
Altered periodic dynamics in the default mode network in autism 
and ADHD

Paul Curtin1,†, Janina Neufeld2,†, Austen Curtin1, Manish Arora1, Sven Bölte2,3,4

1Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount 
Sinai, One Gustave L Levy Place, Box 1057, New York, NY 10029, USA.

2Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department 
of Women’s and Children’s Health, Karolinska Institutet & Stockholm Health Care Services, 
Region Stockholm, Sweden; Address: Child & Adolescent Psychiatry Research Center, BUP-
FOU, KIND, Gävlegatan 22, 11330 Stockholm, Sweden.

3Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Western 
Australia

4Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, 
Stockholm, Sweden

Abstract

Background: Altered resting state (RS) functional connectivity in the default mode network 

(DMN) is characteristic of both autism spectrum disorder (ASD) and attention-deficit 

hyperactivity disorder (ADHD). Standard analytical pipelines for RS functional connectivity focus 

on linear correlations in activation time courses between neural networks or regions of interest 

(ROIs). These features may be insensitive to temporally lagged or non-linear relationships.

Methods: In a twin cohort study including 292 children, including 52 diagnosed with ASD and 

70 with ADHD, we applied non-linear analytical methods to characterize periodic dynamics in 

the DMN. Utilizing recurrence quantification analysis (RQA) and related methods, we measured 

the prevalence, duration, and complexity of periodic processes within and between DMN ROIs. 

We constructed generalized estimating equations (GEEs) to compare these features between 

neurotypical children and children with ASD and/or ADHD while controlling for familial 

relationships; and, leveraged machine learning algorithms to construct models predictive of ASD 

or ADHD diagnosis.

Results: In within-pair analyses of twins with discordant ASD diagnoses, we found that DMN 

signal dynamics in dizygotic twins were significantly different, but monozygotic twins were not. 
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Considering our full sample, we found that these patterns allowed a robust predictive classification 

of both ASD (81.0% Accuracy; AUC=0.85) and ADHD (82% Accuracy; AUC=0.87) cases, 

respectively.

Conclusions: These findings indicate that synchronized periodicity among regions comprising 

the DMN relates both to neurotypical function and to ASD and/or ADHD; and suggest generally 

that a dynamical analysis of network interconnectivity may be a useful methodology for future 

neuroimaging studies.
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Introduction

Neuroimaging with functional magnetic resonance imaging (fMRI) is commonly applied 

to probe mechanisms underlying neural and psychological processes, and to identify 

dysregulation of these mechanisms in neurological, psychiatric, and neurodevelopmental 

conditions. Resting state (RS) functional connectivity, which is the synchronization of 

spontaneous (task-free) activity between brain regions, has been demonstrated to be a useful 

measure in psychiatric research. This is due to the low cognitive demand and the high 

comparability between different studies. The observed networks are also highly reproducible 

and reflect, at least partly, the underlying structural connectivity between networks and 

regions of interest (ROIs)(1). Particularly in clinical contexts, the development of methods 

to leverage RS functional connectivity to detect signatures of atypical functionality is a 

major outstanding goal in the field. In the present paper, we introduce new measures of RS 

functional connectivity and explore their utility in characterizing functional dysregulation 

relating to ASD and attention deficit hyperactivity disorder (ADHD).

Network-level RS functional connectivity in relation to ASD(2-6) and/or ADHD(7, 8) has 

primarily been assessed in relation to the default mode network (DMN). The DMN is one 

of the most prominent RS networks and is a system of brain regions that are active at rest 

but consistently deactivated while an individual is performing attention demanding tasks(5). 

It has been suggested that DMN activity reflects an undirected monitoring and evaluation 

of the current situation(9). Further, the DMN overlaps with social brain regions, and DMN 

connectivity has been found to predict social skills(10). The DMN is also thought to play 

an important role in the emergence of Theory of Mind, moral decision-making, episodic 

memory, and prospection, in addition to social and emotional processing(10-15).

DMN connectivity is usually decreased in adults and adolescents with ASD, while 

children with the condition have more commonly increased DMN connectivity compared 

to age-matched controls, suggesting an unusual developmental trajectory(16). Alterations in 

perceptual style, such as enhanced detail focus and slower feature integration, are thought to 

relate to a general perturbation of connectivity patters in ASD, such that local connectivity 

may be atypically stronger, while global or distal connectivity is weaker in ASD(17).
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Less is known about DMN connectivity in individuals with ADHD, but there is evidence 

for altered connectivity and possibly a maturational delay even here(7, 18). One recent large 

scale RS fMRI study on data from the Autism Brain Imaging Data Exchange (ABIDE) 

database identified similar alterations in DMN connectivity as shared neural correlates of 

individuals with ASD and ADHD(19). Further, individuals with both conditions have been 

found to show more extreme DMN connectivity alterations than individuals with ASD 

alone(18). Despite the utility of seed-based and network-level metrics in basic and applied 

research on ASD and ADHD, the use of these tools for the prediction and classification 

of conditions remains an ongoing challenge. Several studies(20-24) have shown that DMN 

connectivity was one of the most defining features for diagnostic classification of ASD.

