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Abstract

As acquiring bigger data becomes easier in experimental brain science, computational and 

statistical brain science must achieve similar advances to fully capitalize on these data. Tackling 

these problems will benefit from a more explicit and concerted effort to work together. 

Specifically, brain science can be further democratized by harnessing the power of community-

driven tools, which both are built by and benefit from many different people with different 

backgrounds and expertise. This perspective can be applied across modalities and scales and 

enables collaborations across previously siloed communities.
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CHALLENGES IN BIG NEURAL DATA

The ability to collect and store brain data has grown exponentially over the past few decades. 

Petabytes (PBs) of anatomical, functional, and genetic data are being recorded with an ever-

growing, ever-improving set of technologies. While some data have relatively specific needs, 

many large data sets, especially large imaging data sets, share a set of problems. This is true 

across imaging modalities, scales, and species. Therefore, there is an emerging opportunity 

to work together to efficiently develop the next generation of tools that are beneficial across 

subdisciplines and scales of brain science. To do so, however, will require overcoming 

a number of challenges. Our understanding of these challenges and opportunities can be 

informed by what big data means.

Computer Science Perspective

From a computer science perspective, the size of the data relative to the computer’s 

hardware is key to determining whether data are big. For example, if the data are small 

enough to fit into a computer’s main memory, but the calculations require more memory 

than the data (e.g., matrix inversion), then they are already big in a very practical way and 

require new analysis. If the data are so large that they cannot fit in the computer’s main 

memory, new visualization and analysis techniques are required; and if the data are too large 

to fit in a single computer’s storage drives, then new storage infrastructure is required. These 

scales of big data are context specific and depend on the particular hardware constraints 

(Figure 1). For example, for mobile computing devices, even a gigabyte might be big, 

whereas for servers, several terabytes (TB) would not yet be considered big. Regardless, at 

each scale, similar challenges must be overcome.

The main challenge is in constructing computational infrastructure that can efficiently work 

with such large data. Whereas little data can be stored in standard file formats, visualized 

in typical desktop applications, analyzed using single file scripts, and accessed by double 

clicking, all of these functionalities break down for big data. Instead, we rely on databases 

for storage, Web-visualization tools, and distributed computing for analysis. Brain sciences 

are leveraging and modifying tools developed by other sciences and industries for some of 

these functionalities and developing others from scratch for our unique needs.

Statistics Perspective

From the perspective of statistics, data are big whenever the number of features (or 

dimensions) exceeds the number of samples. Such data, sometimes called wide data or 

high-dimensional low-sample-size data, suffer from the large p small n problem, also known 

as the curse of dimensionality. When data are big from a computational perspective, new 

computational tools are required, whereas when data are big from a statistical perspective, 

new statistical tools are required.
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The main challenge here is that the traditional bedrock of statistical theory and practice has 

focused on asymptotic results that assume an effectively infinite number of samples relative 

to the number of features. For wide data, such assumptions fail to sufficiently restrict the 

set of potential answers to many quantitative questions. For example, linear regression on 

a single point permits an infinite number of solutions, but only an infinitesimally small 

number of them will be useful for predicting future points. Worse yet, as the number of 

dimensions increases, estimates of uncertainty require an exponentially increasing number 

of samples (unless they have strong prior knowledge). For these reasons, great care 

is required to arrive at valid and reproducible conclusions when leveraging wide data. 

Specifically, latent structures must be inferred, either explicitly or implicitly, and domain 

knowledge must restrict the search space to biologically sensible answers.

Approaches

For both sets of challenges, new ideas are required to overcome them, and new software 

is required to implement them. Both ideation and implementation greatly benefit from a 

global democratized science where anybody with interest can actively contribute. We have 

found that the most effective means for software development in this era of big data brain 

science is collaborative and open development (Vogelstein et al. 2018b). For this reason, 

we highlight a number of tools that are actively developed to overcome these challenges. 

We hope that this review will inspire others to contribute to these toolboxes rather than 

develop their own, typically poorly supported and non-sustainably developed, toolboxes. In 

our experience, community-developed toolboxes have a greater chance of providing more 

user support and sustainable development practices.

In the history of big data science, a common thread is that community standards emerge 

only after a data set of great community interest emerges (Burns et al. 2014). Two prominent 

examples are genetics and cosmology. When the first human genome was published, many 

in the field wanted to study it. This incentivized the development of tools specifically 

for operating on data in the format used for the first human genome. When other labs 

began generating other human genomes, they were incentivized to use the same format, 

as they had access to the previously developed tools. This pattern repeated as the format 

became a standard. Note that the incentive structure was internally rather than externally 

imposed. That is, the standard emerged because it immediately and obviously helped the 

researchers. Importantly, this included not just professors (who mostly do not do the work) 

but also graduate students and technicians (who mostly do the work). By aligning incentives, 

genetics (and also cosmology) was able to develop practices in support of open science and 

community standards, which greatly accelerated the field’s collective science. Of course, 

differences between fields, such as the wide variety of measurement modalities, scales, and 

taxa, create new challenges in neuroscience not seen before. Regardless, many of the same 

lessons hard learned in other domains stand to benefit how neuroscience approaches the 

big-data problem and accelerate solutions.

Brain sciences, for the most part, are yet to adopt community standards. We believe this 

is largely due to a lack of community-supported open data sets. Nonetheless, we are close. 

Here we first discuss the various subdisciplines that are facing these challenges. For each, 
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we reference big data sets (Table 1) and tools (Table 2) that either already exist or could 

exist soon. For each modality, several spatial scales are considered. It is our hope that 

by understanding the shared challenges across scales and modalities, our community will 

further engage in community-led and community-developed data sets and analysis tools 

(Figure 2).

