Skip to main content
. 2022 May 19;13:2755. doi: 10.1038/s41467-022-30308-5

Table 2.

Wavefunction delocalization (〈IPR〉), exciton diffusion constants (D), and exciton diffusion lengths (L).

FE-SH Experiment
Systems Dir. 〈IPR〉 D (10−3 cm2 s−1) a L (nm) b τexp (s) Dexp (10−3 cm2 s−1) c Lexp (nm)
ANT a 1.0 0.8 ± 0.3 39 ± 6 1.0 × 10−8d 1.8 e 60 f
b 3.3 ± 0.8 81 ± 9 5.0 e 100 f
a6T a 1.2 6 ± 1 46 ± 5 1.8 × 10−9g 4.9 h 60 i
b 4.5 ± 0.3 40 ± 1
PDI a 1.5 26 ± 4 - - - -
b 9 ± 3 - - - -
DCVSN5 a 2.1 60 ± 11 - - - -
Y6 a 2.0 150 ± 7 87 ± 2 2.5 × 10−10j 54 k 37 j (90l)

a In FE-SH D is directly computed using Eq. (6). The diffusion constants were averaged over FE-SH simulations carried out for different system sizes, as reported in Supplementary Fig. 9. Error bars indicate the corresponding standard deviations.

bL=2Dτexp.

c Usually the diffusion constant, Dexp, is not directly measured in experiments. In this case, we estimated Dexp using the experimentally observed Lexp.

d Taken from ref. 26.

eEstimated considering Dexp=Lexp2/2τexp assuming that the transport occurs in different 1D directions as done in ref. 29.

fTaken from ref. 27,28.

gTaken from ref. 72

hEstimated assuming that a6T forms a 2D thin-film and the diffusion occurs isotropically within the herringbone plane, so that Dexp=Lexp2/4τexp.

iTaken from ref. 73. Note that Lexp in this case refers to a6T thin-film morphology and it should be taken as indicative only when comparing with the computed value (see Supplementary Note 6 for a discussion).

jTaken from ref. 5. Lexp in this case refers to Y6 thin-film morphology and it should be taken again as indicative only.

kTaken from ref. 5, where a 3D model was used to estimate this value.

lEstimated assuming isotropic exciton transport in 3D and taking Dexp and τexp from ref. 5. In this case Lexp=6Dexpτexp.