Although there is growing evidence for the importance of the DMN in both ASD and 

ADHD, control of confounding factors in traditional study designs remains a major 

challenge. Critically, a twin-based study design, which allows comparison of twins 

concordant and discordant for diagnoses and/or traits, provides an inherent control over 

genetic and environmental factors which would otherwise be impossible to achieve in 

standard population-based study designs(25). Contrasting within-pair associations (i.e., 

comparing twins of each pair to each other) between monozygotic (MZ) and dizygotic (DZ) 

sub-cohorts enables further disentanglement of genetic from environmental influence given 

that associations within MZ twins can be regarded as environmental. For example, one twin 

study found reduced DMN connectivity in adult twins with higher autistic traits compared 

to their twins with lower autistic trait expression and suggested that altered RS connectivity 

involving the DMN in association with ASD is not solely driven by genetics or other familial 

factors, but instead closely linked to the phenotypic expression of ASD(6).

In the current study, we leveraged a twin-based study which included participants with 

ASD, ADHD or both conditions (2, 3, 22, 23) to explore synchronization among and 

between regions comprising the DMN with non-linear analytical methods, particularly 

recurrence quantification analysis (RQA). To demonstrate the utility of this approach in 

the analysis of fMRI signals, we focus on the identification and statistical discrimination 

of individuals diagnosed with ASD and ADHD, respectively, from NT individuals. This 

approach allowed the identification of patterns of desynchronization which we further 

leveraged in the construction of a classification model that can assign case/control status 

for either condition in a naïve dataset. While utilizing a relatively small pool of participants 

with clinical ASD or ADHD diagnoses, this approach yielded comparable classification 

performance to standard methods that have utilized far larger sample sizes(3, 26) to achieve 

generalizable performance in naïve datasets.

Materials and methods

Participant Recruitment and Characteristics

Study participants were recruited via the Roots of Autism and ADHD Twin Study in Sweden 

(RATSS)(27), where the majority of individuals are recruited from the population-based 

Child and Adolescent Twin Study in Sweden (CATSS)(28). Twin pairs where one or both 

of the twins show either increased ASD or ADHD-like traits in the Autism-Tics, ADHD 

and other Comorbidities inventory(29) are recruited to RATSS, as well as twin pairs with 
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low such trait levels in order to cover the entire spectrum of autistic traits. Participant 

demographics are summarized in Table 1, and additional details on recruiting and participant 

characteristics can be found in Supplemental Information.

Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) data were analyzed from 292 RATSS 

participants. Participants completed a 5–7 min pre-scanning training session in a mock 

scanner, followed by a ~ 50 min MRI session in a 3 Tesla MR750 GE-scanner. The 

scanning session included a ~5 min T1-weighted Spoiled Gradient Echo high resolution 

anatomical scan (176 slices, TR = 8.2 s, FOV = 240 mm) and a 10 min resting state (RS) 

T2*-weighted Echo Planar Imaging Scan (45 slices, TR = 3 s, 205 volumes, FOV = 288 

mm, matrix size = 96x96). During the RS scan, a white cross on black background was 

presented. Participants were instructed to look at the cross throughout the RS functional 

MRI run. Resting state fMRI data were pre-processed in Matlab v2017b (Mathworks) with 

the CONN (https://www.nitrc.org/projects/conn) and (https://www.fil.ion.ucl.ac.uk/spm/

software/spm12/) SPM12 toolboxes. Detailed preprocessing information can be found in 

Supplemental information. DMN regions were defined by structural co-registration with 

MNI space using the Harvard-Oxford brain atlas(30-33) (additional details in Supplemental 

Information). The anatomical localization of DMN regions are shown in Figure 1.

Recurrence Quantification Analysis

Recurrence quantification analysis (RQA) is used to describe periodic processes in physical 

and biological systems and is prevalent in many fields including biology, physiology, 

geology, and climatology(34-37). We have previously described the application of RQA 

to biological time series as used here(38-40), and illustrate this process further in Figure 

2; we provide additional details as to the theoretical background, implementation, and 

interpretation of RQA and related methods in Supplemental Information. In this study, 

which focused on the analysis of periodic signatures in BOLD signals, RQA was used 

to derive three metrics – Determinism, Mean Diagonal Length, and Entropy - which 

measure the relative prevalence, duration, and complexity of periodic processes in the 

BOLD signal. The application of RQA to BOLD signals from individual ROIs was then 

extended to consider synchronization between ROIs via the application of cross-recurrence 

quantification analysis (CRQA), which, as in RQA, yields a measure of the prevalence 

(Determinism), duration (Mean Diagonal Length), and complexity (Entropy) of cross-signal 

synchronization.