BIG DATA

We partition the kinds of data acquired in brain science into physiology (dynamics), 

anatomy (structure), and genetics (blueprint). The boundaries between these three areas 

are admittedly fuzzy. The structure of one’s brain is dynamic over one’s life span. 

Moreover, gene expression varies both spatially and temporally across an individual’s brain. 

Nonetheless, existing experimental methods and data sets for the most part investigate just 

one of the three areas. Because all three share certain challenges, building tools to address 

any one of them could accelerate discovery in the others, or better, unify the study across all 

three.

For each experimental modality, we list a potential reference data set. Reference data sets 

are data sets that are (a) of great interest to a large fraction of the community, (b) expensive 

to acquire, and (c) community driven (rather than top-down, i.e., a large fraction of the 

community collectively decided that such a data set would be highly valuable rather than 

a single institution producing such a data set). There are counterexamples to each of these; 

nonetheless, we find the above three principles to be helpful guidelines and provide a 

summary table of useful references across data types (Table 1). As this review is limited 

in space, we provide more complete discussions and reference lists in the Supplemental 

Appendix 1.

Big Dynamics

Physiological data are rapidly growing with advances in recording technologies across 

scales, including electrophysiology, optophysiology (voltage and calcium imaging), and 

magnetophysiology [i.e., functional MRI (fMRI)]. Current calculations even demonstrate a 

feasible path to simultaneous recording of every neuron in the brain (Marblestone et al. 

2013). The particulars of each modality have led to different tools for different scales, often 

without considering their applicability to other scales (Figure 3). We believe developing 

shared methods would accelerate discovery across modalities.

Microphysiology: electrophysiology and optical microscopy.—On the micron 

scale, electrical and optical recordings provide systems neuroscience with rich access to 

population-level activity at single-neuron resolution. While electrophysiology remains the 

most established modality at this scale, even major advances in electrode densities have 

not yet brought these data sets to the scale of big data (Jun et al. 2017). Large-scale 

collaborations [e.g., the International Brain Lab (Int. Brain Lab. 2017)] and theorized 

technologies (Marblestone et al. 2013), however, promise a future for big electrophysiology. 

Optical imaging, on the other hand, and calcium imaging in particular have recently crossed 

the big data threshold and are continuing to grow with new technologies (Beaulieu et 

al. 2018, Hillman et al. 2018, Song et al. 2017) and chronic recording. Recently, both 
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algorithmic toolboxes (Giovannucci et al. 2019, Pachitariu et al. 2017) and open data 

sets (e.g., Neurofinder) have been disseminated. The most promising public data set for 

community reference is the Allen Institute Mouse Brain Observatory; however, it remains to 

be seen if the top-down nature of the experimental design will impair widespread adoption. 

Nonetheless, recent activity and investment from prominent institutions and large-scale 

collaborations promise community-driven pipelines and analysis in the near future.

Mesophysiology: functional MRI.—There is a long history in fMRI of data availability, 

reference data sets, open resources, and code. The increase in quality, scale, and diversity of 

data acquisition has been paralleled by extensive algorithmic and infrastructure development 

as well as progress in social and scientific norms for reproducibility and knowledge 

representation. A few existing open data sets have the potential to become widely used 

and catalyze analytical synergy (Bycroft et al. 2018, Mueller et al. 2005, Van Essen et 

al. 2013). There remain, however, challenges in the fMRI community. Perhaps the most 

severe challenge is a lack of standard pipelines (Bridgeford et al. 2019, Kiar et al. 2018), 

which hampers reproducibility and validation and is further exacerbated by the difficulty of 

harmonizing data across experiments (Yu et al. 2018). For these reasons, the Configurable 

Pipeline for the Analysis of Connectomes (C-PAC) incorporates many pipelines. While 

not community driven, it incorporates community-developed algorithms and is gaining in 

prominence and flexibility.

Macrophysiology: behavior.—Interest in quantifying animal behavior, particularly in 

naturalistic settings, has recently grown due to its promise as a low-cost and noninvasive 

measurement of structure and variability in nervous systems (Gomez-Marin et al. 2014, 

Krakauer et al. 2017). Facilitated by open source assembly schematics and cheap fabrication 

techniques, behavioral monitoring systems collecting big data sets are becoming a staple in 

neuroscience laboratories. Traditionally limited by subjective and laborious manual scoring, 

the signals in behavioral data can now be automated and more objectively quantified due 

to advances in computer vision and machine learning (Graving et al. 2019, Pereira et al. 

2019). These methods enable general purpose pose estimation (Graving et al. 2019, Mathis 

et al. 2018, Pereira et al. 2019), permitting the inference of postural dynamics necessary for 

understanding behavior in the context of the brain.

Interpretation of large-scale movement data with respect to the brain, however, remains 

a challenge (Gomez-Marin et al. 2014). Recent approaches using either unsupervised or 

supervised approaches have begun to succeed in mapping behavioral patterns to their neural 

substrates (Markowitz et al. 2018, Vogelstein et al. 2014). Despite this progress, there are 

no behavioral data sets poised to become reference data sets nor any community reference 

pipelines, presenting a significant opportunity for development.

Big Anatomy

The study of brain anatomy actually predates that of brain physiology, as the macroscale 

structure of the brain is readily measurable using relatively simple technology. Yet, the 

quantitative study of physiology, at least at the cellular scale, predates computational 

anatomy by nearly 50 years (Miller et al. 2015). Perhaps this is because physiology 
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data can be one-dimensional (a single electrode’s time series), whereas anatomy is 

fundamentally three-dimensional (3D). Or perhaps it is because signal processing exploded 

as a computational discipline in the 1950s with Shannon’s communication theory, whereas 

the spatial statistics community remained relatively small and focused on geostatistics. In 

either case, in the twenty-first century there is an abundance of big anatomy data available 

across scales.

