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Abstract

Elucidating the wiring diagram of the human cell is a central goal of the post-genomic era. We 

combined genome engineering, confocal live-cell imaging, mass spectrometry and data science to 

systematically map the localization and interactions of human proteins. Our approach provides 

a data-driven description of the molecular and spatial networks that organize the proteome. 

Unsupervised clustering of these networks delineates functional communities that facilitate 

biological discovery, and uncovers that RNA-binding proteins form a specific sub-group defined 

by unique interaction and localization properties. Furthermore, we discover that remarkably 
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precise functional information can be derived from protein localization patterns, which often 

contain enough information to identify molecular interactions. Paired with a fully interactive 

website (opencell.czbiohub.org), we provide a resource for the quantitative cartography of human 

cellular organization.

Sequencing the human genome has transformed cell biology by defining the protein parts 

list that forms the canvas of cellular operation (1, 2). This paves the way for elucidating 

how the ~20,000 proteins encoded in the genome organize in space and time to define 

the cell’s functional architecture (3, 4). Where does each protein localize within the cell? 

Can we comprehensively map how proteins assemble into larger functional communities? 

A main challenge to answering these fundamental questions is that cellular architecture is 

organized along multiple scales. Therefore, several approaches need to be combined for 

its elucidation (5). In a series of pioneering studies, human protein-protein interactions 

have been mapped using ectopic expression strategies with yeast two-hybrid (Y2H) (6) or 

epitope tagging coupled to immunoprecipitation-mass spectrometry (IP-MS) (7, 8), while 

protein localization has been charted using immuno-fluorescence in fixed samples (9). A 

complementary approach is to directly modify genes in a genome by appending sequences 

that illuminate specific aspects of the corresponding proteins’ function (commonly referred 

to as “endogenous tagging” (10)). For example, endogenously tagging a gene with a 

fluorescent reporter enables to image protein sub-cellular localization in live cells, and 

supports functional characterization in a native cellular environment (10, 11). The use 

of endogenous tagging to study the organization of a eukaryotic cell is illustrated by 

seminal work in the budding yeast S. cerevisiae. There, libraries of tagged strains have 

enabled the comprehensive mapping of protein localization and molecular interactions 

across the yeast proteome (12–14). These libraries were made possible by the relative 

simplicity of homologous recombination and genome engineering in yeast (15). In human 

cells, earlier work has leveraged alternative strategies including expression from bacterial 

artificial chromosomes (16) or central-dogma tagging (17) because of the difficulty of site-

specific gene editing. CRISPR-mediated genome engineering now allows for homologous 

recombination-based endogenous tagging to be applied for the interrogation of the human 

cell (10, 11, 18).

Here, we combine experimental and analytical strategies to create OpenCell, a proteomic 

map of human cellular architecture. We generated a library of 1,310 CRISPR-edited 

HEK293T cell lines harboring fluorescent tags on individual proteins, which we 

characterized by pairing confocal microscopy and mass spectrometry. Our dataset 

constitutes the most comprehensive live-cell image collection of human protein localization 

to date. In addition, integration of IP-MS using the fluorescent tags for affinity capture 

enables measurement of localization and interactions from the same samples. For a 

quantitative description of cellular architecture, we introduce a data-driven framework 

to represent protein interactions and localization features, supported by a new machine 

learning algorithm for image encoding. This approach allows us to delineate communities 

of functionally related proteins by unsupervised clustering and facilitates the generation of 

mechanistic hypotheses, including for proteins that had so far remained uncharacterized. 

We further demonstrate that the localization pattern of each protein is defined by 

Cho et al. Page 2

Science. Author manuscript; available in PMC 2022 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://opencell.czbiohub.org


unique and specific features that can be used for functional interpretation, to the point 

that spatial relationships often contain enough information to predict interactions at the 

molecular scale. Finally, our analysis enables an unsupervised description of the human 

proteome’s organization, and highlights in particular that RNA-binding proteins exhibit 

unique functional signatures that shape the proteome’s network.

Engineered cell library.

Fluorescent protein (FP) fusions are versatile tools that can measure both protein localization 

by microscopy and protein-protein interactions by acting as affinity handles for IP-MS 

(18, 19) (Fig. S1A). Here, we constructed a library of fluorescently tagged HEK293T 

cell lines by targeting human genes with the split-mNeonGreen2 system (20) (Fig. 1A). 

Split-FPs greatly simplify CRISPR-based genome engineering by circumventing the need 

for molecular cloning (18), and allowed us to generate endogenous genomic fusions (Fig. 

1B) that preserve native expression regulation. A full description of our pipeline is available 

in the Methods section ((21); summarized in Fig. 1C through E). In brief, FP insertion sites 

(N- or C-terminus) were chosen on the basis of information from the literature or structural 

analysis (Fig. S1B; Table S1). For each tagged target we isolated a polyclonal pool of 

CRISPR-edited cells, which was then characterized by live-cell 3D confocal microscopy, IP-

MS, and genotyping of tagged alleles by next-generation sequencing. Open-source software 

development and advances in instrumentation supported scalability (Fig. 1C). In particular, 

we developed crispycrunch, a CRISPR design software that enables guide RNA selection 

and homology donor sequence design (github.com/czbiohub/crispycrunch). We also fully 

automated the acquisition of data microscopy data in Python for on-the-fly computer 

vision and selection of desirable fields of view imaged in 96-well plates (github.com/

czbiohub/2021-opencell-microscopy-automation). Our mass-spectrometry protocols use the 

high sensitivity of timsTOF instruments (22) which allowed miniaturization of IP-MS down 

to 0.8×106 cells of starting material (Fig. S1C; about a tenth of the material required in 

previous approaches (7, 8)).