Statistical Analysis

Features derived from RQA/CRQA were used in the implementation of two general 

modeling strategies involving inferential and predictive modeling. First, to assess statistical 

differences relating to ASD and ADHD, we constructed general estimating equations 

(GEEs) to identify relationships between RQA/CRQA features in various regions to ASD 

and ADHD. As in prior studies(41-43), GEEs were used to account for relatedness among 

twin participants via the double-robust procedure for handling confounding by cluster. 

This approach utilizes an independent correlation structure(44). In the initial phase of 

modeling, only twin pairs with discordant diagnoses for ASD or ADHD were analyzed. 
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Effect estimation was conditioned on family identification such that tests for effects of ASD/

ADHD reflected within-pair differences. Models included the main effects of ASD/ADHD 

as well as an interaction term to test for dependency of effects on zygosity (i.e., whether 

effects were different in MZ and DZ twin pairs). Effects relating to ASD*Zygosity and 

ADHD*Zygosity interactions were adjusted for multiple comparisons (FDR). Where these 

effects survived multiple comparison, post-hoc tests (Tukey) were used to test for differences 

between diagnostic status and zygosity.

Models were adjusted for covariates of subject sex and head motion during the scanning 

process; we also tested for associations between IQ scores and RQA/CRQA features, and 

with ASD and ADHD diagnosis, but found no significant effects and therefore excluded IQ 

from our final models.

Following the statistical analysis of discordant twin pairs, the same strategy was then applied 

to the analysis of the full dataset, which included both twin pairs that had concordant 

diagnoses for ASD or ADHD and singletons where no co-twin data were available. 

A random (clustering) term was included in these models to account for relatedness 

among participants. Significant effects relating to zygosity-dependent interactions were not 

followed with post-hoc analyses, as these could not be interpreted as relating to genetically 

driven effects due to the presence of concordant twin pairs and singletons. Models were 

implemented in R v3.5 with the drgee and multcomp packages.

Predictive Modeling

In parallel to statistical models used for hypothesis testing, we implemented a 

complementary analysis to evaluate the predictive utility of RQA/CRQA features with 

respect to ASD or ADHD case status. Utilizing data from all participants, we randomly 

partitioned participants into training (75% of data) and validation (25% of data) sets. A 

tree-based gradient boosting algorithm(45), XGBoost(46) (Extreme Gradient Boosting), was 

trained following 5000 iterations of 5-fold cross-validation to make a binary prediction of 

case status; this procedure was repeated to predict ASD status, and to predict ADHD status. 

For cross-validated training, 5000 iterations of a random grid search were used to tune the 

nrounds, eta, max_depth, gamma, and colsample_bytree hyperparameters. These correspond 

to the number of rounds used in gradient boosting, learning rate, tree depth, penalization 

parameter, and random sub-setting percentage, respectively. The performance of trained 

models was then evaluated by making predictions on validation data sets. To quantify the 

relative importance of each feature to each predictive model, we estimated Gain(46); this is 

a measure of predictive improvement associated with the inclusion of each feature. These 

procedures were implemented in R v3.5 with the mlr and Xgboost packages.

Results

In 292 participants, including 52 diagnosed with ASD and 70 with ADHD, we applied 

recurrence quantification analysis (RQA) and cross-recurrence quantification analysis 

(CRQA) to characterize periodicity and synchronization within and between regions of 

interest (ROIs) comprising the default mode network (DMN). The sample included 122 

complete twin pairs of which 76 were monozygotic (MZ) and 46 dizygotic (DZ). There 
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were no significant differences in head motion between neurotypical participants and 

participants with ASD (β=0.07 (95%CI: −0.17,0.32), p=0.56) or ADHD (β=0.03 (95%CI: 

−0.10,0.15), p=0.68). There were likewise no significant differences in participants’ age 

between neurotypical participants and participants with ASD (β=0.04 (95%CI: −0.13,0.22), 

p=0.61) or ADHD (β=0.01 (95%CI: −0.14, 0.13), p=0.90). The DZ subgroup, however, were 

older at the time of scanning than the MZ group (t=2.79, df=288, p=0.006). Within zygosity-

specific subgroups, MZ females were older than males (t=−4.35, df=167 p=0.00002), and 

DZ females were older than males (t=−2.1, df=146 p=0.04).

