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Abstract

Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use 

disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not 

a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and 

impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over 

delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, 

or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) 

system, which consists of projections from the ventral tegmental area to the nucleus accumbens 

and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action 

in rodents. ELS also changes DA receptor expression, transmission, and activity within the 

mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature 

to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic 

DA system. Understanding how ELS affects brain circuits associated with impulsivity can help 

advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric 

disorders.
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1. Introduction

Impulsivity is acting without forethought. In some cases, it pays to act impulsively. For 

instance, when one is in a dangerous situation, acting impulsively (e.g., landing the first 

punch in a fight) may improve chances of survival. Additionally, acting on impulse can 

stimulate creative moments and allow one to seize opportunities that they may have 

otherwise missed. Most of the time, acting impulsively is not considered pathological. 

However, when impulsivity impacts everyday life, it can constitute a risk factor for a 

large number of life-threatening behaviors (Bari & Robbins, 2013; Everitt et al., 2008; 
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Fineberg et al., 2014; Gut-Fayand et al., 2001). High impulsivity is associated with several 

psychiatric disorders including, attention-hyperactivity disorder (ADHD), bipolar disorder, 

and addiction (e.g., gambling disorder and substance use disorder, SUD) (Adler et al., 2017; 

Dawe & Loxton, 2004; Najt et al., 2007; Vest, Reynolds, & Tragesser, 2016).

Another factor associated with ADHD, bipolar disorder, and addiction is exposure to early 

life stress (ELS) (Halevi, Djalovski, Vengrober, & Feldman, 2016; Herzberg et al., 2018; 

Syed & Nemeroff, 2017). For instance, among adolescents receiving treatment for SUD, 

more than 70% report a history of trauma (Deykin & Buka, 1997; Funk, McDermeit, 

Godley, & Adams, 2003). Childhood trauma also predicts ADHD onset and is a risk factor 

for the persistence of ADHD symptoms into adulthood (Biederman et al., 1995; Sugaya et 

al., 2012; Vrijsen et al., 2018). Additionally, self-reported childhood abuse may be evident 

in about 50% of individuals with bipolar disorder and contribute to worse clinical outcomes 

(Farias et al., 2019; Garno, Goldberg, Ramirez, & Ritzler, 2005; Xie et al., 2018).

Much work has focused on how ELS impairs executive functioning, memory, and reward 

processing to understand mechanisms by which ELS may increase risk for psychiatric 

disorders (Hostinar, Stellern, Schaefer, Carlson, & Gunnar, 2012; Pechtel & Pizzagalli, 

2011). However, fewer studies have focused on how ELS affects impulsivity, even though 

impulsivity is a feature of ADHD, bipolar disorder, and SUD. This review brings together 

data on what is known about ELS and impulsivity. We first describe types of impulsive 

behaviors and the circuits that underly impulsive processes. Then, we detail how ELS affects 

impulsivity and the purported mechanisms by which this can occur. Throughout preclinical 

to clinical findings are compared, and when known, sex differences in these effects are 

detailed. Given the number of disorders with ELS as a risk factor and impulsivity as a key 

feature, understanding the mechanisms by which early stress affects impulsivity may lead to 

novel treatments that improve outcomes for a variety of conditions.

2. Different Types of Impulsive Behaviors

Because impulsivity is a multifaceted construct, an attempt to categorize impulsivity has 

been to organize impulsive behaviors into three distinct types (Robbins & Dalley, 2017). The 

first type, waiting impulsivity, encompasses impulsive behaviors that require a subject to 

wait before getting a reward. Behaviors associated with this branch are measured using delay 

discounting, differential-reinforcement-of-low-rates-of-responding (DRL), and five-choice-

serial-reaction-time tasks (5-CSRTT). For DRL and 5-CSRTT, impulsivity depends on the 

ability to prevent an inappropriate, premature response. Inability to withhold a premature 

response is termed an impulsive action. In delay discounting, impulsivity is associated with 

choosing a small, immediate reward over a large, delayed one. A subject’s preference for 

instant gratification over delayed gratification is considered an impulsive choice. The second 

branch, risky impulsivity, refers to a subject’s preference for uncertain but bigger outcomes. 

A task used to measure this type of behavior in rodents is the probability discounting task, 

which involves choosing between two levers: one dispenses a small reward every time it is 

pressed versus another which dispenses a larger reward sometimes (risky lever). Choosing 

the riskier option is indicative of higher levels of impulsivity and these responses can be 

considered a form of impulsive choice. However, there is some debate as to whether risky 
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behavior is the same as impulsivity. For example, studies that use delay and probability 

discounting show that steeper discounting in one measure does not predict the results of the 

other, suggesting these processes are actually different (Herman, Critchley, & Duka, 2018; 

Holt, Green, & Myerson, 2003). Nevertheless, risk-taking is closely related to impulsivity 

and can predict the likelihood of one pursuing hazardous behavior (Donohew et al., 2000). 

Finally, the last type, stopping impulsivity, refers to the inability to stop a response after it 

has been initiated. Tasks commonly used to measure stopping behavior are go-no-go and 

stop-signal reaction time task. Given these tasks require stopping an initiated action, they 

also measure impulsive actions.

Differentiating between various forms of impulsivity not only has implications for 

experimental design but also for understanding risk factors for psychiatric disorders. There 

is evidence that different forms of impulsivity are associated with disorders to varying 

degrees. For example, some evidence suggests pathological gambling is associated with 

impulsive action but not impulsive choice (Brevers et al., 2012). In ADHD, both impulsive 

choice and impulsive action are disrupted but these measures relate to different symptoms: 

increased impulsive choice is associated with a broad range of ADHD symptoms, including 

hyperactivity, while impulsive action is related more specifically to executive control 

(Solanto et al., 2001). Parsing impulsivity is also informative for understanding different 

aspects of SUD (Broos et al., 2012). In a rodent model of nicotine seeking, impulsive 

action was associated with an enhanced motivation for nicotine self-administration, while 

impulsive choice was associated with enhanced vulnerability to cue-induced relapse 

(Diergaarde et al., 2008). These distinctions are driven by the differences in circuitry, which 

will be detailed below. Collectively, these data underscore the value of studying distinct 

aspects of impulsivity.

