model and fix-and-
opt

Fig. 18  Comparing time solution of main model and fix-and-opt 
algorithm
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