Differences in the RQA metrics of discordant ASD and/or ADHD twin pairs

To leverage the genetic and environmental control afforded by a twin-based study design, 

our initial analysis focused on MZ and DZ twin pairs with discordant diagnostic status for 

either ASD or for ADHD. In our analysis of ASD-discordant twin pairs there were 10 MZ 

pairs and 13 DZ pairs, whereas in our analysis of ADHD-discordant pairs, there were 12 

MZ pairs and 24 DZ pairs. One group of dizygotic triplets discordant for both ASD and 

ADHD was included. Table 2 provides FDR-adjusted P-values for the effect tests for ASD 

and ADHD, embedded in an interaction for zygosity to allow contrasts between MZ and 

DZ twins, across each RQA metric, and for each ROI (for RQA analyses) or ROI pair 

(for CRQA analyses). Tests for ASD/ADHD-related effects reflect within-pair differences 

between twins with discordant diagnoses.

BOLD signal Determinism, in particular, proved to be highly sensitive to ASD, with 

significant effects observed across the left and right LP, MPFC, and the averaged signal of 

the whole DMN after FDR-adjustment for multiple comparisons. In contrast, BOLD signal 

Mean Diagonal Length was only significantly related to ASD in the right LP, and no effects 

relating to BOLD signal Entropy survived multiple-comparison adjustment. With ADHD, no 

effects relating to RQA metrics survived multiple-comparison adjustment (see Table 2).

We further explored the dependence of effects observed in ASD on zygosity (indicating 

genetic influences) with post-hoc analyses and data visualizations within the 23 ASD 

discordant twin pairs and the ASD discordant triplet. Figure 3 highlights Determinism-

related dysregulation with ASD in MZ and DZ twin pairs. With the overall DMN BOLD 

signal (Figure 3A), we found that Determinism was significantly reduced in DZ twins with 

ASD (Tukey HSD = 0.024) but found no overall effect for ASD discordant MZ twins. 

Effects relating to the synchronization of MPFC and right LP (Figure 3B; Tukey HSD = 

0.013), the synchronization of the left and right LP (Figure 3C; Tukey HSD = 0.002) and 

the right LP (Figure 3D; Tukey HSD = 0.0001) were consistent with the pattern observed 

in overall DMN signal, where Determinism was reduced in DZ ASD cases compared to 

their co-twins but not in MZ cases. No effects survived multiple comparison adjustment in 

post-hoc analysis of Mean Diagonal Length in the right LP. In sum, across multiple regions, 

these findings indicate a persistent, differential pattern of ASD-related dysregulation in DZ 

twin pairs but not in MZ twin pairs.
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Differences in the RQA metrics of participants diagnosed with ASD and/or ADHD

We next explored the roles of ASD and ADHD in our full sample, which included both 

singleton samples and twins with concordant diagnostic status (n = 292; 52 ASD cases 

and 70 ADHD cases). We found a marginally significant overall effect in that BOLD 

signal Determinism was reduced in ASD cases compared to NT controls in the averaged 

DMN signal (β = −0.031, FDR = 0.072), but for most metrics the effects of ASD were 

moderated by an interaction with zygosity, as observed in the discordantly-diagnosed twin 

subset. Consistent to our analysis restricted to discordant twin pairs, we found significant 

interactions between zygosity and diagnostic status in the right LP (FDR = 0.005) and the 

averaged DMN signal (FDR = 0.005), as well as in the synchronization of MPFC and right 

LP (FDR = 0.008) and left and right LP (FDR = 0.017) also in the full sample (see Table 3). 

Following adjustment for multiple comparisons there were no overall differences between 

individuals diagnosed with ADHD compared to NT controls.

Classification of ASD and ADHD from RQA

Finally, we investigated the predictive utility of RQA/CRQA-derived measures of 

periodicity in the DMN for separating ASD and ADHD cases from NT controls. To achieve 

this, we constructed a data-driven machine learning model utilizing a tree-based gradient 

boosting method for classification. Datasets utilizing the full range of features derived from 

RQA and CRQA of DMN regions were randomly split and assigned for model training 

(75% of available data), or model validation (25% of available data). Models were fit to 

training subsets utilizing 5-fold cross-validation, and model performance was then assessed 

by evaluating predictive sensitivity and specificity in the holdout test data. ROC curves 

derived from models predictive of ASD/ADHD are shown in Figure 4A/4B, respectively; 

generally, these illustrate robust generalization of classification efficacy following cross-

validation in the training set. In predicting ADHD, models achieved an area-under-the-

curve (AUC) of 0.87 (95% CI: 0.78-97), with 0.76 sensitivity, 0.84 specificity, and 82% 

overall accuracy at the optimal classification threshold. For ASD, the optimal classification 

threshold yielded 0.85 sensitivity, 0.80 specificity, and 81% overall accuracy, with model 

AUC of 0.85 (bootstrapped 95% CI: 0.73-0.97).