3. Dopamine Modulates Impulsivity

Dopamine (DA) is linked to impulsivity in humans and rodents. Clinically, disorders with 

high impulsivity as a key feature are commonly associated with DA dysregulation (Ashok et 

al., 2017; Pettorruso et al., 2019; Rosa-Neto et al., 2005; Whitton, Treadway, & Pizzagalli, 

2015). It is believed that hypodopaminergic function may contribute to drug abuse and 

underlie behavioral abnormalities observed in ADHD and bipolar disorder (Badgaiyan, 

Sinha, Sajjad, & Wack, 2015; Berk et al., 2007; Blum et al., 2008; D. A. Cousins, Butts, 

& Young, 2009; Fattore & Diana, 2016; Gold, Blum, Oscar-Berman, & Braverman, 2014; 

Sanna, Fattore, Badas, Corona, & Diana, 2021). Administration of psychostimulants, like 

amphetamine or methamphetamine, are often prescribed for ADHD or bipolar disorder to 

help reduce impulsivity symptoms (Perugi, Vannucchi, Bedani, & Favaretto, 2017; Wolraich 

et al., 2019). These types of drugs block DA transporters (DAT), which promotes increased 

DA levels in the brain (Kuczenski & Segal, 1997). Although these treatments can help 

alleviate impulsive symptoms in these disorders, nonmedical use of stimulants by people 

who do not have these disorders promotes impulsive behaviors (Grant, Redden, Lust, & 

Chamberlain, 2018; Messina et al., 2014).

By using rodent models, we can more specifically parse how changes in DA signaling 

impact different types of impulsive behavior. Acute administration of amphetamine 
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(0.25–1mg/kg) in rodents often increases premature responses and impairs behavioral 

inhibition (Baarendse & Vanderschuren, 2012; Britton & Koob, 1989; Caballero-Puntiverio, 

Fitzpatrick, Woldbye, & Andreasen, 2017; Hayton, Maracle, & Olmstead, 2012; van Gaalen, 

Brueggeman, Bronius, Schoffelmeer, & Vanderschuren, 2006). However, acute doses of this 

same drug can also reduce premature responding (Hayton et al., 2012). For instance, rats 

trained on a response inhibition task, which requires them to withhold pressing a lever until 

signaled to do so, amphetamine administration increases their impulsive action when the 

delay to respond is fixed, but reduces it when the delay is variable (Hayton et al., 2012). 

Therefore, acute doses of amphetamine can alter impulsive action and its effect may depend 

on the subject’s expectation of task demands. Chronic administration (5mg/kg/day) of other 

DA agonist drugs, like ropinirole hydrochloride, can also increase premature responding, 

especially when the cues to the reward are signaled (Tremblay, Barrus, Cocker, Baunez, 

& Winstanley, 2019). Cues predicting reward elicit activity in dopaminergic neurons, 

which has been shown to sensitize rats to the hyperlocomotor effects of stimulants (Zack, 

Featherstone, Mathewson, & Fletcher, 2014).

Interestingly, acute, low doses of stimulant administration can improve the ability to wait 

for large rewards (S. B. Floresco, M. T. Tse, & S. Ghods-Sharifi, 2008; Wade, de Wit, & 

Richards, 2000; Catharine A. Winstanley, Dalley, Theobald, & Robbins, 2003). For instance, 

low doses of amphetamine (0.01–0.25 mg/kg) can shift choice towards large, delayed 

rewards on delay discounting tasks, therefore reducing impulsive choice (S. B. Floresco 

et al., 2008; van Gaalen, van Koten, Schoffelmeer, & Vanderschuren, 2006). Similarly, DAT 

blockade, which also results in an increase in DA levels, reduces impulsive choice (van 

Gaalen, van Koten, et al., 2006). However, some studies have reported that elevations in 

DA do not always decrease or affect impulsive choice (Cardinal, Robbins, & Everitt, 2000; 

Evenden & Ryan, 1996; Helms, Reeves, & Mitchell, 2006; Zeeb, Soko, Ji, & Fletcher, 

2016). In one study, high doses of amphetamine (1–3mg/kg) decreased lever pressing and 

chow consumption in a lever pressing/feeding choice procedure (M. S. Cousins, Wei, & 

Salamone, 1994). Therefore, lower doses, but not higher levels of psychostimulants, increase 

choice for larger, delayed rewards.

Even though it is tempting to assume increases in DA levels decrease impulsive choice and 

increase impulsive action, it is possible the effects of DA on impulsivity are less linear and 

instead an inverted-U relationship. In other words, depending on where one lands on the 

curve, shifts in DA levels, can improve or impair impulsivity symptoms (J. W. Dalley & 

Roiser, 2012). For instance, oral administration of methylphenidate reduces impulsivity only 

in high, but not low, impulsive rats as determined by the 5-CSRTT (Caprioli et al., 2015). 

These results suggest that the efficacy of certain stimulant treatments is baseline-dependent 

and is comparable to the efficacy of psychostimulants in human populations. For instance, 

treatments that can benefit impulsive individuals (presumably with suboptimal baseline DA 

signaling) can also impair performance in people who have low levels of impulsivity (de 

Wit, Crean, & Richards, 2000; Petzold et al., 2019).

Genetic factors can also influence the effect of DA on impulsive behavior (J. W. Dalley 

& Roiser, 2012; Loos et al., 2010; Simon et al., 2013). For instance, lower dopamine 

2 (D2) mRNA receptor expression in the nucleus accumbens (NAc) is correlated with 
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higher impulsive action (Simon et al., 2013). These results are similar to positron emission 

tomography or autoradiography studies that show impulsive rats have reduced D2 receptor 

availability in the NAc (Dalley et al., 2007; Jupp et al., 2013). Similar reductions in 

ventral striatal D2 receptors are also found in highly impulsive methamphetamine-dependent 

individuals (Kohno et al., 2016; Lee et al., 2009; London, 2020). These findings suggest 

the expression of DA-related genes influence impulsive traits. Collectively, these studies 

highlight DA’s involvement in impulsivity.

One caveat with these data is that they were collected only in male rodents. However, many 

studies have highlighted the fact that there are sex-specific effects in DA circuitry that are 

influenced by gonadal, chromosomal, and epigenetic factors (reviewed in, (Jill B. Becker 

& Chartoff, 2019; Eck & Bangasser, 2020; Kokane & Perrotti, 2020; Zachry et al., 2021). 

For instance, males, but not females, overproduce D1 and D2 receptors in the striatum early 

in development (25–40 days, the onset of puberty) (Susan L. Andersen, Rutstein, Benzo, 

Hostetter, & Teicher, 1997; S. L. Andersen & Teicher, 2000). In adulthood, circulating levels 

of ovarian hormones can alter DA (J. B. Becker, 1990). Baseline firing activity of DA 

neurons in the VTA of male and female rodents is similar (Locklear, Michaelos, Collins, & 

Kritzer, 2017; Rincón-Cortés & Grace, 2017), however, electrically stimulated phasic DA 

release in the VTA is higher in estrus females as compared to males or non-estrus females 

(Calipari et al., 2017). These data illustrate that there are sex differences in the DA system 

and highlight the importance of including both sexes in experimental designs.

