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Development of an artificial 
intelligence‑assisted computed 
tomography diagnosis technology 
for rib fracture and evaluation of its 
clinical usefulness
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Artificial intelligence algorithms utilizing deep learning are helpful tools for diagnostic imaging. A 
deep learning-based automatic detection algorithm was developed for rib fractures on computed 
tomography (CT) images of high-energy trauma patients. In this study, the clinical effectiveness of 
this algorithm was evaluated. A total of 56 cases were retrospectively examined, including 46 rib 
fractures and 10 control cases from our hospital, between January and June 2019. Two radiologists 
annotated the fracture lesions (complete or incomplete) for each CT image, which is considered the 
“ground truth.” Thereafter, the algorithm’s diagnostic results for all cases were compared with the 
ground truth, and the sensitivity and number of false positive (FP) results per case were assessed. The 
radiologists identified 199 images with a fracture. The sensitivity of the algorithm was 89.8%, and 
the number of FPs per case was 2.5. After additional learning, the sensitivity increased to 93.5%, and 
the number of FPs was 1.9 per case. FP results were found in the trabecular bone with the appearance 
of fracture, vascular grooves, and artifacts. The sensitivity of the algorithm used in this study was 
sufficient to aid the rapid detection of rib fractures within the evaluated validation set of CT images.

A rib fracture is commonly encountered in clinical practice. It occurs in 50% of patients who experience blunt 
chest trauma. In addition to pain, new rib fractures pose a risk of pneumothorax and pulmonary contusion in 
one-third of patients1,2. Multiple rib fractures are often observed in emergency medicine; however, reading com-
puted tomography (CT) images may be outside the expertise of emergency physicians. Diagnostic discrepancies 
between emergency physicians and radiologists have been reported in 3.2 and 7.2 cases per 1000 CT images of 
the head and chest, respectively3. Radiologists can provide support to emergency physicians in the interpretation 
of CT images. However, the possibility of missed findings depends on the radiologist’s experience and whether 
the radiologist-in-charge is a staff or resident radiologist4–6.

There have been more diagnostic images in recent years due to the improved performance and multifunc-
tionality of CT, magnetic resonance imaging, and other modalities, leading to the increased workload of reading 
physicians. Diagnosis and treatment should be promptly provided to patients in the emergency department; 
inevitably, an adequate image reading cannot be performed in some cases. CT is commonly used in chest trauma 
since it is helpful for the simultaneous evaluation of lung fields, bones, and soft tissues; sometimes, rib fractures 
are barely visible7. Approximately 20% of rib fractures are not identified on axial section images; therefore, it is 
important to examine multiplanar reconstructed images, including coronal and sagittal sections, in the search 
for rib fractures1. This process is significantly time-consuming and labor-intensive for both radiologists and 
other medical specialists because each rib should be examined in all its cross-sections and in three dimensions.

Artificial intelligence (AI), including deep learning, is attracting attention as a medical application in clini-
cal practice. AI technology is undergoing continuous improvements and is expected to reduce the burden of 
image reading and prevent oversights in trauma patients8–13. In this study, the performance of a computer-aided 
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diagnosis (CAD) system was developed and evaluated to detect rib fractures automatically on CT images as the 
first target for trauma diagnosis support.

Methods
The design of this retrospective study was reviewed and approved by Showa University Research Ethics Review 
Board (approval number 2933). The requirement for informed consent was waived by Showa University Research 
Ethics Review Board owing to the retrospective nature of the study. All methods were performed in accordance 
with relevant guidelines and regulations.

Rib fracture CAD.  This software (name to be determined, not available for clinical use as a medical device in 
Apr 2020), developed by Fujifilm Corporation (Tokyo, Japan), had already undergone training using data from 
another facility14.

Learning method.  In this study, a three-dimensional (3-D) object detection network based on a two-stage 
object detection framework was used (Fig. 1)14. A 3-D convolution was applied to the network to maintain 3-D 
information for continuity between slices. The input image of this network was a chest CT image normalized to 
x, y, and z = 1.0 mm. The output included the coordinates of the bounding box surrounding the rib fracture and 
confidence about the presence of the fracture. The evaluation metric for the convolutional neural network dur-
ing training was the mean average precision calculated using a validation dataset consisting of 21 cases randomly 
selected from the training dataset (these 21 cases were not used for training), and the convolutional neural net-
work associated with the highest mean average precision was used for evaluation.

Initial dataset.  The CT image data used for algorithm training consisted of 656 cases collected from Miyazaki 
University Hospital, Miyazaki, Japan14. Radiologists evaluated these cases to determine the fracture regions.