Nanoanatomy: electron microscopy.—Studying brain circuitry at nanoscale resolution 

using electron microscopy (EM) allows for the recovery of a complete wiring diagram 

of chemical synapses and, with higher resolution, also gap junctions and intracellular 

organelles. This level of detail also requires extremely large image volumes. A few large 

EM data sets are poised to become community reference data sets [Eichler et al. 2017, Knott 

et al. 2008; MICrONS (https://www.iarpa.gov/index.php/research-programs/microns)], but 

only one is currently properly supported: a data set of a full adult Drosophila brain (Zheng 

et al. 2018). Each of these data sets must be painstakingly aligned and segmented (Figure 

4), both tasks being active areas of research, with no one tool being easy or automatic to 

use. For nonlinear registration, an elastic tool in Fiji is most popular, though it currently does 

not adequately scale (Saalfeld et al. 2012). We suspect that the EM community can benefit 

from advances in nonlinear registration developed by the MRI community, specifically 

in large deformation diffeomorphic metric mapping (LDDMM) (A.B. Miller et al. 2018), 

preliminary implementations of which are available using SciPy, ITK, and PyTorch. For 

segmentation and identification of subcellular structures (e.g., synapses), the most promising 

approaches leverage convolutional neural networks (CNNs). None of these tools, however, 

are plug-and-play yet. A further challenge for EM data is sustainability: Somebody must 

fund the continued storage of these PB-sized data sets for community analysis tools to be 

developed around them.

Microanatomy: light microscopy.—At the micron scale, labeling of individual cells 

plays a key role in brain science research. Unlike in EM, fluorescence probes can be 

designed based on genetic and environmental input to answer very specific questions about 

cellular function and connectivity. While traditional imaging methods involve slicing tissue 

and examining a small number of regions of interest under a standard light microscope, new 

technologies are allowing larger volumes of tissue or entire brains to be analyzed.

Like EM, several emerging data sets could become community references. The Mouse Brain 

Architecture Project (Bohland et al. 2009) provides hundreds of such samples for injection-

based tractography such that, across the population, the injections cover the whole brain. 

The MouseLight project (Winnubst et al. 2019) uses cleared tissue (Chung & Deisseroth 

2013, Renier et al. 2014) in combination with a block-face serial two-photon tomography 

strategy to achieve the best of both worlds, imaging a sparsely labeled set of cells at very 

high spatial resolution and avoiding registration problems (Narasimhan et al. 2017, Kim et 

al. 2017). Finally, the Allen Institute for Brain Science has a large portal with a wide variety 

of reference data sets. To date, there are no widely adopted pipelines for analysis of these 

data, though there are some disparate tools. The most widely used linear stitching tool is 
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TeraStitcher (Bria & Iannello 2012). Like EM data, light microscopy data could benefit from 

the registration tools developed for MRI, if the tools could be scaled up.

Macroanatomy: structural and diffusion MRI.—At the macroscopic scale, anatomical 

analysis will generally involve segmenting the brain into well-characterized and often 

hierarchical regions of interest and quantifying their structure and function. Reference data 

sets for macroscale anatomy are the same for macroscale physiology, since experiments 

tend to acquire both. Similar to fMRI, there are many widely used tools and no community 

standards. DiPy is emerging as a suite of algorithms (Garyfallidis et al. 2014), and ndmg 

is a newly available optimized pipeline (Kiar et al. 2018). However, choosing the optimal 

pipeline (Bridgeford et al. 2019) and harmonizing across data sets (Fortin et al. 2017, 

Mirzaalian et al. 2017) are important open problems.

Big Genetics

A third kind of big data in brain science is genomics and transcriptomics. Both fields have 

recently exploded due to the exponential drop of DNA sequencing costs over the last two 

decades and are rapidly generating multitudes of sequencing data sets of ever-increasing 

size. Specifically, single-cell RNA sequencing (scRNAseq) that queries gene expression on 

a cell-by-cell level has rapidly spread in brain science (Svensson et al. 2017). In contrast to 

Big Anatomy and Big Dynamics applications, genomics and transcriptomics have wrestled 

with questions of big data storage, efficient analysis, and data sharing for many years, as 

sequencing data sets have been widespread and existed in the shifting domain of big data 

for some time. As a result, the majority of steps in the processing of sequencing data are 

relatively standardized and efficient, at least from the end user perspective.

Nanoscale: in situ transcriptomics.—In addition to Illumina-based single-cell 

transcriptomics, a rapidly evolving set of in situ transcriptomic techniques (Chen et al. 

2015, Lee et al. 2014, Lein et al. 2017, Wang et al. 2018) is appearing on the big data 

landscape of brain science. These methods probe gene expression levels with subcellular 

resolution inside tissue sections, providing spatial information lost in traditional single-cell 

sequencing. Any experiment probing even a small fraction of a brain can generate several 

TB of raw data, and data volumes will only increase. These images must be registered across 

sequencing cycles, and messenger RNA signals need to be detected, segmented, and finally 

decoded to produce a table of gene identity and position in the imaged area. In contrast to 

the relatively established pipelines for Illumina sequencing data, however, the challenges of 

how to best handle big data challenges, including sharing, processing, and archiving, in in 

situ transcriptomics are unresolved and will require new, unified analysis pipelines.