It is clear that DA has a key role in regulating impulsivity. This review will focus 

on the role of DA and the mesocorticolimbic system because these endpoints have 

been more thoroughly investigated in ELS studies relevant to impulsivity than other 

endpoints. However, the neurochemical basis of impulsivity is complicated and involves 

other neurotransmitter systems, including serotonin (5-HT) and norepinephrine (NE) (J. W. 

Dalley, Mar, Economidou, & Robbins, 2008; J. W. Dalley & Roiser, 2012; Groman, 2020; 

Johansson, Bergvall, & Hansen, 1999; Piña et al., 2020; Swann et al., 2013; Zaniewska, 

Filip, & Przegalinski, 2015). For example, reducing 5-HT levels increases impulsive action 

in humans and rodents (Harrison, Everitt, & Robbins, 1997; Worbe, Savulich, Voon, 

Fernandez-Egea, & Robbins, 2014). NE also impacts impulsive action. Administration of 

selective NE reuptake inhibitor, atomoxetine, significantly decreases premature responding 

on a 5-CSRTT (Economidou, Theobald, Robbins, Everitt, & Dalley, 2012). Regulating NE 

also affects impulsive choice. For example, blocking NE transporter function and activating 

α2 adrenergic receptors decreases impulsive choice (S. Kim, Bobeica, Gamo, Arnsten, 

& Lee, 2012; Nishitomi et al., 2018; Robinson et al., 2008). These studies highlight the 

complexity of neural mechanisms underlying impulsivity. More research, particularly in how 

ELS-induced alterations in 5HT and NE mediate impulsivity, is needed.

3.1 The NAc and Impulsivity—The NAc is a major component to the ventral striatum 

that receives DA and facilitates reward-seeking (Berridge & Robinson, 1998; Salamone, 

1994; Trifilieff et al., 2013). The NAc is commonly subdivided into two parts: the core and 

shell (Zahm & Brog, 1992). Inputs from cortical and striatal brain areas display unique 

topographical organization throughout the NAc (Brog, Salyapongse, Deutch, & Zahm, 

1993; H. J. Groenewegen, der Zee, te Kortschot, & Witter, 1987; Kelley & Domesick, 
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1982; Spooren, Veening, Groenewegen, & Cools, 1991). Dorsal structures like the anterior 

cingulate cortex (ACC), target the NAc core, while ventral structures like the basolateral 

amygdala (BLA) and infralimbic cortex target the NAc shell (Brog et al., 1993; H. J. 

Groenewegen, Wright, Beijer, & Voorn, 1999; Sesack, Deutch, Roth, & Bunney, 1989). 

Some structures, such as the orbitofrontal cortex (OFC), project to both the core and 

shell (Brog et al., 1993). Efferent fibers of the NAc as a whole project to the midbrain, 

hypothalamus, and ventral pallidum as well as other motor systems (Brog et al., 1993; Henk 

J. Groenewegen & Russchen, 1984). As such, the NAc is a hub that receives and relays 

information to motor association sites in charge of carrying out appropriate behaviors.

NAc functions are regulated by DA. DA signaling in the NAc can occur via two classes 

of DA receptors. D1-like receptors (D1 and D5 receptors) stimulate postsynaptic adenylyl 

cyclase activity and causes increased neuronal firing, while D2-like receptors (D2, D3, and 

D4 receptors) inhibit this signaling which causes a reduction in firing (Gingrich & Caron, 

1993; Hopf, Cascini, Gordon, Diamond, & Bonci, 2003; Sibley & Monsma, 1992; Surmeier, 

Ding, Day, Wang, & Shen, 2007). Medium spiny neurons (MSNs) in the NAc can also 

express either D1 or D2 receptors, which can exert opposing control over NAc functions 

(Bariselli, Fobbs, Creed, & Kravitz, 2019; Gerfen, 1992; Lobo & Nestler, 2011).

Work from van Gaalen has highlighted the involvement of D1 and D2 receptors in regulating 

impulsive action and impulsive choice. For instance, systemic blockade of D1 receptors 

increases impulsive choice (van Gaalen, van Koten, et al., 2006). Antagonizing D2 receptors 

has no effect on behavior on its own, but when followed by systemic amphetamine 

administration, it can block premature responding and impulsive choice (T. Pattij, Janssen, 

Vanderschuren, Schoffelmeer, & van Gaalen, 2007; van Gaalen, van Koten, et al., 2006). 

These data suggest that DA D1 and D2 receptors play important, but perhaps distinct roles, 

in impulse control. However, recent work finds D1 and D2 neurons express similar activity 

profiles during periods of behavioral suppression (Lafferty, Yang, Mendoza, & Britt, 2020). 

Therefore, rather than working in opposition, D1 and D2 expressing neurons may exhibit 

complementary activity in the NAc to regulate behavioral outcomes.

Impulsive action is modulated by DA signaling in the NAc. For instance, selectively 

antagonizing D1 receptors in the NAc reduces impulsive action (T. Pattij et al., 2007). In 

contrast, low NAc D2 receptor expression, which reduces DA inhibitory drive, is associated 

with increased premature responding in rats (Jupp et al., 2013). Therefore, increasing DA 

signaling in the NAc may elevate impulsive action. After all, increasing DA signaling 

by reducing DAT function in the NAc increases impulsive action (Jupp et al., 2013). 

Interestingly, these effects are specific to the NAc shell and high DA release to the shell is 

associated with increased premature responding (Diergaarde et al., 2008). Moreover, lesions 

to the NAc shell block amphetamine-induced premature responding, which may disrupt DA 

related effects of this stimulant (E. R. Murphy, Robinson, Theobald, Dalley, & Robbins, 

2008). These findings have led to the idea that premature responding is due to excess DA 

levels in the shell region of the NAc (J. W. Dalley & Robbins, 2017).

While increased dopaminergic drive in the NAc shell increases impulsive action, evidence 

suggests that decreased dopaminergic drive in the NAc core increases impulsive choice. 
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Specifically, overexpression of DAT in the NAc core, which would lower levels of available 

DA, increases impulsive choice (Adriani et al., 2009). Additionally, D1 antagonism in 

the NAc core decreases sensitivity to reinforcer magnitudes (Justin R. Yates & Bardo, 

2017). In other words, blocking D1 signaling shifts preference away from large rewards 

even when its delivery is immediate. A potentially contrary finding is that reduced D2/3 

receptor binding in the NAc core is associated with impulsive choice (Barlow et al., 

2018). A reduction in postsynaptic D2/3 receptors would increase dopaminergic tone in 

the NAc. However, presynaptic D2 receptors on dopaminergic neurons act as autoreceptors, 

limiting DA synthesis and release (Beaulieu & Gainetdinov, 2011; Gingrich & Caron, 1993). 