Discussion

Previous studies investigating resting state (RS) functional connectivity in ASD and ADHD 

using correlation-based measures indicated alterations in the DMN, but largely overlooked 

the dynamic features involved in these processes(3, 6, 7, 16, 47-51). Here we introduce 

a novel analytical approach, recurrence/cross-recurrence quantification analysis (RQA/

CRQA), to characterize and relate periodicity in the default mode network (DMN) to ASD 

and ADHD. Our results identified ASD-related differences in intrinsic and interdependent 

periodic processes among and between regions of the DMN that were largely limited to DZ 

twin pairs, suggesting a genetic role in the emergence of these signatures. More generally, in 

consideration of our full sample, which additionally included twins concordant for ASD or 

ADHD diagnosis as well as singletons, we found that these features allowed the construction 

of robustly generalizable classification models that were able to achieve good sensitivity and 

specificity for discriminating ASD and ADHD cases by resting fMRI scans. These models 
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achieved robust classification performance, with model AUCs ranging from 0.85-0.87 in 

holdout testing. These findings emphasize that periodic processes active in the DMN are 

generally dysregulated in both conditions, but the specific signatures associated with ASD 

and ADHD are distinct and regulated differentially by genetic and environmental factors. 

More generally, these findings suggest that indicators of periodicity may provide a sensitive 

complement to existing measures of functional connectivity.

The primary methodological difference in the present study compared to similar 

neuroimaging investigations is in the treatment and analysis of the derived BOLD signal. 

Standard analytical pipelines focus on correlation-based metrics. In contrast, we focus on an 

analysis of periodicity in the raw BOLD signal, from which we derive metrics relating to 

prevalence (Determinism), duration (Mean Diagonal Length), and complexity (Entropy) of 

cyclical processes. Unlike analogous correlation-based metrics, this approach is intrinsically 

sensitive to non-linear and time-lagged effects; and, is equally applicable to the analysis of 

intrinsic periodicity within a given region, and interdependent cycles that relate one region 

to another. Previous physiological studies have leveraged these capacities in the analysis of 

EEG signals(52-56), cardiac dynamics(57-61), and motor coordination(62-65), and in fact 

several studies have utilized RQA/CRQA in the analysis of ASD-related behavioral features, 

such as stereotypical movements(66, 67). A recent study by Kaboodvand et al(68) similarly 

applied RQA in the assessment of DMN dynamics, particularly relating to ADHD, but the 

focus of that study was on RQA-related metrics such as laminarity which characterize the 

emergence of stable states, in contrast to our focus on periodicity. As such, the application 

of RQA/CRQA in the present study to characterize periodic dynamics in resting-state fMRI 

data emphasizes a new level of analysis where this method can be generalized.

Given that this, to our knowledge, the first study to apply RQA/CRQA to characterize 

periodicity in the context of neuroimaging with ASD/ADHD cases, we examined all 

potential connections among regions of the DMN. A potential weakness in this approach 

is that the broadly-defined regions analyzed here may not reflect fine-scale segmentation of 

DMN-related subnetworks, as characterized by Andrews et al(69) and Braga & Buckner(70). 

Our approach was nonetheless particularly sensitive to ASD-related dysregulation; for 

example, we observed dysregulated BOLD signal dynamics in the averaged DMN signal, in 

the right LP, and in the synchronization of the MPFC-LP(right) and LP(left)-LP(right). In 

ADHD, we observed a number of effects that approached statistical significance but did not 

survive comparison for multiple adjustment. Future studies might investigate these regions 

in a more targeted analysis both to determine if these were Type II errors due to potential 

over-adjustment for multiple comparison, and to investigate if dysregulation of synchronized 

activity is specific to discrete subnetworks of the DMN.

Due to the limited sample sizes of MZ and DZ sub-cohorts discordant for ASD or ADHD, 

the interaction effects between zygosity and within-pair differences need to nonetheless be 

interpreted with caution and should be confirmed in larger MZ and DZ discordant samples. 

As well, since the DZ sub-group was older than the MZ sub-group in our sample, we 

cannot exclude the possibility that the effects specifically observed in DZ twins alone were 

influenced by age (e.g., emerged with older age) rather than being solely driven by genetics, 

although these effects were adjusted for in our statistical models. In future studies, the 
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application of these and related methods to neuroimaging studies in larger cohorts should 

be explored towards the goal of simultaneous classification of ASD, ADHD, and comorbid 

presentations of ASD and ADHD, which was not achievable in the present study given the 

limited sample size.