Microscale: single-cell RNA sequencing.—In contrast to standardized preprocessing 

of sequencing data sets, work is currently underway to improve the analysis of the 

count matrix from scRNAseq. While from a big data perspective the count matrix of a 

scRNAseq experiment is relatively small, the ever-increasing number of cells profiled—

already exceeding 105 and soon 106 cells—poses analysis challenges. These challenges are 

very similar to other big matrix challenges, including normalization procedures (Hafemeister 

& Satija 2019), matrix completion (Andrews & Hemberg 2019, Huang et al. 2018, van Dijk 
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et al. 2018), dimensionality reduction, clustering, and data integration across experiments 

(Stuart et al. 2019, Welch et al. 2019). Many of these analyses are bundled in R or Python 

suites [e.g., Seurat (Stuart et al. 2019) and Scanpy (Wolf et al. 2018)], or as stand-alone 

packages. In addition, an HDF5-based, single-cell-specific data format (Loom) allows 

efficient access to the count matrix such that it need not be held in memory and is beginning 

to be integrated in analysis suites.

Mesoscale: tissue-specific gene expression profiles.—In genomics, as we coarsen 

the spatial scale, the data get increasingly smaller. Once we move beyond single-cell data 

to tissue-level data, the data are no longer particularly big, and the tools are fairly standard 

from the genomics and transcriptomics communities, so we refer the reader to standard 

treatments from those fields.

BIG DATA SYSTEMS

To support big data storage, visualization, and analysis requires extensive software 

developments and modifications. Many independent efforts have begun to support the 

analysis of big data, including at least 40 projects known to the authors. However, only a 

few have adopted best practices for developing tools that are widely adopted with long-term 

use and support. The key, in our experience, to developing such tools is doing so in an open 

and collaborative environment (Vogelstein et al. 2018b). As more people use the resource, 

the developers get more feedback for improvement, so they are not left relying on their gut 

judgments for how to improve. Moreover, when the code is open source, well documented 

(including developer documentation), and purposefully designed, other developers can easily 

contribute. Maintaining an active user and developer community is more of a soft skill that is 

often underappreciated in hard sciences. Nonetheless, if our community is to fully capitalize 

on big data, we will need to support, both intellectually and financially, individuals to build 

communities around tools.

Storage

Small data can be stored on a single hard drive or on a single workstation with multiple 

hard drives. Because hard drives only come in fixed sizes and workstations only have 

a limited number of hard drive bays, when data are larger than the maximum storage 

capacity from the maximum number of hard drives, researchers must consider other 

options. Our experience with the growth of the Open Connectome Project is a case in 

point (Burns et al. 2014). Originally, we began storing a 10-TB data set (Bock et al. 

2011) on our local cluster. As other researchers began contributing additional data, our 

lab’s resources were overwhelmed, and we moved to using our institutional resources 

(which are available in many wealthy institutions). Even though the Institute for Data 

Intensive Engineering and Sciences had a multi-PB data center, the Open Connectome 

Project eventually required computing ill adapted to institutional resources. Specifically, 

we required elastic, on-demand, scale up and scale down computing. These computing 

features were important, as the MouseLight project could generate 40-TB data sets 

every two weeks (Economo et al. 2016), and the ingest process of writing data to our 

infrastructure was too slow. This, in combination with the upcoming MICrONS (https://
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www.iarpa.gov/index.php/research-programs/microns) data set destined to be multiple PBs 

in size, catalyzed us to port our infrastructure to the commercial cloud. Specifically, 

in collaboration with the Applied Physics Laboratory, we developed the NeuroData 

Cloud (NDCloud), a centralized cloud infrastructure (Lillaney et al. 2018). NDCloud 

currently stores data in NeuroGlancer precomputed file format (https://github.com/google/

neuroglancer/tree/master/src/neuroglancer/datasource/precomputed), which both compresses 

the data and makes visualization fast and easy. CloudVolume (https://github.com/seung-lab/

cloud-volume) enables fast and parallel data access (Silversmith 2018). This infrastructure 

hosts the current Open Connectome Project, available from Amazon Web Services registry 

as OpenNeuro (https://registry.opendata.aws/openneuro/), which serves approximately 50 

TB of open access data, spanning data from 30 labs, several species, and multiple modalities 

(Vogelstein et al. 2018b).

This system is an evolution from previous systems in that it is now fundamentally 

decentralized, and data can be stored remotely and in a distributed fashion, without requiring 

a single gatekeeper as in our previous designs. This transition mirrors a similar conversion in 

other sectors, such as media sharing, which adopted a peer-to-peer (or P2P) strategy. Now, 

anybody who would like to host data can, and the Open Connectome Project simply serves 

as an archival site.

Pipelines

When neuroimaging data fit in memory, they can be simply processed and visualized using 

scripts or interactive analysis tools like Jupyter notebooks. Better code and algorithms can 

stretch the capability of single core analysis; however, as the data volume increases and 

faster execution times are sought, parallel processing such as Apache spark (Zaharia et al. 

2016), Apache Beam (https://beam.apache.org/), and Dask (Rocklin 2015) and improved 

hardware (RAM, persistent storage, parallel CPUs, GPUs, or networking) can meet the 

increased demands.

To illustrate the potential issues, we discuss the implications of processing a petascale 

image, as per our experience processing most of a cubic millimeter of EM images. Before 

any image processing, the images are aligned and stitched into a 3D volume. TeraStitcher 

is capable of linear stitching and aligning light-sheet data, but it cannot address large, 

nonlinear deformations (Bria & Iannello 2012, Bria et al. 2019); LDDMM algorithms are 

instead desired (M.I. Miller et al. 2018). Then, data must be organized in a fashion that 

is amenable to efficient access and visualization. This is accomplished by splitting the 

image into a regular grid, saving each grid location as a separate file (called chunks), and 

recursively downsampling and compressing each file for storage. Other software packages 

have likewise been developed to organize and manage large scientific databases, e.g., 

DataJoint (Yatsenko et al. 2015).