Viral knockdown of D2 presynaptic receptors in the VTA, the major source of dopamine 

for the NAc, increases choice impulsivity (Bernosky-Smith et al., 2018). Taken together, 

these studies support the idea that reducing dopaminergic drive in the NAc core increases 

impulsive choice.

Electrophysiology studies also support pharmacological data that DA signaling in the NAc 

regulates impulsivity (Pan, Schmidt, Wickens, & Hyland, 2005; M. R. Roesch, Calu, & 

Schoenbaum, 2007; Saddoris, Sugam, et al., 2015). Phasic DA release in the NAc tracks 

certain aspects of value-based decision-making (M. R. Roesch et al., 2007; Saddoris, Sugam, 

et al., 2015). This is interesting because phasic DA bursts are known to occur in response 

to reward-predictive cues (Day, Jones, Wightman, & Carelli, 2010; Schultz, Dayan, & 

Montague, 1997), whereas dips in DA firing are associated with omissions of expected 

reward (Saddoris, Sugam, et al., 2015). One study that only used female rats found that 

bursts and dips in phasic DA signaling could function as a teaching signal to facilitate 

reward-related learning (Steinberg et al., 2013). Indeed, studies that override or inhibit 

phasic DA signals have shown that this can change behavior in male rodents (Fitzpatrick 

et al., 2019; Stopper, Tse, Montes, Wiedman, & Floresco, 2014). For instance, suppressing 

DA bursting that typically occurs when a rat chooses its preferred reward option will biases 

it to discontinue selecting that option in subsequent trials (Saddoris, Sugam, et al., 2015). 

Lastly, each subregion of the NAc encodes DA signaling differently: DA release to core is 

associated with tracking value of predicted outcomes, whereas DA release to shell tracks 

motivationally salient stimuli (Saddoris, Cacciapaglia, Wightman, & Carelli, 2015). These 

data indicate that neurons in the NAc core and shell can encode DA signaling differently 

and further supports the notion that each subregion has dissociable effects in regulating 

impulsivity.

It is unclear why the NAc core and shell may have dissociable roles in impulsive control. 

However, dissociations between the core and shell are reported for a number of behaviors 

such as inhibitory avoidance (Piantadosi, Yeates, & Floresco, 2018), effort-based decision 

making (Ghods-Sharifi & Floresco, 2010), cue-induced reinstatement of food-seeking 

behavior (Floresco, McLaughlin, & Haluk, 2008), motivational conflict (Piantadosi, Yeates, 

Wilkins, & Floresco, 2017), and incentive-cue responding (Ambroggi, Ghazizadeh, Nicola, 

& Fields, 2011). Data from these studies suggest that the shell inhibits inappropriate actions, 

while the core promotes approach behaviors towards stimuli that likely yield rewards. Future 

studies should continue to investigate the differences between these two NAc subregions. 

These studies could provide insight into the mechanisms that may underlie disorders that are 

characterized by difficulties in restraining maladaptive behavior, impulsivity, and abnormal 
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activity in the NAc (Engeli et al., 2021; Hoogman et al., 2013; Ma et al., 2016; Stark et al., 

2011). A schematic depicting the role of the NAc core and shell in impulsive action and 

impulsive choice is shown in Figure 1. Notably only one of the above studies used females 

instead of males and none compared the sexes, so more studies including both sexes are 

needed to identify any similarities/differences in DA signaling in the NAc.

4. Cortical Involvement in Impulsivity

In addition to the NAc, different areas of the prefrontal cortex are associated with mediating 

different forms of impulsivity. In particular, the OFC and medial prefrontal cortex (mPFC) 

play important roles in impulsivity (Dalley & Ersche, 2019; Dalley, Everitt, & Robbins, 

2011).

The OFC can mediate impulsive choice in rodents and humans (Bechara, Tranel, & 

Damasio, 2000; Mar, Walker, Theobald, Eagle, & Robbins, 2011; Mobini et al., 2002; 

Tommy Pattij & Vanderschuren, 2008; Zeeb, Floresco, & Winstanley, 2010). Several studies 

have reported changes in impulsive behavior in OFC-lesioned rats. Some studies report 

OFC lesions make male and female rats more impulsive and less likely to wait for delayed 

rewards (Mobini et al., 2002; Rudebeck, Walton, Smyth, Bannerman, & Rushworth, 2006). 

These results suggest that the OFC is necessary for responding when rewards are delayed. 

Others report that OFC lesions make rats less impulsive, which may indicate it is necessary 

for devaluing the delayed reward (C. A. Winstanley, Theobald, Cardinal, & Robbins, 2004). 

Possible reasons for the discrepancies are attributed to the heterogeneity of the OFC region, 

as well as when the lesion took place (e.g., pre-training vs. post-training). For example, 

when OFC lesions occur prior to the training on a gambling task, rats take longer to 

reach task acquisition (Zeeb & Winstanley, 2011). OFC lesions that occur after training, 

however, have no effect on risky choices on this task. These findings point to the OFC being 

involved in learning and that lesions that occur early in training could cause impairments 

in tracking outcomes to guide future responding. Single unit electrophysiological recordings 

also illustrate a role for the OFC in delay discounting behavior. Activity of different neurons 

in the OFC reflected a rat’s preference for immediate, small rewards or large, delayed 

rewards (Roesch, Taylor, & Schoenbaum, 2006). These results suggest that different groups 

of neurons in the OFC track delayed rewards and outcome expectancies. Additionally, 

attenuating neural activity in the OFC, while simultaneously enhancing NAc neural activity, 

impairs impulse control (Meyer & Bucci, 2016). Collectively, these data provide evidence 

that the OFC modulates impulsive choice behavior.

The OFC mediates impulsive action behaviors associated with stopping impulsivity—the 

inability to stop an already initiated response. Lesions to the OFC reduce the ability of male 

rats to stop an inappropriate response on stop-signal tasks (Eagle et al., 2008). Additionally, 

decreased OFC DAT function is associated with high impulsive action on go/no-go tasks, 

suggesting hyperdopaminergic tone in the OFC mediates increased impulsive action (J. 

R. Yates, Darna, Beckmann, Dwoskin, & Bardo, 2016). Neural activity in the OFC is 

also associated with two distinct stopping mechanisms: proactive and reactive stopping 

(Balasubramani, Pesce, & Hayden, 2020; Hardung et al., 2017). Reactive stopping refers 

to situations in which subjects are required to stop in response to an external cue, whereas 
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proactive stopping develops according to the subjects internal goals (Aron, 2011). Despite its 

involvement in stopping impulsivity, the OFC does not appear to mediate impulsive action 

behaviors associated with waiting impulsivity. For instance, lesions to the whole OFC do not 

promote impulsive action behaviors on the 5-CSRTT in male rats (females were not tested) 

(Chudasama et al., 2003), however more data is needed.