Future studies might likewise explore the application of these methods to complementary 

imaging modalities and conditions, particularly task-related fMRI. A crucial advantage 

of task-related fMRI over RS fMRI is that noise affecting all experimental conditions is 

cancelled out when they are contrasted. Since no such contrasting can be applied to RS data, 

this method demands more careful quality control procedures in order to reduce the effects 

of, for instance, head motion(71). Task-related and RS fMRI complement each other, both 

providing different aspects of neural correlates and coming with different advantages and 

disadvantages. Generally, despite limitations, our findings are consistent with prior results of 

both shared and disease-specific indicators of ASD and ADHD in regions within and outside 

the DMN(72).

In the context of our predictive models, we found that determinism in the DMN, generally, 

and determinism specific to the right lateral parietal (LP) region – both of which 

significantly differed from neurotypical in children with ASD – were among the most 

important features (top 10, Figure 4C) in predicting ASD; entropy in MPFC-LP(right), 

which did not survive adjustment for multiple comparison, was likewise among the most 

important contributors to predictive efficacy in ASD models. Somewhat in contrast to our 

findings utilizing statistical hypothesis tests, where the prevalence of periodic signatures 

(Determinism) yielded the strongest indicators of ASD-related effects, the most important 

features in our predictive model included measures of entropy and mean diagonal length, 

corresponding to the duration and complexity of periodic processes. These results emphasize 

that multivariate nonlinear methods, such as the tree-based predictive models used here, 

may be sensitive to effects that may be missed in linear statistical testing and corresponding 

p-value adjustment; as such, applying these methods in parallel allows for insights that 

might not be achievable by either method, alone.

While our findings did not provide equally compelling statistically evidence of a broad 

pattern of ADHD-related dysregulation, we found that these features were nonetheless also 

highly predictive of ADHD. In particular, we found the features most predictive of ADHD 

included determinism in MPFC-LP(left) synchronization, mean diagonal length in the PCC, 

and entropy in the DMN, generally – in short, a broad pattern of dysregulation relating to 

the prevalence, duration, and complexity of periodic processes. These findings suggest that 

patterns of ADHD-related deficits may have been obscured by limited statistical power, and 

the need to adjust for multiple comparisons. As such, these findings support further studies 

utilizing a comparable approach, and our preliminary results provide an a priori rationale 

for future studies to target the subset of ROIs that were suggestive of a relationship in the 

present study, and thereby maximize statistical power.

In sum, our findings emphasize the utility of non-linear analytical approaches for the 

analysis of BOLD signals in fMRI neuroimaging studies and suggest generally that 

periodicity in BOLD signals may be an important indicator of typical and atypical 
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connectivity. Our findings particularly implicate a broad pattern of likely genetically 

determined alterations in periodicity across the DMN as an indicator of ASD, but also 

suggest more generally that altered periodicity within and between core regions of the 

DMN is indicative of both ASD and ADHD. Future studies should build on this work by 

exploring synchronization and periodicity within other networks and between DMN-related 

regions and non-DMN regions, both in relation to ASD and ADHD as well as other 

neurodevelopmental and psychiatric conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Anatomical localization of the Default Mode Network (DMN).
(A) From top-to-bottom, the DMN in the brain from left, right, left-medial, and right-medial 

sections. (B) seed-to-voxel (positive) correlations in ROIs of the DMN, with panel slices 

of the DMN from the central reference slice z = 18 (coordinates = 0 0 18 mm/75 109 91 

voxels).
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Figure 2. Construction of recurrence and cross-recurrence plots.
(A) Example BOLD signal from posterior cingulate cortex (PCC). (B) Phase portrait derived 

from Taken’s delay embedding of BOLD signal shown in (A). (C) Recurrence plot derived 

from (B). Examples of the features we quantified from recurrence plots are provided in the 

magnified box. Recurrence plots represent periodic processes with diagonal lines (orange 

dotted line) and non-periodic processes with vertical/horizontal (laminar) lines (purple/blue 

dotted lines). (D) Example BOLD signal from posterior cingulate cortex (PCC) (red) and 

medial prefrontal cortex (MPFC) (blue). (E) Phase portrait derived from Taken’s delay 

embedding of BOLD signals shown in (D). (F) Cross-recurrence plot derived from (E). We 

quantified the same features from cross-recurrence plots as recurrence plots, e.g., diagonal 

lines or cyclical processes.
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Figure 3. ASD-Related Dysregulation of Determinism in DMN BOLD Signals.
P-values reflect Tukey-adjusted post-hoc comparisons between discordant twins with ASD 

diagnosis (10 MZ pairs; 13 DZ pairs; 1 DZ triplet).
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Figure 4. Predictive efficacy of periodic features derived from RQA/CRQA of the default mode 
network.
(A) Receiver operating characteristic (ROC) curve illustrating performance of a model 

trained to classify ASD on a validation dataset following 5-fold cross-validation in training 

set. (B) ROC curve illustrating performance of a model trained to classify ADHD on a 

validation dataset. (C) Feature importance (Gain) associated with each feature in predicting 

ASD. (D) Feature importance (Gain) associated with each feature in predicting ADHD.
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Table 1.