In total, we targeted 1757 genes, of which 1310 (75%) could be detected by fluorescence 

imaging and form our current dataset (full library details in Table S1). From these, we 

obtained paired IP-MS measurements for 1260 targets (96%, Fig. 1D). The 1310-protein 

collection includes a balanced representation of the pathways, compartments and functions 

of the human proteome (Fig. S1D), with the exception of processes specific to mitochondria, 

organellar lumen or extracellular matrix. Indeed, the split-FP system tags a gene of interest 

with a short sequence (mNG11) while a larger FP fragment (mNG21–10) is expressed 

separately (Fig. 1A). In the version used here, the mNG21–10 fragment is expressed 

in the nucleo-cytoplasm and prevents access to proteins inside organellar compartments. 

Membrane proteins can be tagged as long as one terminus extends in the nucleo-cytoplasm. 

In future iterations, other split systems that contain compartment-specific signal sequences 

could be used to target organellar lumen (23).

Fluorescent tagging was readily successful for essential genes, suggesting that FP fusions 

are well tolerated (Fig. S2A). To evaluate other factors contributing to successful fluorescent 

detection, we measured RNA and protein concentration in HEK293T cells (Fig. S2B; using 
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a 24-fraction scheme for deep proteome quantification; see fully annotated proteome in 

Table S2). This revealed that protein abundance is the main limitation to detection (Fig. 1D, 

S2C; see details for unsuccessful targets in Table S3); most successful targets are among 

the top 50% most abundant (Fig. S2D). Gene-editing efficiency was another important 

factor: among well-expressed targets, failure was correlated with significantly lower rates 

of homologous recombination (Fig. S2E), which would impair the selection of edited cells 

by fluorescence-activated cell sorting (FACS). Training a regression model revealed that the 

combination of protein abundance and editing efficiency could predict successful detection 

with 82% accuracy.

To maximize throughput, we used a polyclonal strategy to select genome-edited cells by 

FACS. Polyclonal pools contain cells with distinct genotypes. HEK293T are pseudo-triploid 

(24) and a single edited allele is sufficient to confer fluorescence. Moreover, various DNA 

repair mechanisms compete with homologous recombination for the resolution of CRISPR-

induced genomic breaks (25) so that alleles containing non-functional mutations can be 

present in addition to the desired fusion alleles. However, such alleles do not support 

fluorescence and are therefore unlikely to impact other measurements, especially in the 

context of a polyclonal pool. We developed a stringent selection scheme to significantly 

enrich for fluorescent fusion alleles (Fig. S3A). Our final cell library has a median 61% 

of mNeonGreen-integrated alleles, 5% wild-type and 26% other non-functional alleles (Fig. 

S3B, full genotype information in Table S1).

Finally, we verified that our engineering approach maintained the endogenous abundance 

of the tagged target proteins. For this, we quantified protein expression by Western blotting 

using antibodies specific to proteins targeted in 12 different cell pools (Fig. S3C), and by 

single-shot mass spectrometry in 63 tagged lines (Fig. S3D). Both approaches revealed a 

median abundance of tagged targets in engineered lines at about 80% of untagged HEK293T 

control, with 5 outliers (8% of total) identified by proteomics (Fig. S3D, all within 3.5-fold 

of control). Importantly, the overall proteome composition was unchanged in all tagged lines 

(Fig. S3E–F). Overall, our gene-editing strategy preserves near-endogenous abundances and 

circumvents the limitations of ectopic overexpression (11, 26, 27), which include aberrant 

localization, changes in organellar morphology, and masking effects (see the examples 

of SPTLC1, TOMM20 and MAP1LC3B in Fig. S3G). Therefore, OpenCell supports the 

functional profiling of tagged proteins in their native cellular context.

Interactome analysis and stoichiometry-driven clustering.

Affinity enrichment coupled to mass spectrometry is an efficient and sensitive method 

for the systematic mapping of protein interaction networks (28). We isolated tagged 

proteins (“baits”) from cell lysates solubilized in digitonin, a mild non-ionic detergent that 

preserves the native structure and properties of membrane proteins (29). Specific protein 

interactors (“preys”) were identified by proteomics from biological triplicate experiments 

(see Figure S4A–B and (21) for a detailed description of our statistical analysis, which 

builds upon established methods (7)). In total, the full interactome from our 1260 OpenCell 

baits includes 29,922 interactions between 5292 proteins (baits and preys, Fig. 2A, full 

interactome data in Table S4).
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To assess the quality of our interactome, we estimated its precision (the fraction of true 

positive interactions over all interactions) and recall (the fraction of interactions identified 

compared to a ground truth set) using reference data (Fig. S4B). For recall analysis, we 

quantified the coverage in our data of interactions included in CORUM (30), a compendium 

of protein interactions manually curated from the literature. To estimate precision, we 

quantified how many of our interactions involved protein pairs expected to localize to the 

same broad cellular compartment (31) (Fig. S4B). To benchmark OpenCell against other 

large-scale interactomes, we compared its precision and recall to Bioplex (overexpression 

of HA-tagged baits (8, 32)), the yeast-two-hybrid human reference interactome (HuRI (6)) 

and our own previous data (GFP fusions expressed from bacterial artificial chromosomes 

(7)) (Fig. S4C–E). We also calculated compression rates for each dataset as a measure 

of the overall richness in network patterns and motifs distinguishable from noise, which 

correlates with overall network quality: real-world networks contain redundant information 

which can be compressed, while pure noise is not compressible (see (33)) (Fig. S4F). Across 

all metrics, OpenCell outperformed previous approaches. OpenCell also includes many 

interactions not reported in previous datasets (Fig. S4E,G). Our interactome may better 

reflect biological interactions because it preserves near-endogenous protein expression.