Another cortical region involved in impulse control is the mPFC. The mPFC is associated 

with impulsive action as it plays a role in restraining premature responses (Cho & 

Jeantet, 2010; B. Li, Nguyen, Ma, & Dan, 2020; Tommy Pattij & Vanderschuren, 2008). 

For example, optogenetic inhibition of the mPFC in male rats affects proactive motor 

control (Hardung et al., 2017). Additionally, projections from the dorsomedial PFC to the 

subthalamic nucleus (STN) can inhibit premature responding (B. Li et al., 2020). The STN 

is a structure implicated in motor control and STN lesions can increase impulsive action 

(Baunez, Nieoullon, & Amalric, 1995; Guillaumin, Serra, Georges, & Wallén-Mackenzie, 

2021; Uslaner & Robinson, 2006). These results suggest that the mPFC can signal to 

downstream structures like the STN to suppress inappropriate motor driven responses. 

Functional disconnection of the mPFC-NAc pathway also increases impulsive actions, an 

effect attributed to disrupting this “top-down” control over behavior (Christakou, Robbins, 

& Everitt, 2004). One caveat with mPFC lesion studies is that sometimes they may include 

the ACC (Cho & Jeantet, 2010; Pezze, Dalley, & Robbins, 2009). The ACC itself is involved 

in many different processes related to impulsivity such as error detection, cognitive control, 

and response selection (Bryden, Johnson, Tobia, Kashtelyan, & Roesch, 2011; Bussey, 

Everitt, & Robbins, 1997; Newman, Creer, & McGaughy, 2015). It is thought that the ACC 

is involved in detecting situations where behavioral response is ineffective and processes 

this information to guide behavior. Lesions to the ACC increases premature responses and 

reduces accuracy on the 5-CSRTT (Chudasama et al., 2003; Muir, Everitt, & Robbins, 

1996). Additionally, activation of layer-5 pyramidal cells of the ACC impairs behavioral 

disinhibition (van der Veen et al., 2021). Thus, both the mPFC and ACC modulate impulsive 

action.

Neurons in the mPFC are also engaged during impulsive choice. Using electrophysiological 

recordings during a delay discounting task in male and female rats, Sackett and colleagues 

found that neurons in the prelimbic region of the mPFC respond to either large/delay 

options, small/immediate option, or both options (Sackett, Moschak, & Carelli, 2019). As 

the delays increased, so did the percentage of neurons that responded to small/immediate 

options. A rat’s baseline levels of impulsivity also influenced neuronal recruitment: highly 

impulsive rats demonstrated a greater percentage of small/immediate-responsive neurons as 

the task progressed than low impulsive rats. These results suggest that some neurons in the 

prelimbic cortex encode reward value.

Like the NAc, these cortical regions receive dopaminergic input from the VTA (Oades 

& Halliday, 1987). DA in the cortex can also modulate impulsivity (Puumala & Sirviö, 

1998). Dopaminergic depletion in the OFC of rats decreases impulsive choice (Kheramin 

et al., 2004). This finding may indicate high levels of DA in the OFC may underlie 

discounting behavior. In vivo microdialysis data support this idea by finding increased levels 

of 3,4-dihydroxyphenylacetic acid (DOPAC) when rats make delay discounting judgements 
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(C. A. Winstanley, Theobald, Dalley, Cardinal, & Robbins, 2006). Increases in DOPAC 

could reflect increased DA utilization occurring in the OFC during delay discounting. 

Additionally, intra-OFC administration of a D1 receptor antagonist, SCH23390, decreases 

impulsive action in highly impulsive male rats (C. A. Winstanley et al., 2010). This result 

is similar to work showing systemic administration of D1 antagonists reduces impulsive 

behavior (van Gaalen, Brueggeman, et al., 2006; van Gaalen, van Koten, et al., 2006). 

In regards to the mPFC, antagonism of D1 and D2 receptors reverses the effects of 

amphetamine-induced premature actions and improves timing of responses (Cheng & Liao, 

2017). However, low D2 mRNA receptor expression in the prelimbic region of the mPFC 

is correlated with high impulsivity (Simon et al., 2013). Additionally, male rats that are 

pretreated with either D1 or D2 receptor antagonists prior to delay discounting have higher 

levels of impulsive choice (Pardey, Kumar, Goodchild, & Cornish, 2012). Altogether, these 

data indicate that DA in the OFC and mPFC can also affect impulsivity.

5. ELS and Impulsivity

5.1 Models of Early Life Stress—ELS in rodents can be studied using a variety of 

different models which include prenatal stress, as well as postnatal stress. These models 

have helped researchers further understand stress effects on impulsive behavior. Models of 

prenatal stress aim to stress a pregnant dam during different time-points of gestation (e.g., 

early, middle, or late) by using various stressors (e.g., restraint, noises, and lights), and 

different lengths of time (e.g., 3 times a day vs. 3 weeks) (Mueller & Bale, 2008; Soares-

Cunha et al., 2018; Van den Hove et al., 2006; Weston, Weston, Allen, & Cory-Slechta, 

2014; Wilson, Schade, & Terry, 2012). Offspring of stressed pregnant dams typically 

exhibit elevated corticosterone release in response to an acute stress exposure (30 min of 

restraint), which indicates heightened hypothalamic-pituitary-adrenal (HPA) axis reactivity 

(Cory-Slechta, Virgolini, Thiruchelvam, Weston, & Bauter, 2004; Soares-Cunha et al., 

2018).

Postnatal models of stress in rodents typically involve some form of scarcity, where 

resources are removed. Maternal separation models are used as a postnatal stressor, and 

they disrupt dam-pup interactions by separating the pups from their mother for intermittent 

periods (e.g., 15 minutes to 24 hours per day) for one to three weeks postnatally (Millstein 

& Holmes, 2007; Molet, Maras, Avishai-Eliner, & Baram, 2014). Shorter variations of this 

model are increase levels of maternal care and stress resiliency in offspring; however, longer 

variations induce impaired maternal care (Eck & Bangasser, 2020; Nishi, Horii-Hayashi, & 

Sasagawa, 2014). To control for variations in maternal care, some manipulations employ 

artificial rearing procedures, where pups are separated from dams and experimenters mimic 

various amounts of pup care (e.g., low or high) with “maternal licking-like stimulations” 

via a wet paintbrush (Burton et al., 2007; Lovic, Keen, Fletcher, & Fleming, 2011). 