Evaluation dataset and ground truth.  The evaluation dataset consisted of the CT images of patients 
admitted to Showa University Hospital, Tokyo, Japan, between January 2019 and June 2019, with rib fractures 
confirmed by the radiologists in the imaging report. Similarly, CT images of patients without fractures were 
also included in the study as control cases. Eligibility criteria included new rib fractures; open or comminuted 
fractures and images with confusing artifacts were excluded. The CT scanners used included a 64-slice Multi-
Detector row CT scanner (Somatom Sensation 64, Siemens, Munich, Germany), 128-slice Multi-Detector row 
CT scanner (Somatom Definition AS, Siemens, Munich, Germany), and 192-slice Dual Source CT scanner 
(SOMATOM Force, Siemens, Munich Germany).

Two radiologists with 9 and 6 years of experience annotated the complete and incomplete fractures and their 
regions on each CT image at their workstations; these were defined as the “ground truth.” There were 56 total 
cases, 46 with rib fractures and 10 control cases. There were 199 total regions that the radiologists identified as 
ground truth: 151 complete fractures and 48 incomplete fractures.

Figure 1.   CNN architecture design. From left to right, the legend on the lower right shows the type of each 
layer (convolution or max pooling), kernel size, and the number of channels.
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Evaluation method.  As an initial evaluation in this study, each CT image was analyzed using the AI algo-
rithm. The findings from the radiologists’ ground truth and algorithm analysis for all cases were compared and 
established as true positives, false positives (FPs), and false negatives. These results determined the sensitivity for 
all fractures, complete and incomplete fractures, and the number of FPs per case.

Additional learning.  The additional training dataset comprised 333 cases from Showa University Hospital, 
Tokyo, Japan, from January 2019 to June 2019 and differed from the evaluation dataset. The CT images included 
“rib fracture” in the reading report, confirmed by the radiologist who initially read the images. All new closed 
rib fractures within the study period were included in the study. Open or comminuted fractures and images with 
confusing artifacts were excluded. The radiologist with at least 6 years of experience annotated the complete and 
incomplete fractures in the retraining cases, and the algorithm was retrained with the new data.

Evaluation.  The developed algorithm was applied to the evaluation dataset. The evaluation was conducted with 
the method described previously.

Results
Preliminary experiments.  First, a performance evaluation was conducted using the initial training data-
set (Table 1). As a result, 178 regions were detected (sensitivity: 89.4%), including 138 complete fractures (sensi-
tivity: 91.4%) and 40 incomplete fractures (sensitivity: 83.3%). Furthermore, 2.5 FPs were found per case.

After additional learning.  The algorithm’s detection of complete and incomplete fractures changed by 
further training. It identified 143 regions with complete fractures, with a 94.7% sensitivity. Incomplete fractures 
were recognized in 43 regions, with an 89.6% sensitivity; there were 40 regions before re-learning with an 83.3% 
sensitivity. In total, 186 fractures were correctly identified, with a sensitivity of 93.5%; there were 178 regions 
before re-learning with a sensitivity of 89.4%.

The recognition ability of fractures from the first to the third rib, including the ones involving the lung apex, 
increased the most with re-learning. Moreover, there was a decrease in the number of false negatives (Fig. 2). The 
number of FPs per case decreased to 1.9 after relearning compared to the 2.5 FPs before re-learning (Table 2).

Discussion
Based on the results of the preliminary experiments, the algorithm sensitivity was 89.4%, sufficient for clinical 
applications (Fig. 3). However, there were some FPs and false negatives. Moreover, the algorithm was less effec-
tive in detecting fractures from the first to the third rib (particularly when involving the lung apex), rib fractures 
near the costovertebral joints, and microfractures (Figs. 4 and 5). Increasing the training data and variation of 
target findings, such as microfractures near the intervertebral and transverse rib joints and rib fractures, weakly 
detected before additional training, improved the sensitivity and reduced the number of FPs.

In recent years, the medical applications of AI have been progressing, and their usefulness in the field of 
emergency medicine and trauma has been widely reported15,16. According to Zhou et al.17, the average diagnostic 
sensitivity by radiologists increased to 86.3% with the use of a CAD system (23.9% increase from the radiologist 
working alone), and the average diagnostic accuracy increased to 91.1% (10.8% increase from the radiologist 
working alone). Similarly, Zhang et al.18 reported that the sensitivity of 82.8–83.9% improved to 88.7–88.9%, 
and Meng et al.19 reported that the accuracy of 81.2–85% improved to 86.3–92.2%. In effect, the use of CAD 
systems combined with radiologists’ examination resulted in a decrease in FPs and diagnostic time, with an 
average reduction of 73.9–116 s17–19. Furthermore, regarding the AI’s ability to detect rib fractures, Weikert 
et al.20 reported a sensitivity of 65.7% for new and old fractures, and 97 lesions that were not mentioned in the 
CT reports were identified. Similarly, Jin et al.6 reported that AI alone had a sensitivity of 92.9% and an average 
of 5.27 FPs per scan, compared with a sensitivity of 75.9–79.1% and an average of 0.92–1.34 FPs per scan for 
radiologists. Hence, the AI and radiologists’ collaboration improved the sensitivity to 94.4% and reduced the 
time for diagnosis by approximately 86%6.