A powerful way to interpret interactomes is to identify communities of interactors (8, 

13). To this end, we applied unsupervised Markov clustering (MCL) (34) to the graph of 

interactions defined by our data (5292 baits and preys). We first measured the stoichiometry 

of each interaction, using a quantitative approach we previously established (7). Interaction 

stoichiometry measures the abundance of a protein interactor relative to the abundance of 

the bait in a given immuno-precipitation sample. We have shown that stoichiometry can 

be interpreted as a proxy for interaction strength, and that interactions can be classified 

between core (i.e. high) and low stoichiometries (7). In our current data, both high- and 

low-stoichiometry interactions were significantly enriched for proteins pairs sharing gene 

ontology annotations (Fig. S4H). Using stoichiometry to assign weights to the edges in 

the interaction graph (Fig. 2B), a first round of MCL delineated inter-connected protein 

communities and led to better clustering performance than clustering based on connectivity 

alone (Fig. S4I). To better delineate stable complexes, we further refined each individual 

MCL community by additional clustering while removing low-stoichiometry interactions. 

The resulting sub-clusters outline core interactions within existing communities (Fig. 2B). 

Figure 2C illustrates how this unsupervised approach enables to delineate functionally 

related proteins: all subunits of the machinery responsible for the translocation of newly 

translated proteins at the ER membrane (SEC61/62/63) and of the EMC (ER Membrane 

Complex) are grouped within respective core interaction clusters, but both are part of the 

same larger MCL community. This mirrors the recently appreciated cotranslational role 

of EMC for insertion of transmembrane domains at the ER (35). Additional proteins that 

have only recently been shown to act cotranslationally are found clustering with translocon 

or EMC subunits, including ERN1 (IRE1) (36) and CCDC47 (37, 38). Thus, clustering 

can facilitate mechanistic exploration by grouping proteins involved in related pathways. 

Overall, we identified 300 communities including a total of 2096 baits and preys (full details 

in Table S4). Ontology analysis revealed that these communities are significantly enriched 

for specific cellular functions, supporting their biological relevance (82% of all communities 
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are significantly enriched for specific biological process or molecular function GO ontology 

terms; see Table S5 for complete analysis). A graph of interactions between communities 

reveals a richly inter-connected network (Fig. 2D), the structure of which outlines the global 

architecture of the human interactome (discussed further below).

A direct application of interactome clustering is to help elucidate the cellular roles of 

the many human proteins that remain poorly characterized (39). We identified poorly 

characterized proteins by quantifying their occurrence in article titles and abstracts from 

PubMed (Fig. 2E). Empirically, we determined that proteins in the bottom 10th percentile 

of publication count (corresponding to less than 10 publications) are very poorly annotated 

(Fig. 2E). This set encompasses a total of 251 proteins found in interaction communities for 

which our dataset offers potential mechanistic insights. For example, the proteins NHSL1, 

NHSL2 and KIAA1522 are all found as part of a community centered around SCAR/WAVE, 

a large multi-subunit complex nucleating actin polymerization (Fig. 2F). All three proteins 

share sequence homology and are homologous to NHS (Fig. S5A), a protein mutated 

in patients with Nance-Horan syndrome. NHS interacts with SCAR/WAVE components 

to coordinate actin remodeling (40). Thus, NHSL1, NHSL2 and KIAA1522 also act to 

regulate actin assembly. A recent mechanistic study supports this hypothesis: NHSL1 

localizes at the cell’s leading edge and directly binds SCAR/WAVE to negatively regulate 

its activity, reducing F-actin content in lamellipodia and inhibiting cell migration (41). The 

authors identified NHSL1’s SCAR/WAVE binding sites, and we find these sequences to be 

conserved in NSHL2 and KIA1522 (Fig. 2F). Therefore, our data suggests that both NHSL2 

and KIAA1522 are also direct SCAR/WAVE binders and possible modulators of the actin 

cytoskeleton.

Our data also sheds light on the function of ROGDI, whose variants cause Kohlschuetter-

Toenz syndrome (a recessive developmental disease characterized by epilepsy and 

psychomotor regression (42)). ROGDI appears in the literature because of its association 

with disease, but no study, to our knowledge, specifically determines its molecular function. 

We first observed that ROGDI’s interaction pattern closely matched that of three other 

proteins in our dataset: DMXL1, DMXL2 and WDR7 (Fig. 2G). This set exhibited a 

specific interaction signature with the v-ATPase lysosomal proton pump. All four proteins 

interact with soluble v-ATPase subunits (ATP6-V1), but not its intra-membrane machinery 

(ATP6-V0). DMXL1 and WDR7 interact with V1 v-ATPase, and their depletion in cells 

compromises lysosomal re-acidification (43). Sequence analysis showed that DMXL1 or 

2, WDR7 and ROGDI are homologous to proteins from yeast and Drosophila involved in 

the regulation of assembly of the soluble V1 subunits onto the V0 transmembrane ATPase 

core (44, 45) (Fig. S5B). In yeast, Rav1 and Rav2 (homologous to DMXL1/2 and ROGDI, 

respectively) form the stoichiometric RAVE complex, a soluble chaperone that regulates 

v-ATPase assembly (45). To assess the existence of a human RAVE-like complex, we 

generated new tagged cell lines for DMXL1 and 2, WDR7, and ROGDI. Because of the low 

abundance of these proteins, the localization of DMXL2 and ROGDI were not detectable but 

pull-downs of DMXL1 and WDR7 confirmed a stoichiometric interaction between DMXL1 

and 2, WDR7 and ROGDI (Fig. 2G, right panels). No direct interaction between DXML1 

and DMXL2 was detected, suggesting that they might nucleate two separate sub-complexes. 

Therefore, our data reveals a human RAVE-like complex comprising DMXL1 or 2, WDR7 
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and ROGDI, which we propose acts as a chaperone for v-ATPase assembly based on its 

yeast homolog. Altogether, these results illustrate how our data can facilitate the generation 

of new mechanistic hypotheses by combining quantitative analysis and literature curation.

Image dataset: localization annotation and self-supervised machine 

learning.

A key advantage of our cell engineering approach is to enable the characterization of each 

tagged protein in live, unperturbed cells. To profile localization, we performed spinning-disk 

confocal fluorescence microscopy (63× 1.47NA objective) under environmental control 

(37°C, 5% CO2), and imaged the 3D distribution of proteins in consecutive z-slices. 

Microscopy acquisition was fully automated in Python to enable scalability (Fig. S6A–B). 