Another postnatal stressor is the limited bedding and nesting (LBN) manipulation, which 

is typically implemented during a pup’s first week of life (postnatal day 2–9). This low 

resource environment aims to mimic aspects of poverty (Eck et al., 2019; Gilles, Schultz, 

& Baram, 1996; Molet et al., 2014). This manipulation induces stress in dams, altering 

their maternal care towards their developing pups (Ivy, Brunson, Sandman, & Baram, 2008; 

Rice, Sandman, Lenjavi, & Baram, 2008). One of the advantages of the LBN paradigm 
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compared to other models is that it can induce changes in maternal care with limited 

external experimenter interventions. Rather than physically removing the dam from her 

pups to induce changes in maternal care, the LBN manipulation causes changes in care by 

altering the environment the animals are placed in. Additionally, data from human studies of 

chronic childhood stress, including war, poverty, and neglect/abuse suggest that the mother 

is typically present, even though her behavior may be abnormal (Halevi et al., 2016; Mulder, 

Kuiper, van der Put, Stams, & Assink, 2018; Wang, Choi, & Shin, 2020). Thus, this model is 

thought to have strong translational potential (Walker et al., 2017).

Even though stress from ELS models can dissipate quickly, exposure to these stressful 

manipulations early in life can cause long-lasting changes to reward-related networks (Dubé 

et al., 2015; Eck et al., 2019; Huang, 2014). Utilization of these models has also allowed 

researchers to better understand the neurobiological mechanisms underlying how stress 

persistently alters behavior. The type/severity of stress experienced, as well as the timing 

and duration of the stressor can influence its specific outcomes on the brain and behavior. 

Although different models of ELS may produce slightly different results, they have been 

useful for examining mechanisms that induce or ameliorate impulsive behavior.

5.2 Dissociable Effects of Early Life Stress on Impulsivity—Relatively few 

studies have examined how prenatal stressors affect impulsive action. One study did find 

that male and female rats exposed to prenatal stress made more premature responses on a 

challenging version of the 5-CSRTT (Wilson et al., 2012). Specifically, when the intertrial 

interval times increased, these rats were unable to withhold responding as compared to 

controls. In regard to postnatal stressors, work from Lovic and colleagues found that male 

and female rats that undergo a severe form of early life deprivation—artificial rearing with 

low simulated grooming—are unable to withhold premature responses as adults compared 

to control rats while performing DRL tasks (Lovic et al., 2011). Similarly, male rats 

which experienced maternal deprivation, make significantly more premature responses while 

performing the 5-CSRTT as compared to controls (Kentrop et al., 2016). Females however 

were not examined in this study. Together, these studies indicate that ELS can increase 

impulsive action. Table 1 summarizes the effects of ELS on impulsivity.

In contrast to the enhancing effect of ELS on impulsive action, ELS tends to decrease 

impulsive choice. Prenatal stress and exposure to low levels of lead reduces impulsive choice 

in males but has no effects in females (Weston et al., 2014). Similarly, maternal separation 

plus early social isolation reduces impulsive choice on delay discounting tasks in male 

but not female rats (Lovic et al., 2011). Reductions in impulsivity in delay discounting 

also have been found in male, but not female rats that were reared in LBN (Ordoñes 

Sanchez et al., 2021). In contrast, female, but not male rats, exposed to a surrogate mother 

while simultaneously being raised in a low resource environment early in life had reduced 

impulsivity in delayed discounting (Fuentes et al., 2014). These discrepancies between these 

studies in the sex impacted suggest that the social experience of having a surrogate mother 

may affect the sexes differently. One study found that ELS increases impulsive choice 

(Gondré-Lewis et al., 2016) but this finding is complicated by the fact that offspring were 

trained on operant binge drinking paradigms prior to learning delay discounting. Taken 
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together the literature suggest that ELS typically decreases impulsive choice (Table 1). 

However, much more work, particularly with prenatal models, is needed.

It is important to mention that some studies report that ELS can induce compulsive-like, 

rather than impulsive-like, behaviors (Boutros, Der-Avakian, Markou, & Semenova, 2017; 

Fuentes et al., 2014). Compulsive behaviors are repetitive, often purposeless, and lead to 

unfavorable outcomes. For instance, male offspring that experienced maternal separation 

showed increased perseverative responding (i.e., continued nose-poking after a correct 

response) on a 5-CSRTT task (Boutros et al., 2017). However, this experiment also included 

rats that were exposed to ethanol during adolescence (PND28–57), which could affect 

the interpretation of these results. Future studies should continue examining whether other 

prenatal and postnatal stressors also induce similar findings. Overall, the rodent literature 

demonstrates that ELS can lead to increases in impulsive action but decreases in impulsive 

choice.

6. Effects of ELS on the Mesocorticolimbic System Can Mediate Impulsivity

As mentioned previously, there is a complex relationship between DA levels and impulsivity. 

Stimulants, which increase DA, increase impulsive action but decrease impulsive choice 

(Baarendse & Vanderschuren, 2012; Britton & Koob, 1989; Caballero-Puntiverio et al., 

2017; S. B. Floresco, M. T. L. Tse, & S. Ghods-Sharifi, 2008; Hayton et al., 2012; van 

Gaalen, Brueggeman, et al., 2006; Wade et al., 2000). ELS can affect the mesolimbic DA 

system to increase dopaminergic drive (Baier, Katunar, Adrover, Pallarés, & Antonelli, 

2012; Eck & Bangasser, 2020). For example, maternal separation increases the excitability 

of VTA DA neurons in female rats (males were not tested) (Spyrka et al., 2020). 

Maternal separation can also affect tyrosine hydroxylase (TH), the rate limiting enzyme 

of catecholamine synthesis. Specifically, maternal separation increases TH-immunoreactive 

cells in the VTA in adolescent male and adult female rats (Chocyk et al., 2011; Kapor et 

al., 2020). In the PFC and NAc, TH-immunoreactive fibers are denser following maternal 

separation in adolescent females (males were not tested) (Majcher-Maślanka, Solarz, 

Wędzony, & Chocyk, 2017). In studies that only tested male rats, prenatal stress increases 

DA transcription factors in the VTA and dopamine release in the NAc shell (the core was not 

analyzed) (Katunar, Saez, Brusco, & Antonelli, 2009; Silvagni et al., 2008). Although most 

of these studies do not directly compare males to females, the overall pattern is that ELS 

increases dopaminergic drive from VTA across sex.

In addition to increasing DA levels in the NAc, ELS can also alter DA receptor expression. 