Compression remains a complicated, unsolved problem. We would like a compression 

algorithm to have low compression ratios, high compression and decompression speeds, 

and native browser support (so browsers can open the compressed images directly, rather 

than decompressing first). JPEG 2000, while popular, lacks widespread browser support. 

We instead recommend brotli, a new general, lossless compression from Google with 
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widespread browser support and better compression ratios but worse compression speeds 

(we do not currently use it for the Open Connectome Project because it is not yet compatible 

with NeuroGlancer, our visualization engine of choice).

To run workloads within a framework with appropriate execution guarantees, we 

recommend using containers run using a framework such as Docker or Singularity. These 

containers are a lightweight alternative to machine images that can be executed by a virtual 

operating system. Containerization forces the author to document the exact steps needed 

to create a functioning execution environment and generates a file that can be downloaded 

and run on various platforms. Once generated, containers are usually shared via online 

repositories. There are many container orchestration engines to choose from, which allow 

you to run containerized programs on your cluster and set resource limits (Bernstein 2014). 

Containerizing each step, even with container orchestration, is insufficient. Probably the 

largest bottleneck to widespread adoption of containers in brain science is that the overhead 

can be substantial, especially if it includes instructions for deployment. Several emerging 

approaches aim to mitigate these issues, including Boutiques and CodeOcean, which 

facilitate executing containers across different distributed environments, and Gigantum, 

which automatically builds docker containers. These approaches, while promising, remain 

unproven.

Visualization

Small, two-dimensional (2D) data are trivially visualized with local computer applications, 

(e.g., OSX’s Preview). Even before data get large, if they are 3D+, other software is 

required. Two of the most popular and widely supported 3D image visualization and 

annotation software tools are ITK-SNAP (Yushkevich et al. 2016) and Fiji (Schindelin et 

al. 2012). Both have a wealth of brain imaging–related plug-ins, although ITK-SNAP is 

largely geared at the macroscale (MRI), whereas Fiji is more geared to the nano- and 

microscales (EM and light microscopy). For example, BigDataViewer is a browser designed 

for multiview light-sheet microscopy that integrates with Fiji. When the data are too large to 

fit locally, other tools are required.

Of the many available 3D image viewers, such as NeuroGlancer, CATMAID, DVID, and 

Knossos, we currently recommend NeuroGlancer due to its more diverse community of 

contributors that includes industry, academia, and nonprofits. Moreover, NeuroGlancer 

enables sharing direct views via a URL so that collaborators can visualize precisely the 

same image.

NeuroGlancer has support for multichannel data and off-axis viewing. Yet NeuroGlancer 

also has several shortcomings, most of which are shared by the other web-based 

visualization tools. First, NeuroGlancer lacks support for manual volumetric labeling and 

error correcting. This step is crucial for any image processing, and therefore NeuroGlancer 

is not yet a one-stop shop for visualizing big image data. Second, NeuroGlancer stores 

all the image metadata in the URL because it is stateless. But, as visualizations get 

complicated, URLs can get quite long, sometimes hundreds or thousands of characters. 

For this reason, we developed a prototype service that converts long URLs into short ones. 

Third, although NeuroGlancer supports visualizing overlaid annotations, it natively does not 
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provide annotation metadata. We have a deployment of NeuroGlancer that includes labels 

for the Allen Reference Atlas 3.0 labels, but it is not yet generalized to other parcellations, 

images, or species. As more groups adopt NeuroGlancer, we hope they will contribute such 

expansions.

Other, smaller kinds of data have their own limitations. For example, meshes enable the 

display of objects that span a large spatial distance and allow for more natural modes of 

interaction to understand how they lie in space. They represent 3D surface geometries as a 

network of vertices represented by three floating point numbers and a set of faces or edges. 

These structures are typically much lighter than dense voxel representations at sufficient 

surface area to volume ratios. Displaying meshes in 3D with a lighting model and reasonable 

frame rates typically requires GPUs. While meshes can be displayed across great spatial 

extents, they cannot in general be calculated in a single process, as the amount of voxel 

data required to contain the object is very large. There are techniques for reducing the data 

requirement, such as using lower resolution mip levels and packed binary representations 

of single objects, but to efficiently compute millions of objects, it is necessary to treat all 

labels in a bounding box at once. Open source libraries containing meshing algorithms are 

available, such as Zmesh (Zlateski & Silversmith 2019), which performs marching cubes 

(Lorensen & Cline 1987) on all labels in one pass with on-demand mesh simplification.

Mesh simplification is required to reduce the size of the mesh, which after marching cubes 

has a vertex located at every surface voxel of an object. Mesh-based extraction is also 

under development, e.g., based on mesh contraction (Au et al. 2008) and TEASAR-like 

approaches in MeshParty (Dorkenwald et al. 2020). Mesh-based approaches have the benefit 

of complete context and are especially suited for skeletonizing selected labels. While there 

are many techniques for simplifying, smoothing, and tuning meshes, Mcell is widely used in 

brain science for dynamics simulations, which require extremely detailed meshes.

BIG STATISTICS

Beyond the storage and management of big data is the litany of challenges in scientifically 

valid analyses. Even the most basic of operations, e.g., principal components analysis or 

linear regression, presents complications for standard single-core and in-memory numerical 

libraries when the data cannot fit in memory. This extreme regime has necessitated new 

classes of methods (Bzdok et al. 2019; D. Zheng et al. 2015; Mhembere et al. 2017a,b, 

2019a,b; Wang et al. 2016; Zheng et al. 2016, 2018). The broader statistical issue is 

that brain data sets can have extremely small sample sizes with extremely large numbers 

of dimensions. To take the most extreme example, IARPA’s MICrONS project (https://

www.iarpa.gov/index.php/research-programs/microns) will yield one mouse and has already 

amassed 2 PB in EM images alone. It is thus imperative that brain sciences remain at 

the forefront of statistical inference for wide data. We highlight here four types of high-

dimensional data common in big brain science: unstructured feature matrices, multivariate 

time series, images, and networks. Each setting requires different developments; however, all 

benefit from the ability to learn latent structures from data. To do so effectively requires 

designing methods that use state-of-the-art knowledge of both brain science and data 
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science. Collaborations between experts in those fields, as well as interdisciplinary training 

of young researchers, will therefore catalyze progress.