In particular, we trained a computer vision model to identify fields of view (FOVs) with 

homogeneous cell density on-the-fly, which reduced experimental variation between images. 

Our dataset contains a collection of 6375 3D stacks (5 different FOVs for each target) and 

includes paired imaging of nuclei with live-cell Hoechst 33342 staining.

We manually annotated localization patterns by assigning each protein to one or more of 

15 separate cellular compartments such as the nucleolus, centrosome or Golgi apparatus 

(Fig. 3A). Because proteins often populate multiple compartments at steady-state (9), we 

graded annotations using a three-tier system: grade 3 identifies prominent localization 

compartment(s), grade 2 represents less pronounced localizations, and grade 1 annotates 

weak localization patterns nearing our limit of detection (see Fig. S7A for two representative 

examples, full annotations in Table S6). Ignoring grade 1 annotations which are inherently 

less precise, 55% of proteins in our library were detected in multiple locations consistent 

with known functional relationships. for example, clear connections were observed between 

secretory compartments (ER, Golgi, vesicles, plasma membrane), or between cytoskeleton 

and plasma membrane (Fig. S7B, Table S6)). Many proteins are found in both nucleus 

and cytoplasm (21% of our library), highlighting the importance of the nucleo-cytoplasmic 

import and export machinery in shaping global cellular function (46, 47). Importantly, 

because our split-FP system does not enable the detection of proteins in the lumen of 

organelles, multi-localization involving translocation across an organellar membrane (which 

is rare but does happen for mitochondrial or peroxisomal proteins) cannot be detected in our 

data.

To benchmark our dataset, we compared our localization annotations against the Human 

Protein Atlas (HPA), the reference antibody-based compendium of human protein 

localization (9). This revealed significant agreement between datasets: 75% of proteins share 

at least one localization annotation in common (Fig. 3B; this includes 25% of all proteins 

that share the exact same set of annotations, see full description in Table S7A). Because 

HPA mostly reports on cell lines other than HEK293T, a perfect overlap is not expected as 

proteins might differentially localize between related compartments in different cell types. 

However, the annotations for 147 proteins (11% of our data) were fully inconsistent between 

the two datasets (Fig. S7C). An extensive curation of the literature on the localization of 

those proteins allowed us to resolve discrepancies for 115 proteins (i.e., 78% of that set; full 
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curation in Table S8). Of these, existing literature evidence supported the OpenCell results 

for 113 (98.3%) of the 115 cases (Fig. S7D). This validates that endogenous tagging can 

help refine the curation of localization in the human proteome. Finally, our dataset includes 

350 targets that have orthologs in S. cerevisiae. Comparison between OpenCell and yeast 

localization annotations (48) revealed a high degree of concordance (Fig. S7E; Table S7B; 

81% of proteins share at least one annotation in common, including 36% perfect matches).

While expert annotation remains the best performing strategy to curate protein localization 

(49, 50), the low-dimensional description it allows is not well suited for quantitative 

comparisons. Recent developments in image analysis and machine learning offer new 

opportunities to extract high-dimensional features from microscopy images (50, 51). 

Therefore, we developed a deep learning model to quantitatively represent the localization 

pattern of each protein in our dataset (52). Briefly, our model is a variant of an autoencoder 

(Fig. 3C): a form of neural network that learns to vectorize an image through paired tasks 

of encoding (from an input image to a vector in a latent space) and decoding (from the 

latent space vector to a new output image). After training, a consensus representation for 

a given protein can be obtained from the average of the encodings from all its associated 

images. This generates a high-dimensional “localization encoding” (Fig. 3C) that captures 

the complex set of features that define the spatial distribution of a protein at steady state 

and across many individual cells. One of the main advantages of this approach is that it 

is self-supervised. Therefore, as opposed to supervised machine learning strategies that are 

trained to recognize pre-annotated patterns (for example, manual annotations of protein 

localization (50)), our method extracts localization signatures from raw images without any 

a priori assumptions or manually assigned labels. To visualize the relationships between 

these high-dimensional encodings, we embedded the encodings for all 1,310 OpenCell 

targets in two dimensions using UMAP, an algorithm that reduces high-dimensional datasets 

to two dimensions (UMAP 1 and UMAP 2) while attempting to preserve the global 

and local structures of the original data (53). The resulting map is organized in distinct 

territories that closely match manual annotations (Fig. 3D, highlighting mono-localizing 

proteins). This validates that the encoding approach yields a quantitative representation of 

the biologically relevant information in our microscopy data. The separation of different 

protein clusters in the UMAP embedding (further discussed below) mirrors the fascinating 

diversity of localization patterns across the full proteome. Images from nuclear proteins offer 

compelling illustrative examples of this diversity and reveal how fine-scale details can define 

the localization of proteins within the same organelle (Fig. 3E).

Functional specificity of protein localization in the human cell.

Extracting functional insights directly from cellular images is a major goal of modern cell 

biology and data science (54). In this context, our image library and associated machine 

learning encodings enable us to explore what degree of functional relationship can be 

inferred between proteins solely based on their localization. For this, we first employed 

an unsupervised Leiden clustering strategy commonly used to identify cell types in single-

cell RNA sequencing datasets (55). Clusters group proteins that share similar localization 

properties (every protein in the dataset is included in a cluster); these groups can then 

be analyzed for how well they match different sets of ground-truth annotations (Fig. 4A). 
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The average size of clusters is controlled by varying a hyper-parameter called resolution 

(Fig. S8A). Systematically varying clustering resolution in our dataset revealed that not 

only did low-resolution clusters delineate proteins belonging to the same organelles (Fig. 