Female, but not male, mice who experienced maternal separation plus social isolation show 

reductions in D1 receptor expression in the NAc (Sasagawa et al., 2017). A decrease in this 

receptor’s expression in the NAc could reduce dopaminergic signaling in females and may 

help compensate the stress-induced increases in DA drive from the VTA. Changes in D1 

expression are attributed to hypermethylation of the Drd1a promoter region, revealing an 

epigenetic modification that can explain this effect in females (Sasagawa et al., 2017). In 

contrast, exposure to a limited resource environment had no effect on D1 expression in the 

NAc shell in male and female rats (Fuentes et al., 2018). This discrepancy may be because 

only one subregion and not entire NAc was examined in this study. Alternatively, different 
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types of early life adversity could have distinct effects on D1 receptors. ELS can also affect 

D2 receptor expression in the NAc but typically causes an increase in this receptor. In males 

(females were not tested), prenatal restraint stress as well as maternal separation alone or 

in combination with cocaine exposure increases D2 receptor expression in the NAc (Berger, 

Barros, Sarchi, Tarazi, & Antonelli, 2002; Gracia-Rubio et al., 2016; Romano-López et al., 

2016), but see (Majcher-Maślanka et al., 2017). A stress-induced increase in D2 receptors, 

assuming postsynaptic, would inhibit the NAc, which may help control increased DA influx 

in the NAc. Higher expression of NAc D2 receptors following ELS may drive changes in 

impulsivity, because, as noted, reduced D2 receptor expression is positively correlated with 

poor inhibitory control (Cropley, Fujita, Innis, & Nathan, 2006; Hamidovic, Dlugos, Skol, 

Palmer, & de Wit, 2009).

Another regulator of dopaminergic function is DAT. In humans, low levels of DAT, 

which could increase DA signaling, are associate with poor inhibitory control (H. Kim, 

2018; Sekiguchi, Pavey, & Dean, 2019; Smith et al., 2018). ELS manipulations can be 

combined with animal models thought to capture aspects of psychiatric disease, such as the 

spontaneously hypertensive rat (SHR), which has features of ADHD, including inattention, 

impulsivity, and hyperactivity (Knardahl & Sagvolden, 1979; Russell, Sagvolden, & 

Johansen, 2005; Sagvolden, 2000; Sagvolden, Russell, Aase, Johansen, & Farshbaf, 2005; 

Wultz, Sagvolden, Moser, & Moser, 1990). Maternal separation in SHR increases the rate 

of DA clearance in the ventral striatum (Womersley, Hsieh, Kellaway, Gerhardt, & Russell, 

2011). An increased rate of clearance is indicative of reductions in DAT function because 

less DA is being removed from the synapse. Consistent with this finding, male rats (females 

were not studied) that experience maternal separation show reduced DAT expression in 

the accumbens and display increased sensitization to amphetamine (Brake, Zhang, Diorio, 

Meaney, & Gratton, 2004; Meaney, Brake, & Gratton, 2002). Interestingly, female, but 

not male, rats exposed to maternal stress are less susceptible to methamphetamine induced 

decreases in striatal DAT content (Hensleigh & Pritchard, 2015). Thus, another mechanism 

by which ELS could impact impulsivity is via altering DAT function.

ELS also affects plasticity within the NAc (Monroy, Hernández-Torres, & Flores, 2010; 

Romano-López et al., 2016). Female rats that experienced prenatal stress in combination 

with motherless rearing have decreased expression of neuronal markers of plasticity such as 

synaptophysin and brain-derived neurotrophic factor in the accumbens (Burton et al., 2007). 

Prenatal stress with maternal separation increases dendritic MSN branching in both male 

and female rats (Muhammad, Carroll, & Kolb, 2012). Increased branching can provide more 

surface area for synaptic connections. These data illustrate that synaptic development is 

sensitive to different forms of ELS. What is unclear, however, is if ELS promotes inhibitory 

or excitatory synaptic connections. Electrophysiology data suggests male, but not female 

rats, exposed to LBN exhibit reductions in spontaneous excitatory postsynaptic currents 

(sEPSCs) in the NAc core (the shell was not assessed) (Ordoñes Sanchez et al., 2021). 

These findings could suggest that early life experiences can potentially reduce excitatory 

synapses and therefore, reduce glutamate transmission in the NAc. Reductions in glutamate 

transmission in the NAc is associated with reduced impulsive choice in males (Ordoñes 

Sanchez et al., 2021; Justin R. Yates & Bardo, 2017). These findings indicate that ELS can 
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alter other aspects of accumbal plasticity in addition to regulating DA which could impact 

impulsivity.

It is important to mention that there is a disconnect between the detail in which the NAc 

has been studied in the ELS field vs. the impulsivity field. The impulsivity literature has 

revealed distinct functions of the NAc core and NAc shell, with a stronger role for NAc core 

in impulsive choice and the NAc shell in impulsive action (Dalley & Ersche, 2019; J. W. 

Dalley & Robbins, 2017; Ito, Robbins, & Everitt, 2004). Many ELS studies, however, often 

focus on the entire NAc or only examine one subregion. Future ELS studies need to better 

incorporate core/shell assessments to further our understanding of the mechanisms by which 

ELS alters impulsive behavior.

7. Effects of ELS on the Cortex Can Mediate Impulsivity

The cortex also plays a role in impulsive behavior, and ELS can affect the cortex. Recall 

that cortical DA signaling contributes to the expression of behavioral impulsivity (Loos 

et al., 2010; Puumala & Sirviö, 1998; C. A. Winstanley et al., 2006; C. A. Winstanley 

et al., 2010). ELS alters DA innervation of the cortex (Kunzler, Braun, & Bock, 2015). 

For example, maternal separation causes tyrosine hydroxylase (TH)-fiber density in the 

OFC to be higher in male, but not female, Octodon degus (Kunzler et al., 2015). Given 

that TH is a marker for DA projections, these data suggest ELS increases dopaminergic 

innervation in the OFC. Interestingly, in the same study density of TH fibers in the mPFC 

was lower in stressed than control males with no effects found in females (Kunzler et 

al., 2015). These results indicate that ELS alters dopaminergic innervation in the cortex 

in a region-specific manner. ELS can also alter cortical DA receptors. Maternal separation 

in male rats (females were not tested) increased adolescent D1 expression but reduced 

adult D2 receptor expression on glutamatergic projection neurons from the prelimbic 

PFC (Brenhouse, Lukkes, & Andersen, 2013). However, in the prelimbic PFC projections 

specifically to the NAc, maternal separation caused a transient decrease in both D1 and D2 

receptors in adolescence (Brenhouse et al., 2013). Studies on the effects of ELS on DA in 

the PFC are limited, and much more research in this area is warranted.