Big Unstructured Data

Unstructured data contain features with no known relationships with one another. For 

example, RNAseq experiments can generate up to 10,000 features, each corresponding 

to the measured quantity of RNA in a biological sample. As there is no natural ordering 

of gene products, these data are unstructured. Unstructured data has perhaps the longest 

and richest history in data science, with its modern revolution due to Ronald A. Fisher’s 

books on statistical methods and experimental design in the 1920s and 1930s (Fienberg 

1992). Twenty-first century statistics has focused more on solving the large p small n 
problem with the spread of sparse modeling (Tibshirani 1996) and manifold learning 

(Lee & Verleysen 2007, Roweis & Saul 2000, Tenenbaum et al. 2000). More recently, 

theory has been catching up to explain how, when, and why such approaches work 

(Vershynin 2018, Wainwright 2019). These non-asymptotic theoretical results are often 

based on concentration inequalities, where guarantees can be provided even with finite 

data, in contrast to classical statistical theory. Complementary developments focus on 

algorithmic improvements, e.g., recursive least squares (Haykin 1996), batch-based updating 

via stochastic gradient descent (Xu & Yin 2015), and optimization (Cevher et al. 2014, 

Slavakis et al. 2014, Wahlberg et al. 2012).

Although many tools and programming languages are available for these kinds of 

operations, the neuroscience community is converging on using Python, specifically the 

NumPy and SciPy packages (Virtanen et al. 2020). Nonetheless, Python still has severe 

limitations that hinder even more widespread use. First, it is more difficult to install and 

configure than MATLAB or R. While cloud notebook environments such as binder and 

Gigantum are mitigating this issue, it remains problematic. Second, many statisticians 

and signal processing researchers still develop tools in R and MATLAB, respectively, so 

Python often lags in state-of-the-art tools. The community can combat this by shifting 

development to Python and working with the standard packages to ensure standardization 

and accessibility, as we have done with recent work on hypothesis testing (Vogelstein et al. 

2019), dimensionality reduction (Vogelstein et al. 2018a), and classification (Tomita et al. 

2020).

Big Images

Statistical theory for images is much more complex and difficult than for unstructured data. 

This is in part because representing an image requires an index for both where and what the 

feature is (i.e., magnitude). But the where and what are difficult to jointly model. Moreover, 

brain images can have very long dependence structures, requiring huge amounts of labeled 

data to effectively estimate. One of the most promising theories for images, the stochastic 

grammar of images (Zhu 2006), was promoted by David Mumford but never quite took off, 

likely due to its complexity and ineffectiveness. One realm of image analysis that has gained 

widespread use is the analysis of shape (Younes 2019), perhaps because shape effectively 

ignores magnitudes and only considers relative locations.
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Instead of leveraging theory, in image analysis, engineering rules. The leading image 

analysis tools are CNNs (Goodfellow et al. 2016), despite scant theoretical understanding of 

their effectiveness (Zhang et al. 2018). More interpretable approaches, e.g., decision forests, 

may return and even overtake CNNs for image processing by virtue of them incorporating 

convolution and locality operators (Criminisi et al. 2012, Perry et al. 2019), but these are 

very preliminary ideas. Numerous articles have been published debunking various theories 

for why such methods work (Ba & Caruana 2014), and subsets of those authors publish 

papers debunking the debunking (Urban et al. 2017).

Nonetheless, many packages are widely available and supported for image analysis. Scikit-

Image is one of the leading packages for basic image analysis (van der Walt et al. 2014), 

although it is yet to incorporate many standard techniques in brain imaging, such as 

nonlinear image registration (Kutten et al. 2016, 2017). For more sophisticated image 

analysis, various deep learning frameworks are available (e.g., TensorFlow and PyTorch). 

While TensorFlow holds more clout in industry, PyTorch has seen greater adoption in the 

academic community, particularly within the computer vision discipline (He 2019). The 

large-scale adoption of these open source frameworks thus holds promise that solutions 

to common image analysis tasks (e.g., object detection or segmentation) will become 

increasingly accessible to researchers hoping to apply new approaches to brain imaging 

data.

Big Time

Physiology data are fundamentally multivariate time series. In contrast to unstructured and 

image data, there is significantly less development for time series data. This is despite 

the fact that signal processing has been to a large extent focused on analysis of dynamics 

(Kay 1993). A key counterexample highlights the severe limitations faced with big time 

series data. There is no “scikit-time” for time series. Rather, perhaps the most widely used 

Python time series toolbox is Prophet. Developed by Facebook, it is explicitly designed to 

incorporate seasonal trends (e.g., holiday effects) and is therefore not appropriate for brain 

signals. Neural network frameworks support time series analysis, such as Long Short-Term 

Memory and other recurrent neural networks (RNNs) (Goodfellow et al. 2016), but like 

CNNs, it is not clear how or when RNNs work. A few recent theoretical works extended 

Kalman filters, the workhorse of much linear and nonlinear time series modeling, to big 

data regimes (Chen et al. 2017, Zipunnikov et al. 2011). Efficient implementations of these 

tools, however, are not yet available. Brain science has pushed latent process models (Smith 

& Brown 2003, Pakman et al. 2018, Sharma et al. 2018), but like the Kalman models, 

open source and community-developed packages for these tools do not exist. Many of the 

classical tools for time series analyses are incorporated into statsmodels, a Python package 

that includes many regression techniques and basic time series techniques. The need for 

time series packages yields an opportunity for the community to create, either anew or by 

expanding the current statsmodels, the toolbox that will fill that void.