4A–B), clustering at higher resolution also enabled to delineate functional pathways and 

even molecular complexes of interacting proteins (Fig. 4A–C). This demonstrates that the 

spatial distribution of each protein in the cell is highly specific, to the point that proteins 

sharing closely related functions can be identified on the sole basis of the similarity between 

their spatial distributions. This is further illustrated by how finely high-resolution clusters 

encapsulate proteins specialized in defined cellular functions (Fig. 4C). For example, our 

analysis not only separated P-body proteins (cluster #83) from other forms of punctated 

cytoplasmic structures, but also unambiguously differentiated vesicular trafficking pathways 

despite their very similar localization patterns: the endosomal machinery (#40), plasma 

membrane endocytic pits (#117) or COP-II vesicles (#143) were all delineated with high 

precision (Fig. 4C). Among ER proteins, the translocon clusters with the SRP receptor, 

EMC subunits and the OST glycosylation complex, all responsible for cotranslational 

operations (#9). This performance extends to cytoplasmic (Fig. S8A) and nuclear clusters 

(Fig. S8B), revealing that spatial patterning is not limited to membrane-bound organelles 

and that sub-compartments exist also in the nucleo-cytoplasm. An illustrative example is a 

cytoplasmic cluster (#17) formed by a group of RNA-binding proteins (including ATXN2L, 

NUFIP2 or FXR1, Fig. 4C) that separate into granules upon stress conditions (56–59). Stress 

granules are not formed under the standard growth conditions used in our experiments, but 

the ability of our analysis to cluster these proteins together reveals an underlying specificity 

to their cytoplasmic localization (i.e., “texture”) even in the absence of stress.

A direct comparison between imaging and interactome data allows us to further examine the 

extent to which molecular-level relationships (that is, protein interactions) can be derived 

from a comparison of localization patterns. For OpenCell targets that directly interact, 

we compared the correlation between their localization encodings derived from machine 

learning (defining a “localization similarity”) and the stoichiometry of their interaction. This 

“localization similarity” measures the similarity between the global steady-state distributions 

of two proteins, as opposed to a direct measure of co-localization. We find that most 

proteins interact with low stoichiometry (as we previously described (7)) and without strong 

similarities in their spatial distribution (Fig 4D, solid oval). This means that while low-

stoichiometry interactors co-localize at least partially to interact, their global distribution 

within the cell is different at steady state. On the other hand, high stoichiometry interactors 

share very similar localization signatures (Fig 4D, dashed oval). Indeed, proteins interacting 

within stable complexes annotated in CORUM fall into this category (Fig 4E), and the 

localization signatures of different subunits from large complexes are positioned very closely 

in UMAP embedding (Fig. 4F). In an important correlate, we found that a high similarity 

of spatial distribution is a strong predictor of molecular interaction. Across the entire set of 

target pairs (predicted to interact or not), proteins that share high localization similarities are 

also very likely to interact (Fig. 4G). For example, target pairs with a localization similarity 

greater than 0.85 have a 58% chance of being direct interactors, and a 68% chance of being 

second-neighbors (i.e., sharing a direct interactor in common). This suggests that protein-

protein interactions could be identified from a quantitative comparison of spatial distribution 
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alone. To test this, we focused on FAM241A (C4orf32), a protein of unknown function that 

was not part of our original library and asked whether we could predict its interactions using 

imaging data alone, compared to the classical de-orphaning approach that uses interaction 

proteomics. We thus generated a FAM241A endogenous fusion that was analyzed with live 

imaging and IP-MS separately. Encoding its localization pattern using a “naïve” machine 

learning model that was never trained with images of this new target revealed a very high 

localization similarity with two subunits of the ER oligo-saccharyl transferase OST (>0.85 

similarity to STT3B and OSTC), and high-resolution Leiden clustering placed FAM241A 

in an image cluster containing only OST subunits (Fig 4H, top). This analysis suggested 

that FAM241A is a high-stoichiometry interactor of OST. IP-MS identified that FAM241A 

was indeed a stoichiometric subunit of the OST complex (Fig. 4H, bottom). While the 

specific function of FAM241A in protein glycosylation remains to be fully elucidated, this 

proof-of-concept example establishes that live-cell imaging can be used as a specific readout 

to predict molecular interactions.

Collectively, our analyses establish that the spatial distribution of a given protein contains 

highly specific information from which precise functional attributes can be extracted by 

modern machine learning algorithms. In addition, we show that while high-stoichiometry 

interactors share very similar localization patterns, most proteins interact with low 

stoichiometry and share different localization signatures. This reinforces the importance 

of low-stoichiometry interactions for defining the overall structure of the cellular network, 

not only providing the “glue” that holds the interactome network together (7) but also 

connecting different cellular compartments.

RNA-binding proteins form a unique group in both interactome and spatial 

networks.

To gain insight into global signatures that organize the proteome, we further examined the 

structures of our imaging and interactome datasets. First, we reduced the dimensionality 

of each dataset by grouping proteins into their respective spatial clusters (as defined by 

the high-resolution localization-based clusters in Figs. 4A, 4C) or interaction communities 

(as defined in Fig. 2B). We then separately clustered these spatial groups (Fig. S9A) and 

interaction communities (Fig. S9B) to formalize paired hierarchical descriptions of the 

human proteome organization. These hierarchies are highly structured and delineate clear 

groups of proteins (see comparison to hierarchies expected by chance, Fig. S9C). In both 

hierarchies, groups isolated at an intermediate hierarchical layer outline “modules” which 

are enriched for specific cellular functions or compartments (Fig. S9A–B; full ontology 

analysis in Suppl. Tables 5 & 9). At a higher layer, each dataset is partitioned into 

three “branches”, which represent core signatures that shape the proteome’s architecture 

from a molecular or spatial perspective (Fig. S9A–B). The structure of the localization-

based hierarchy (Fig. S9A) recapitulates the human cell’s architecture across its three 

key compartments (nucleus, cytoplasm, membrane-bound organelles, Fig. S10A–B), which 

validates the relevance of our unsupervised hierarchical analysis. This motivated a deeper 

examination of the hierarchical architecture of the interactome (Fig. S9B, ontology analysis 

in Table S5). We found that intermediate-layer modules of the interactome delineate 
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specific cellular functions such as transcription or vesicular transport (Fig. S9B), reflecting 

as expected that functional pathways are formed by groups of proteins that physically 

interact (60, 61). More strikingly, the highest-layer structure showed that two of the three 

interactome branches were defined by clear functional signatures (Fig. S10C–E): branch B 

is significantly enriched in proteins that reside in or interact with lipid membranes, while 

branch C is significantly enriched in RNA-binding proteins (RNA-BPs) (Fig. 5B). This 

indicates that both membrane-related proteins and RNA-BPs interact more preferentially 

with each other than with other kinds of proteins in the cell.