In addition to changes in cortical dopamine, cortical glutamate dysfunction is associated 

with impulsivity in ADHD, SUD, bipolar disorder, and preclinical models (Jochen Bauer 

et al., 2018; J.-N. Li, Liu, & Li, 2020; Emily R. Murphy et al., 2012; Smaragdi, Chavez, 

Lobaugh, Meyer, & Kolla, 2019). As an example, people with ADHD have higher glutamate 

in the ACC than controls and these high glutamate levels are positivity correlated with 

impulsivity symptoms (J. Bauer et al., 2018). ELS can affect cortical glutamate. Primates 

reared in adverse conditions have higher ACC glutamatergic signaling than controls 

(Mathew et al., 2003). Glutamatergic tone in cortical regions is modulated by local 

parvalbumin (PV) GABAergic interneurons (Sohal, Zhang, Yizhar, & Deisseroth, 2009; 

Williams, Goldman-Rakic, & Leranth, 1992). Several lines of rodent research demonstrate 

that ELS reduces PV neurons in the mPFC and OFC (Goodwill et al., 2018; Grassi-Oliveira, 

Honeycutt, Holland, Ganguly, & Brenhouse, 2016; Ohta et al., 2020). Interestingly, the 

effect of ELS on cortical PV neurons differs by sex and developmental stage. Maternal 

separation reduces PV neurons of the mPFC transiently in juvenile female rats but causes 
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a persistent decline of these neurons in male rats which starts in adolescents and continues 

into young adulthood (Grassi-Oliveira et al., 2016; Holland, Ganguly, Potter, Chartoff, & 

Brenhouse, 2014). In the OFC, LBN reduces PV neurons in female but not male mice 

(Goodwill et al., 2018). These ELS-induced changes in cortical PV have been linked to 

cognitive and social deficits, but they have not directly been linked to impulsivity, a gap 

that should be addressed in future studies. Collectively, these findings suggest that another 

mechanism by which ELS can alter impulsivity is by increasing cortical glutamate signaling.

8. Conclusion

How ELS affects impulsivity is just beginning to be elucidated and there remain many 

unanswered questions. However, the rodent literature demonstrates that ELS increases 

impulsive action and decreases impulsive choice. Yet, these findings are not totally aligned 

with human studies: while both rodent and human studies report that ELS increases 

impulsive action, in humans, adversity in childhood also typically increases impulsive 

choice (Duckworth, Kim, & Tsukayama, 2013; S. T. Kim et al., 2018; Lovallo et al., 2013). 

One possible explanation for why ELS effects on impulsive choice differ in the rodent versus 

human literature could be differences in the stressor timing and duration, and the types of 

stressors experienced. Most rodent models of ELS utilize one specific stress manipulation 

during a restricted developmental timeframe, in part, to identify sensitive windows (Molet et 

al., 2014; Nishi et al., 2014; Walker et al., 2017). However, stressful events experienced by 

children are not typically restricted to a limited developmental window (Lupien, McEwen, 

Gunnar, & Heim, 2009). Moreover, most children who experience ELS report multiple 

forms of adversity prior to adulthood (Arata, Langhinrichsen-Rohling, Bowers, & O’Brien, 

2007; Green et al., 2010; Kessler et al., 2010; Katie A. McLaughlin et al., 2010; K. A. 

McLaughlin et al., 2012). Additionally, while most rodent models of ELS focus on some 

form of neglect (e.g., neglect of maternal care or physical resources), clinical studies also 

take into consideration stress stemming from other ELS subtypes (e.g., sexual, physical, 

and emotional abuse) (Katie A. McLaughlin et al., 2010; K. A. McLaughlin et al., 2012). 

Different types of early trauma can lead to different outcomes later in life. For instance, a 

meta-analysis found that childhood abuse was positively associated with the development 

of adult psychopathology, but not neglect stemming from caregivers unable to provide 

basic needs such as housing/shelter (Carr, Martins, Stingel, Lemgruber, & Juruena, 2013). 

Because most rodent models of ELS involve stress from neglect, they may not always 

capture the effects of childhood trauma in humans. One approach would be to try to 

develop rodent models that better capture multiple stressors for a more protracted period of 

development. Another approach is to study impulsivity in humans who have experienced 

briefer and milder forms of early adversity. Although there is some disconnect regarding 

impulsive choice between the rodent and human ELS studies, it does not mean the rodent 

research cannot be leveraged into better treatments for those suffering from conditions with 

impulsive choice as a feature. Using rodent models to discover mechanisms that reduce 

impulsivity may reveal novel treatments for disorders characterized by high impulsivity.

In conclusion, adverse experiences early in life can alter many cognitive processes, including 

impulsivity. Although the precise mechanisms by which this occurs are still not fully 

elucidated, regulation of the mesocortolimbic system by ELS clearly contributes to later 

Sanchez and Bangasser Page 15

Neurosci Biobehav Rev. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alterations in impulsive behavior. Future studies which disentangle stressor type, duration, 

and developmental window as well as consistently compare males and females are needed to 

better understand conditions that promote vulnerability vs. resilience to ELS. Leveraging 

these data can help improve therapeutics to treat several conditions including ADHD, 

bipolar disorder, and SUD.
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Highlights:

• Impulsivity is mediated by the mesocorticolimbic dopamine (DA) system

• Exposure to early life stress can alter impulsivity in adulthood

• Early life stress induces changes in the mesocorticolimbic DA system to 

impact impulsivity
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Fig. 1. 
A schematic showing how the NAc core and shell regulate aspects of impulsivity. Changes 

in the dopaminergic system that increase DA tone in the shell promote impulsive action. 

In contrast, changes in the dopaminergic system that decrease DA signaling in the core 

promote impulsive choice. DA, dopamine; D1 receptor, dopamine 1 receptor; D2 receptor, 

dopamine 2 receptor; DAT, dopamine transporter.
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Table 1.

Summary of ELS effects on impulsive action and impulsive choice.

Impulsivity Type Timing Stress Model Effect Citations

Impulsive Action Prenatal Variable Increase Wilson et al., 2012

Impulsive Action Postnatal Scarcity Increase Kentrop et al., 2016; Lovic, Kleen, Fletcher, & 
Fleming, 2011

Impulsive Choice Prenatal Prenatal Restraint Stress + 
Lead Exposure

Decrease in males, no 
effect females Weston et al., 2014

Impulsive Choice Postnatal Scarcity Decrease* Ordñnes Sanchez et al., 2021; Fuentes et al., 2014; 
Lovic et al., 2011

Impulsive Choice Postnatal Maternal Separation + 
Ethanol Exposure

Increase Gondré-Lewis et al., 2016

*
indicates that the effect is more pronounced in one sex than the other depending on the type of scarcity manipulation (artificial rearing, maternal 

separation, LBN).
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