Big Networks

A convenient representation of many of the data sets described above is a network or graph. 

A graph is composed of a set of nodes and a set of edges between those nodes, where the 
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edges represent some relationship between objects. With this representation we can ask, 

for example, what models best describe the network? How do the fit models vary across a 

population? How does the model relate to data sets in other modalities?

Graph representations can stem from many experimental modalities. EM circuit 

reconstruction has generated network representations, for example, in Caenorhabditis 
elegans (White et al. 1986), Ciona intestinalis (Ryan et al. 2016), larval and adult Drosophila 
(Eichler et al. 2017), zebrafish (Hildebrand et al. 2017), and mouse (Bock et al. 2011, 

Helmstaedter et al. 2013), with efforts underway to add zebra finch, nonhuman primates, 

octopus, and even humans. Connectomes can also be estimated via gene sequencing.

As graphs are much more concise descriptions of a brain than images (they can be stored 

as simple edge lists or adjacency matrices), storage is much more efficient. For the largest 

nanoscale connectomics, the final network should have approximately 100,000 nodes and 

one billion synapses [e.g., MICrONS (https://www.iarpa.gov/index.php/research-programs/

microns)]. Even then, the network representation should fit easily in memory. The current 

issue is instead computational. Even for moderately sized networks, intuitive understanding 

of patterns in the graph is difficult. This makes visualization and dimensionality reduction 

(e.g., via eigendecompositions of the adjacency matrix) essential.

Specific graph analyses rely on the details of the node and edges in the graph. One model 

class assumes that each node in the graph is associated with a low-dimensional unobserved 

vector, or latent position (Athreya et al. 2017, Hoff 2007). The probability of two nodes 

connecting is a function of their latent positions. Under the random dot product graph 

(RDPG) model, this function is the inner product of the nodes’ positions (Sussman et al. 

2011). Adjacency spectral embedding and omnibus embedding can estimate these latent 

positions from a single observed graph or a population of graphs, respectively (Fishkind et 

al. 2013, Levin et al. 2017). A further extension of the RDPG model assumes that the latent 

positions are distributed on a latent manifold, analogous to experimentally observed neural 

trajectory manifolds (Arroyo et al. 2019). RDPG and similar models provide a probability 

distribution, permitting inference on the modeled connectome. The standard tool in Python 

for analysis of networks, NetworkX (Hagberg et al. 2008), lacks many modern advances in 

statistical analysis of individual and populations of graphs. Graspy is an emerging tool that 

incorporates many developments in statistical learning from networks (Chung et al. 2019) 

but has not yet enjoyed widespread adoption.

DISCUSSION

Brain science is obtaining larger, more detailed data than ever before, and the pace of 

progress is only increasing. We have outlined here many of the challenges and current 

approaches to leveraging these rich data sets. While much progress has been made, there 

remain many open problems. The novelty and universality of many of these challenges 

creates a sequence of opportunities to unify the brain science community and best enable 

open sharing of data, methodologies, statistical analyses, and results.
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One of the biggest missed opportunities in designing data infrastructure is connecting 

solutions for different data modalities. These solutions are often aimed at a current task 

facing a single group with a specific set of tools and scientific goals. Sharing good solutions 

with other domains that need or will need such advances is thus stymied.

The emerging challenge of simultaneous analysis of multiple data types, e.g., behavior and 

cellular recordings or fMRI and calcium imaging (Lake et al. 2018, Ma et al. 2016), is 

related. One interesting contrast between anatomical and functional data is the inertia of 

established methodology in the latter that has leveraged decades of small-data brain science. 

This creates a bias toward focusing on particular scientific questions rather than starting 

anew.

Paramount to progress is investment. Currently, pipelines are built and maintained by 

well-endowed institutions or large groups of labs collaborating under the new large-scale 

funding mechanisms. Access to these resources must be more widespread to permit new 

technologies and their benefits to have maximum impact. Endeavors to make standardized 

resources more accessible (e.g., the Allen Institute) are important and should be considered 

when creating new infrastructure. Unused time on these big-data systems is lost time that 

could have been used in the service of science.

An important aspect of operating at scale not discussed here is privacy. Certain applications, 

especially those with medical relevance such as genetics and MRI, necessitate infrastructure 

and statistics that are privacy preserving. Moreover, there are computational and statistical 

benefits to differential privacy-based algorithms that are often based on randomized 

statistics. Future designs and implementations should keep these considerations in mind, 

as they are often difficult to build post hoc.

One very promising area of advance is the ever-growing number of open reference data 

necessary to catalyze standardization and to broaden the pool of researchers with access 

to the data, which is needed to develop new infrastructure and statistical tools. Public data 

sets, through Collaborative Research in Computational Neuroscience, the Allen Institute, 

and others, are providing just those opportunities.

A related major opportunity in the short term is in the standardization of data files. Such 

standards can provide efficient storage by compressing the data in a way that is natural 

for brain data, create an open environment by providing universal data access data tools, 

and permit faster processing by allowing pipeline developers the freedom to optimize for 

a constant file structure. Earlier attempts [e.g., Neurodata Without Borders (Teeters et al. 

2015)] have yet to take hold, which may be partially due to the constant evolution of data 

acquisition as well as competition from accessible standard image formats. Universality and 

flexibility to new imaging modalities are key in designing such a standard. Image standards 

have leveraged known natural image statistics to achieve this: No matter the camera, png 

will compress in a reasonable way. The statistics of brain data, rather than of the data 

modality, will similarly be key to successful standards.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SUMMARY POINTS

1. Neuroscience is obtaining larger and more detailed recordings than ever 

before.