The newly developed CAD system examined in this study achieved a sensitivity of 93.5%, comparable to that 
of the systems described in previous reports, using the algorithm alone. However, the CAD system is designed 
to be a reading aid for the physician rather than a replacement tool21 in clinical practice, and further increases in 
sensitivity are expected. With additional training, the performance of the CAD system improved, with 1.9 FPs 
per case; this was lower than previously reported values6. However, FPs were detected in 6 of the 10 control cases; 
the features extracted, including deformities of the bone cortex, calcification of the costochondral transition, and 
osteophytes of the costovertebral joint, may have been due to old fractures (Fig. 6). These FPs could be reduced 
by training with additional fractures of various shapes and other features that may be erroneously identified as 
fractures. Interestingly, it has been reported that the FP rate with radiologist-alone diagnosis is lower than that 

Table 1.   Results of preliminary experiments.

Cases Ground truths Detections Sensitivity False positives per case

56 199 178 89.4% 2.5

46 rib fractures
10 control cases

Complete fractures: 151
Incomplete fractures: 48

Complete fractures: 138
Incomplete fractures: 40

Complete fractures: 91.4%
Incomplete fractures: 83.3%
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with AI-alone diagnosis. However, the sensitivity of the radiologist-alone diagnosis decreases more than that 
for the AI-alone diagnosis as the diagnosis time increases6. In this study, a CAD system was developed, and it 
was confirmed that its detection ability is sufficient for clinical practice. The CAD system with the bone number 
labeling technology developed is expected to reduce the diagnosis time and improve the image interpretation 
efficiency22.

This study had some limitations, starting with its retrospective design. The physician who input the ground 
truth on the evaluation dataset knew that the CT images were collected to determine rib fractures, even though 
he did not know the exact location of the rib fractures. This information bias may have made the criteria for rib 
fracture definition more sensitive than the standard method. The CAD system’s sensitivity could be decreasing 
because of the many ground truths for the radiologists to determine as fractures and the inclusion of ambiguous 
lesions that are ignored in clinical practice. Moreover, although radiologist annotations are used as correct data, 
it is sometimes difficult even for experienced radiologists to determine whether a bone discontinuity is a true 
fracture or a vascular groove. Therefore, there may be FPs and false negatives in the radiologist’s annotation. 
Furthermore, there may be variabilities due to different facilities. This algorithm’s original developer and target 
facility differed from our institution; hence, the results should not be limited to a single facility. However, the 
additional training dataset that we used was from the same facility as the evaluation dataset, and differences in 
results due to the type of CT scanner and different protocols between facilities, including slice thickness, should 
be considered. The imaging method is standardized in trauma protocols, and the bias due to slice thickness and 
beam pitch is expected to be inconsequential. Nevertheless, it is necessary to isolate possible differences due to the 
imaging scanner and protocol and evaluate the results in cases from other facilities and equipment in the future.

In conclusion, the sensitivity of the algorithm used in this study was sufficient to aid the rapid detection of 
rib fractures within the evaluated validation dataset of CT images. It is important to evaluate the algorithm in a 
multi-center setting to confirm these findings before using this diagnostic aid in clinical practice.

Figure 2.   False negative results. These results emerged mainly in the upper ribs, in the proximity of vertebral 
bodies, and for minor incomplete fractures; additional learning reduced false negatives.

Table 2.   Results after additional learning.

Cases Ground truths Detections Sensitivity False positives per case

Re-learning

56 199 186 93.5%
1.946 rib fractures

10 control cases
Complete fractures: 151
Incomplete fractures: 48

Complete fractures: 143
Incomplete fractures: 43

Complete fractures: 94.7%
Incomplete fractures: 89.6%



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8363  | https://doi.org/10.1038/s41598-022-12453-5

www.nature.com/scientificreports/

Figure 3.   Fractures identified by the algorithm. The algorithm helped identify one case of incomplete fracture, 
in addition to some complete fractures.

Figure 4.   False positive results. These features resembled bone fractures and included strains, vessel grooves, 
and artifacts.
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Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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