RATSS Participant Characteristics.

N ASD ADHD NT Mean (SD)
Age (years)

Mean (SD)
IQ

Mean (SD)
SRS

Male

Overall 154 31 42 95 15.7 (4.8) 99.5 (14.7) 39.9 (31.5)

MZ 89 14 20 60 15.8 (4.7) 98.2 (13.2) 33.5 (26.1)

DZ 63 17 22 33 15.2 (5) 101.0 (16.3) 50.1 (36.2)

undetermined 2 0 0 2 24.0 (0) 115.5 (21.9) 10.5 (2.1)

Female

Overall 138 21 28 98 18.1 (6.1) 99.2 (15.9) 36.4 (32.6)

MZ 80 14 10 62 19.4 (6) 99.5 (17.2) 30.2 (30)

DZ 58 7 18 36 16.2 (5.8) 98.7 (13) 45.5 (34.5)

undetermined 0 0 0 0 - - -

Note. There were 23 individuals with both ASD and ADHD (14 males and 9 females) who were included in both the ASD and the ADHD group.
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Table 2.
Analysis of recurrence features in discordant twins with ASD and/or ADHD.

FDR corrected P-values. β provides effect parameters for interactions between zygosity and ASD or ADHD 

diagnostic status; P and FDR columns provide or raw or false discovery rate-adjusted P values for that 

parameter, respectively.

MEASURE ROI ASD ADHD

β P FDR β P FDR

Determinism

DMN 0.083 0.000 0.003 0.030 0.205 0.755

LP(left) 0.062 0.024 0.143 −0.024 0.323 0.755

LP(left) - LP(right) 0.091 0.001 0.016 −0.011 0.671 0.855

LP(left) - PCC 0.023 0.277 0.599 −0.035 0.191 0.755

LP(right) 0.128 0.000 0.003 0.005 0.849 0.912

LP(right) - PCC 0.049 0.094 0.367 −0.010 0.656 0.855

MPFC 0.051 0.128 0.392 −0.006 0.839 0.912

MPFC - LP(left) 0.050 0.016 0.108 −0.019 0.355 0.755

MPFC - LP(right) 0.081 0.000 0.003 0.010 0.623 0.840

MPFC - PCC 0.022 0.385 0.619 −.007 0.812 0.912

PCC −0.027 0.356 0.605 −0.026 0.409 0.755

Entropy

DMN 0.111 0.043 0.221 0.011 0.857 0.912

LP(left) 0.073 0.068 0.319 −0.036 0.429 0.755

LP(left) - LP(right) 0.060 0.194 0.499 −0.044 0.349 0.755

LP(left) - PCC −0.011 0.759 0.821 −0.114 0.014 0.298

LP(right) 0.129 0.011 0.102 −0.084 0.057 0.611

LP(right) - PCC 0.036 0.480 0.684 −0.026 0.617 0.840

MPFC 0.056 0.346 0.605 −0.052 0.370 0.755

MPFC - LP(left) −0.025 0.554 0.731 −0.032 0.509 0.755

MPFC - LP(right) 0.122 0.014 0.108 −0.040 0.363 0.755

MPFC - PCC 0.037 0.496 0.684 −0.046 0.356 0.755

PCC −0.087 0.197 0.499 −0.028 0.674 0.855

Mean Diagonal Length

DMN 0.250 0.087 0.359 0.069 0.728 0.874

LP(left) 0.021 0.846 0.886 −0.098 0.415 0.755

LP(left) - LP(right) 0.113 0.291 0.599 −0.132 0.299 0.755

LP(left) - PCC −0.042 0.598 0.745 −0.289 0.010 0.298

LP(right) 0.337 0.002 0.026 −0.169 0.184 0.755

LP(right) - PCC 0.108 0.354 0.605 −0.101 0.416 0.755

MPFC 0.117 0.423 0.620 −0.099 0.515 0.755

MPFC - LP(left) −0.104 0.300 0.600 −0.086 0.484 0.755

MPFC - LP(right) 0.263 0.015 0.108 −0.100 0.361 0.755

MPFC - PCC 0.063 0.595 0.745 −0.099 0.339 0.755

PCC −0.177 0.285 0.599 −0.123 0.404 0.755
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Table 3.
Analysis of recurrence features in the full sample (including discordant and concordant 
twins, and singletons) with ASD and/or ADHD.

FDR corrected P-values. β provides effect parameters for interactions between zygosity and ASD or ADHD 

diagnostic status; P and FDR columns provide or raw or false discovery rate-adjusted P values for that 

parameter, respectively.