That membrane-related proteins form a specific interaction group is perhaps not surprising 

as the membrane surfaces that sequester them within the three-dimensional cell will be 

partially maintained upon detergent solubilization. On the other hand, the fact that RNA-

BPs also form a specific interaction group is unexpected, since our protein interactions 

were measured in nuclease-treated samples (21) in which most RNAs are degraded. 

This suggests that protein features beyond binding to RNAs themselves might drive the 

preferential interactions of RNA-BPs with each other. Therefore, we reasoned that the 

biophysical properties of proteins within each interactome branch might underly their 

segregation. Indeed, an analysis of protein sequence features revealed a separation of 

different biophysical properties in each branch (Fig. S10F–G). Branch B was enriched 

for hydrophobic sequences (Fig. 5C), consistent with its enrichment for membrane-related 

proteins, while branch C was enriched for intrinsic disorder (Fig. 5C). This is consistent with 

the fact that RNA-BPs are significantly more disordered than other proteins in the proteome 

(Fig. S11A, (62)). RNA-BPs are also among the most abundant in the cell (Fig. S11B), and 

form a higher number of interactions than other proteins (Fig. S11C–D).

IP-MS measures protein interactions in vitro after lysis and therefore does not directly 

address the spatial relationship between interacting proteins. Thus, we sought to further 

examine how RNA-BPs distribute in our live-cell imaging data. If RNA-BPs segregate 

into interacting groups in vivo, this should also manifest at the level of their intracellular 

localization: they should enrich in the same spatial clusters derived from our unsupervised 

machine learning analysis. Indeed, the distribution of RNA-BP content within spatial 

clusters revealed a significant over-representation of clusters that are either strongly enriched 

or depleted for RNA-BPs (Fig. 5D). Since spatial clusters can be interpreted as defining 

“micro-compartments” within the cell, both enrichment and depletion have functional 

implications: not only are RNA-BPs enriched within the same micro-compartments, they 

tend to also be excluded from others. 16 out of the 26 spatial clusters (62%) that are highly 

enriched in RNA-BPs include at least one protein involved in biomolecular condensation 

(as curated in PhaSepDB (63)), which might reflect a prevalent role for biomolecular 

condensation in shaping the RNA-BP proteome. Collectively, both interactome and imaging 

data underscore that RNA-BPs (a prevalent group of proteins that represents 13% of proteins 

expressed in HEK293T cells, see Table S2) form a distinct sub-group within the proteome 

characterized by unique properties.

These results motivated a broader analysis of the contribution of intrinsic disorder to 

the spatial organization of the proteome in our dataset. Plotting the distribution of mean 

intrinsic disorder within spatial clusters revealed a significant over-representation of clusters 
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both enriched and depleted in disordered proteins (Fig. 5E). 26 out of 182 total spatial 

clusters were enriched for disordered proteins, covering 13% of the proteins in our imaging 

dataset. Overall, the extent to which disordered proteins segregate spatially is similar to 

the degree of segregation found for hydrophobic proteins: an analogous analysis revealed 

that 10% of proteins in our dataset are found within clusters significantly enriched for high 

hydrophobicity (Fig. S12E), which map to membrane-bound organelles (Fig. S12F). This 

supports the hypothesis that intrinsic disorder is as important a feature as hydrophobicity 

in organizing the spatial distribution of the human proteome. Consistent with our previous 

analysis, high-disorder clusters were enriched for RNA-BPs (Fig. 5F), with 15 out of these 

26 clusters containing over 50% of RNA-BPs. High-disorder clusters were also enriched 

for proteins annotated to participate in biomolecular condensation (Fig. 5G), and were 

predominantly found in the nucleus (19 clusters, 73% of total, Fig. 5H). 5 out of 7 high-

disorders clusters found in the cytosol delineate compartments for which biomolecular 

condensation has been proposed to play an important role (Fig. 5G), namely P-bodies (64), 

stress granules (59), centrosome (65), cell junctions (66) and the interface between cell 

surface and actin cytoskeleton (67).

Interactive data sharing at opencell.czbiohub.org

To enable widespread access to the OpenCell datasets, we built an interactive web 

application that provides side-by-side visualizations of the 3D confocal images and of the 

interaction network for each tagged protein, together with RNA and protein abundances for 

the whole proteome (Fig. 6). Our web interface is fully described in Suppl. Fig S12.

Discussion

OpenCell combines three strategies to augment the description of human cellular 

architecture. First, we present an integrated experimental pipeline for high-throughput 

cell biology, fueled by scalable methods for genome engineering, live-cell microscopy 

and IP-MS. Second, we provide an open-source resource of well-curated localization 

and interactome measurements, easily accessible through an interactive web interface 

at opencell.czbiohub.org. And third, we developed an analytical framework for the 

representation and comparison of interaction or localization signatures (including a self-

supervised machine learning approach for image encoding). Finally, we demonstrate 

how our dataset can be used both for fine-grained mechanistic exploration (to explore 

the function of multiple proteins that were previously uncharacterized), as well as for 

investigating the core organizational principles of the proteome.

Our current strategy that combines split-FPs and HEK293T – a cell line that is heavily 

transformed but easily manipulatable – is mostly constrained by scalability considerations. 