2. We have an opportunity to capitalize on cross-scale and cross-modality 

developments.

3. More investment in generalizable computational tools and reference data will 

accelerate discovery.

4. We need to use and build upon community-developed software, which can be 

widely accessed and based on the needs of researchers. If existing tools/data 

sets are not sufficient, we must add to them and build on them rather than 

starting something new.
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Figure 1. 
The big data deluge puts different pressure on different applications. At greater data sizes, 

more powerful systems are needed to operate in these ever–more challenging regimes. Most 

neuroscience data sets currently still reside at sizes computationally tractable on a single PC 

or, at worst, a single HPC node. All these modalities, however, are seeing a steady rise in 

data sizes. The methods that will enable neuroscientists to make use of these ever-richer data 

sets must be developed now.
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Figure 2. 
Big data brain science is the result of ingenious advances in recording technology and large-

scale collaborations (left box). To maximally utilize the resulting data, we must determine 

how to convert the data coming from these new experimental paradigms into statistical 

conclusions on scientific questions (right box).
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Figure 3. 
Physiology pipelines across scales. Pipelines have been independently developed for 

different brain data to transform the raw data through semantic information extraction and 

into a plethora of statistical analysis results. The raw data (left) are typically preprocessed 

via registration to a common space (e.g., motion correction). Next, semantic information, 

e.g., the regions of interest, individual neural traces, or animal poses, is extracted from the 

data. These are the variables used in final hypothesis generation or estimation.
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Figure 4. 
An example data pipeline for nanoscale anatomy. (a) A parallel chunk-processing motif 

used during processing. A large volume is broken into chunks, each of which is processed 

and merged. This involves shuttling data from cloud storage or other backends to a 

computational cluster and tracking process completion and handling failures. The chunk 

regions depicted here can be anisotropic (e.g., a few wide slices). Each task outside of ovals 

is handled by data system pipeline software. (b) Representation overview for an example 

serial section transmission electron microscopy pipeline, showing how the data system 

implements computational tasks. (c) Computational tasks exemplified on a small cutout of 

the open data set of Kasthuri et al. (2015).
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Table 1

List of recommended data sets

Data type Data (source) Limitations

Physiology

Micro (ephys) International Brain Laboratory (https://www.internationalbrainlab.com/) No data yet

Micro (opto) Brain Observatory (http://observatory.brain-map.org/visualcoding) Not community driven

Meso (fMRI) Healthy Brain Network (http://fcon_1000.projects.nitrc.org/indi/
cmi_healthy_brain_network/)

Only ~1,000 samples available now

Macro (behavior) None NA

Anatomy

Nano (EM) TEMCA2 Data (FAFB) (https://www.temca2data.org) Volumetric annotations not publicly 
available

Micro (LM) MouseLight and Z Brain Atlas (http://mouselight.janelia.org/; https://
engertlab.fas.harvard.edu/Z-Brain/home/)

Not integrated with other related data 
sets

Meso (sMRI & dMRI) Healthy Brain Network (http://fcon_1000.projects.nitrc.org/indi/
cmi_healthy_brain_network/)

Only ~1,000 samples available now

Genetics

Nano (in situ) None NA

Micro (scRNAseq) None NA

Meso (tissue) Allen Brain Map (https://portal.brain-map.org) NA

Abbreviations: dMRI, diffusion MRI; EM, electron microscopy; ephys, electrophysiology; FAFB, full adult fly brain; fMRI, functional MRI; LM, 
light microscopy; NA, not applicable; opto, optical microscopy; scRNAseq, single-cell RNA sequencing; sMRI, structural MRI.
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Table 2

List of recommended code bases and limitations to address each of the data modality specific and general 

challenges enumerated in the text

Step Code (source) Current hurdles

Physiology

Micro (ephys) Open Ephys (https://open-ephys.org/) Limited analysis

Micro (opto) CaImAn (https://github.com/flatironinstitute/CaImAn) Requires manual fine-tuning

Meso (fMRI) C-PAC (https://fcp-indi.github.io) Single institution developing

Macro (behavior) None NA

Anatomy

Nano (EM) NeuroData Cloud (https://neurodata.io/nd_cloud/) Centralized

Micro (LM) TeraSticher (https://abria.github.io/TeraStitcher/) Only does linear registration

Meso (sMRI & dMRI) DiPy (https://dipy.org) No pipelines

Genetics

Nano (in situ) None NA

Micro (scRNAseq) None NA

Meso (Tissue) None NA

Systems

Storage CloudVolume (https://github.com/seung-lab/cloud-volume) Not yet widely adopted

Compression Brotli (https://github.com/google/brotli) Not yet widely adopted

Pipelines Docker (https://www.docker.com) Complex to set up

Visualization NeuroGlancer (https://github.com/google/neuroglancer) Lacks annotation support

Statistics

Tabular Scikit-Learn (https://scikit-learn.org/stable/) Parallel execution is weak

Images Scikit-Image (https://scikit-image.org/) Lacks sophisticated methods

Time series StatsModels (https://www.statsmodels.org/stable/index.html) Lacks sophisticated methods

Networks NetworkX (https://networkx.github.io) Lacks sophisticated methods

Abbreviations: C-PAC, configurable pipelines for the analysis of connectomes; CaImAn, calcium imaging analysis; dMRI, diffusion MRI; EM, 
electron microscopy; ephys, electrophysiology; fMRI, functional MRI; LM, light microscopy; NA, not applicable; opto, optical microscopy; 
scRNAseq, single-cell RNA sequencing; sMRI, structural MRI.
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