MEASURE ROI ASD ADHD

β P FDR β P FDR

Determinism

DMN 0.080 0.000 0.005 0.028 0.232 0.731

LP(left) 0.060 0.034 0.203 −0.025 0.289 0.731

LP(left) - LP(right) 0.089 0.001 0.017 −0.012 0.638 0.832

LP(left) - PCC 0.022 0.295 0.608 −0.036 0.172 0.731

LP(right) 0.125 0.000 0.005 0.004 0.866 0.911

LP(right) - PCC 0.046 0.118 0.390 −0.011 0.615 0.828

MPFC 0.047 0.171 0.453 −0.006 0.808 0.904

MPFC - LP(left) 0.048 0.033 0.203 −0.020 0.322 0.731

MPFC - LP(right) 0.077 0.000 0.008 0.009 0.643 0.832

MPFC - PCC 0.019 0.489 0.710 −0.007 0.793 0.904

PCC −0.030 0.312 0.610 −0.026 0.400 0.731

Entropy

DMN 0.112 0.041 0.209 0.009 0.886 0.913

LP(left) 0.073 0.080 0.347 −0.038 0.405 0.731

LP(left) - LP(right) 0.064 0.160 0.453 −0.044 0.340 0.731

LP(left) - PCC −0.008 0.839 0.893 −0.117 0.010 0.229

LP(right) 0.124 0.014 0.132 −0.086 0.046 0.585

LP(right) - PCC 0.037 0.462 0.710 −0.028 0.587 0.806

MPFC 0.043 0.495 0.710 −0.054 0.340 0.731

MPFC - LP(left) −0.025 0.567 0.756 −0.033 0.497 0.731

MPFC - LP(right) 0.117 0.018 0.147 −0.041 0.341 0.731

MPFC - PCC 0.030 0.596 0.756 −0.044 0.374 0.731

PCC −0.086 0.192 0.479 −0.028 0.672 0.836

Mean Diagonal Length

DMN 0.259 0.077 0.347 0.064 0.753 0.888

LP(left) 0.019 0.861 0.902 −0.101 0.397 0.731

LP(left) - LP(right) 0.126 0.238 0.541 −0.132 0.294 0.731

LP(left) - PCC −0.031 0.719 0.833 −0.294 0.007 0.229

LP(right) 0.331 0.004 0.052 −0.171 0.165 0.731

LP(right) - PCC 0.104 0.371 0.680 −0.103 0.398 0.731

MPFC 0.085 0.594 0.756 −0.106 0.479 0.731

MPFC - LP(left) −0.103 0.314 0.610 −0.088 0.470 0.731

MPFC - LP(right) 0.249 0.022 0.163 −0.103 0.334 0.731

MPFC - PCC 0.046 0.707 0.833 −0.094 0.362 0.731

Biol Psychiatry. Author manuscript; available in PMC 2023 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Curtin et al. Page 22

MEASURE ROI ASD ADHD

β P FDR β P FDR

PCC −0.182 0.269 0.573 −0.124 0.399 0.731
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KEY RESOURCES TABLE

Resource Type Specific Reagent 
or Resource

Source or Reference Identifiers Additional 
Information

Add additional rows as 
needed for each resource 
type

Include species 
and sex when 
applicable.

Include name of manufacturer, 
company, repository, individual, or 
research lab. Include PMID or DOI for 
references; use “this paper” if new.

Include catalog numbers, 
stock numbers, database 
IDs or accession numbers, 
and/or RRIDs. RRIDs 
are highly encouraged; 
search for RRIDs at https://
scicrunch.org/resources.

Include any 
additional 
information or 
notes if 
necessary.

Antibody

Bacterial or Viral Strain

Biological Sample

Cell Line

Chemical Compound or 
Drug

Commercial Assay Or Kit

Deposited Data; Public 
Database

Genetic Reagent

Organism/Strain

Peptide, Recombinant 
Protein

Recombinant DNA

Sequence-Based Reagent

Software; Algorithm CONN; Matlab https://www.nitrc.org/projects/conn

Software; Algorithm SPM12; Matlab https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/

Software; Algorithm Dynamical 
Systems; Julia

https://juliadynamics.github.io/DynamicalSystems.jl/latest/; https://
doi.org/10.21105/joss.00598

Software; Algorithm drgee; R https://cran.r-project.org/web/packages/drgee/index.html

Software; Algorithm multcomp; R https://cran.r-project.org/web/packages/multcomp/index.html

Software; Algorithm mlr; R https://cran.r-project.org/web/packages/mlr/index.html

Software; Algorithm Xgboost; R https://cran.r-project.org/web/packages/xgboost/xgboost.pdf

Software; Algorithm
Cross-Recurrence 
Toolbox v5.16; 
Matlab

http://tocsy.pik-potsdam.de/CRPtoolbox/; PMID: 12241313

Transfected Construct

Other
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