Excitingly, technological advances are quickly broadening the set of cellular systems 

that can be engineered and profiled at scale. Advances in stem cell technologies enable 

the generation of libraries that can be differentiated in multiple cell types (11), while 

innovations in genome engineering (for example, by modulating DNA repair (68)) pave 

the way for the scalable insertion of gene-sized payload, for the combination of multiple 

edits in the same cell, or for increased homozygosity in polyclonal pools. In addition, 
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recent developments in high-throughput light-sheet microscopy (69) might soon enable the 

systematic description of 4D intracellular dynamics (70).

A central feature of our approach is to use endogenous fluorescent tags to study protein 

function. Genome-edited cells enable to examine protein function at near-native expression 

levels (which can circumvent some limitations of over-expression (71)), and to measure 

protein localization in live cells (which can avoid artefacts caused by fixation or antibody 

labeling (72)). Comparing our data to the current reference datasets of protein-proteins 

interactions (Fig. S4C–F) or localization (Fig. S7C–D) highlights the performance of our 

strategy. In addition, our high success rate tagging essential genes (Fig. S2A; see also 

(73) in yeast) and the successful tagging of the near-complete yeast proteome (14, 73) 

support that fluorescent tagging generally preserves normal protein physiology. However, 

limitations exist for specific protein targets. FPs are as big as an average human protein 

and their insertion can impair function or localization, for example by occluding important 

interaction interfaces or impairing sub-cellular targeting sequences. In other cases, tags 

can affect expression or degradation rates, which might explain why we find tagged 

proteins being expressed at 80% of their endogenous abundance, and 8% of targets in our 

dataset having outlier abundances at steady-state (Fig. S3D). Further, tagging often cannot 

discriminate between different isoforms of a protein (such as splicing or post-translationally 

modified variants). Finally, relying on endogenous expression can be an obstacle given the 

low concentration of most proteins in the human cell: even using a very bright FP like 

mNeonGreen (74), detecting proteins in the bottom 50% percentile of abundance is difficult 

(Fig. S2D). Solutions to this obstacle include using FP repeats to increase signal (18, 23) or 

using tags that bind chemical fluorophores (e.g., HaloTag (75)), which can be brighter than 

FPs or operate at wavelengths where cellular auto-fluorescence is decreased (76). Overall, 

the full description of human cellular architecture remains a formidable challenge which will 

require complementary methods being applied in parallel. The diversity of large-scale cell 

biology approaches is a solution to this problem (6, 8, 9, 11, 31, 70, 77–80). Mirroring the 

advances in genomics following the human genome sequence (2), open-source systematic 

datasets will likely play an important role in how the growth of cell biology measurements 

can be transformed into fundamental discoveries by an entire community (81).

In addition to presenting a resource of measurements and protocols, we also demonstrate 

how our data can be used to study the global signatures that pattern the proteome. Our 

analysis reveals that RNA-binding proteins, which form one of the biggest functional family 

in the cell, are characterized by a unique set of properties and segregate from other proteins 

in term of both interactions and spatial distribution. It would be fascinating to explore to 

which extent RNA itself might act as a structural organizer of the cellular proteome (62, 

82). This is for example the case for some non-coding RNAs whose main function is to 

template protein interactions to form nuclear bodies (83). High intrinsic disorder is one of 

the distinguishing features of RNA-BPs, which likely contributes to their unique properties. 

Beyond RNA-BPs, our data supports a general role for intrinsic disorder in shaping the 

spatial distribution of human proteins. For example, 13% of proteins in our dataset are found 

in spatial clusters that are significantly enriched for disordered proteins. This adds to the 

growing appreciation that intrinsic disorder, which is much more prevalent in eukaryotic vs. 
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prokaryotic proteomes (84, 85), plays a key role in the functional sub-compartmentalization 

of the eukaryotic nucleo- and cytoplasm in the context of biomolecular condensation (86).

Lastly, we show that the spatial distribution of each human protein is very specific, to the 

point that remarkably detailed functional relationships can be inferred on the sole basis of 

similarities between localization patterns – including the prediction of molecular interactions 

(which complements other studies (87)). This highlights that intracellular organization 

is defined by fine-grained features that go beyond membership to a given organelle. 

Our demonstration that self-supervised deep learning models can identify complex but 

deterministic signatures from light microscopy images opens exciting avenues for the use 

of imaging as an information-rich method for deep phenotyping and functional genomics 

(51). Because light microscopy is easily scalable, can be performed live and enables 

measurements at the single-cell level, this should offer rich opportunities for the full 

quantitative description of cellular diversity in normal physiology and disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: the OpenCell library.
(A) Functional tagging with split-mNeonGreen2. In this system, mNeonGreen2 is separated 

into two fragments: a short mNG11 fragment, which is fused to a protein of interest, and a 

large mNG21-10 fragment, which is expressed separately in trans (that is, tagging is done 

in cells that have been engineered to constitutively express mNG21-10). (B) Endogenous 

tagging strategy: mNG11 fusion sequences are inserted directly within genomic open 

reading frames (ORFs) using CRISPR-Cas9 gene editing and homologous recombination 

with single-stranded oligonucleotides donors (ssODN). (C) The OpenCell experimental 

pipeline. See text for details. (D) Successful detection of fluorescence in the OpenCell 

library. Out of 1757 genes that were originally targeted, fluorescent signal was successfully 

detected for 1310 (top panel). Low protein abundance is the main obstacle to successful 

detection. Bottom left panel shows the full distribution of abundance for all proteins 

expressed in HEK293T vs. successfully or unsuccessfully detected OpenCell targets; boxes 

represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x interquartile range. 

Median is indicated by a white line. P-value: Student’s t-test. (E) The OpenCell data 

analysis pipeline, described in subsequent sections.
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Figure 2: Protein interactome.
(A) Overall description of the interactome. (B) Unsupervised Markov clustering of 

the interactome graph. (C) Example of community and core cluster definition for 

the translocon/EMC community. (D) The complete graph of connections between 

interactome communities. The density of protein-protein interactions between communities 

is represented by increased edge width. The numbers of targets included in each community 

is represented by circles of increasing diameters. (E) Distribution of occurrence in PubMed 

articles vs. RNA expression for all proteins found within interactome communities. The 
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bottom 10th percentile of publication count (poorly characterized proteins) is highlighted. 

(F) NHSL1/NSHL2/KIAA1522 are part of the SCAR/WAVE community and share amino-

acid sequence homology (right panel). (G) DMXL1/2, WDR7 and ROGDI form the human 

RAVE complex. Heatmaps represent the interaction stoichiometry of preys (lines) in the 

pull-downs of specific OpenCell targets (columns). See text for details.
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Figure 3: live-cell image collection.
(A) The 15 cellular compartments segregated for annotating localization patterns. The 

localization of a representative protein belonging to each group is shown (greyscale, 

gene names in top left corners; scalebar: 10 μm). Nuclear stain (Hoechst) is shown in 

blue. “Nuclear domains” designate proteins with pronounced non-uniform nucleoplasmic 

localization, for example chromatin binding proteins. (B) Comparison of annotated 

localization for proteins included in both OpenCell and Human Protein Atlas datasets. 

In this flow diagram, colored bands represent groups of proteins that shared the same 

localization annotation in OpenCell, and the width of the band represents the number of 

proteins in each group. For readability, only the 12 most common localization groups are 
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shown. Some multi-localization groups are included (e.g. “cytoplasm & nucleoplasm”). (C) 
Principle of localization encoding by self-supervised machine learning. See text for details. 

(D) UMAP representation of the OpenCell localization dataset, highlighting targets found to 

localize to a unique cellular compartment. (E) Representative images for 10 nuclear targets 

that exemplify the nuanced diversity of localization patterns across the proteome. Scale bars: 

10 μm.
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Figure 4: protein functional features derived from unsupervised image analysis.
(A) Comparison of image-based Leiden clusters with ground-truth annotations. The 

Adjusted Rand Index (ARI, (86)) of clusters relative to three ground-truth datasets is plotted 

as a function of the Leiden clustering resolution. ARI (a metric between 0 and 1, see 

Materials and Methods) measures how well the groups from a given partition (in our case, 

the groups of proteins delineated at different clustering resolutions) match groups defined 

in a reference set. The amplitude of the ARI curves is approximately equal to the number 

of pairs of elements that partition similarly between sets; the resolution at which each 
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curve reaches its maximum corresponds to the resolution that best captures the information 

in each ground-truth dataset. At a low resolution, Leiden clustering delineates groups 

that recapitulate about half of the organellar localization annotations, while at increasing 

resolutions, clustering recapitulates about a third of pathways annotated in KEGG, 

or molecular protein complexes annotated in CORUM. Shaded regions show standard 

deviations calculated from 9 separate repeat rounds of clustering, and average values are 

shown as a solid line. (B) High correspondence between low-resolution image clusters and 

cellular organelles. (C) Examples of functional groups delineated by high-resolution image 

clusters, highlighted on the localization UMAP. (D) Heatmap distribution of localization 

similarity (defined as the Pearson correlation between two deep learning-derived encoding 

vectors) vs. interaction stoichiometry between all interacting pairs of OpenCell targets. Two 

discrete sub-groups are outlined: low stoichiometry/low localization similarity pairs (solid 

line) and high stoichiometry/high localization similarity pairs (dashed line). (E) Probability 

density distribution of CORUM interactions mapped on the graph from (D). Contours 

correspond to iso-proportions of density thresholds for each 10th percentile. (F) Localization 

patterns of different subunits from example stable protein complexes, represented on the 

localization UMAP. (G) Frequency of direct (1st-neighbor) or once-removed (2nd neighbor, 

having a direct interactor in common) protein-protein interactions between any two pairs 

of OpenCell targets sharing localization similarities above a given threshold (x-axis). (H) 
Parallel identification of FAM241A as a new OST subunit by imaging or mass-spectrometry. 

See text for details.
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Figure 5: segregation of RNA-BPs in both interactome and imaging datasets.
(A) Hierarchical structure of the interactome dataset, see full description in Figure S9B. 

(B) Distribution of membrane-related (transmembrane or membrane-binding) and RNA-BPs 

within the three interactome branches. (C) Distribution of intrinsic disorder in the RNA-BP 

branch of the interactome hierarchy (related to Figure S10). Two separate scores are shown 

for completeness: IUPRED2 (87), and metapredict (88), a new aggregative disorder scoring 

algorithm. Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x 

inter-quartile range. Median is represented by a white line. ** p < 10–4 (Student’s t-test), 

exact p-values are shown. (D) Distribution of RNA-BP percentage across spatial clusters, 

comparing our data to a control in which the membership of proteins across clusters 

was randomized 1,000 times. Lines indicate parts of the distribution over-represented in 

our data vs control (**: p < 2×10−3, Fisher’s exact t-test). (E) Distribution of disorder 

score (IUPRED2) across spatial clusters, comparing our data to a control in which the 

membership of proteins across clusters was randomized 1,000 times. Lines indicate parts 

of the distribution over-represented in our data vs control (**: p < 2×10−3, Fisher’s exact 

t-test). (F) Ontology enrichment analysis of proteins contained in high-disorder spatial 
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clusters (average disorder score > 0.45). Enrichment compares to the whole set of OpenCell 

targets (p-value: Fisher’s exact test). (G) Prevalence of proteins annotated to be involved 

in biomolecular condensation in high-disorder vs. other spatial clusters. Boxes represent 

25th, 50th, and 75th percentiles, and whiskers represent 1.5x inter-quartile range. Median 

is represented by a white line. Note that for both distributions, the median is zero. (H) 
Distribution of high-disorder spatial clusters in the UMAP embedding from Fig. 3D. 

Individual nuclear clusters are not outlined for readability. Multiple high-disorder spatial 

clusters include compartments or proteins known to be characterized by biomolecular 

condensation behaviors, which are marked by an asterisk.
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Figure 6: the OpenCell website.
Shown is an annotated screenshot from our web-app at http://opencell.czbiohub.org, which 

is described in more details in Suppl Fig. S12.
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