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Abstract
Freshwater and energy are critical components for the growth and progress of societies. The scarcity of freshwater and 
rapid population growth, especially in remote countries, has led to an urgent need to develop desalination technologies 
in order to raise its productivity and reduce its energy consumption rates. Membrane distillation is one of the effective 
methods characterized by its high productivity, but its disadvantage by higher electricity consumption. Also, solar 
stills are one of the sustainable and economical technologies, but the disadvantage by lower productivity. Accordingly, 
this manuscript dealt with a comprehensive review and detailed comparison of the most important modifications and 
innovations that were made to the design of the membrane distillation units, which aim to reduce electricity con-
sumption rates, as well as the design of solar stills, which aims to maximize the productivity and efficiency. This was 
done by providing a detailed comparison of the most important three axes of modifications and innovations that were 
addressed by recent previous studies on the design of membrane distillation units and solar stills, and their statement as 
follows: preheating technology, use of the thermal storage materials, and nanomaterials technology. Finally, based on 
this review, the authors make some recommendations for future work in the field of solar and membrane desalination.

Keywords Membrane distillation · Solar stills · Preheating technology · Thermal storage mediums · Nanomaterials · 
Performance improvement

Nomenclature
ASBS  Active single basin solar still
CDI  Capacitive deionization
CNT  Carbon nanotube
FO  Forward osmosis
GOR  Gain output ratio
GPF  Graphite plate fins
MSS  Magnet solar still
MW-CNT  Multi-wall Carbon nanotube
PCM  Phase change material

PV  Photovoltaic
SSA  Spectrally selective absorber
SSP  Shallow solar pond
SW-CNT  Single wall carbon nanotube
TDCMD  Tubular direct contact membrane desalination
VACNT  Vertically aligned carbon nanotube

Introduction

Water is the most valuable and vital natural resource 
of all species. Fortunately, natural water is the most 
abundant compound on Earth, covering about 71% of 
the Earth’s surface (USGS 2019). Despite this, natural 
freshwater resources around the world are very scarce 
(Mekonnen and Hoekstra 2016). This is because about 
97% of the water on Earth is in the oceans with a salinity 
range of 3.5–5%. Only 2.5% of the world’s total water 
resources are fresh; and only 31.4% of them can be 
accessed to support life on Earth (Powers 2017). Fresh-
water resources are available either as groundwater in the 
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ground or as surface water in rivers, lakes, etc. In recent 
years, the stress on the available freshwater resources 
has been exacerbated as a result of many factors, the 
most important of which are: population growth, climatic 
changes, urban expansion, and changing lifestyles and 
prosperity. About 2.1 billion people during the current 
time period lack access to safely managed drinking water 
(UN-Water 2018; Xiao et  al. 2021; Altarawneh et  al. 
2020). It is expected that by 2030, about 700 million 
people will be displaced worldwide due to the scarcity of 
fresh water (Wei et al. 2021; Al-Otoom and Al-Khalaileh 
2020; Sharon et al. 2020). To overcome the problem of 
fresh water scarcity, some strategies have been developed 
that aim to reduce the demand for fresh water by imple-
menting conservation practices or adjusting prices. How-
ever, previous strategies to mitigate fresh water demand 
do little to provide optimal solutions in highly affected 
regions (Gude 2017; Pourafshar et al. 2020; Siddiqui and 
Dincer 2018). On the other hand, the use of desalina-
tion technologies has enabled us to meet the increasing 
demand for fresh water by making use of the abundant 
reserves of brackish water and/or seawater.

Among the available desalination techniques, the 
solar distillation system is an effective procedure that 
relies on solar energy to produce fresh water, as it is 
built using locally available materials and also enjoys 
preserving depleted energy sources by using renew-
able resources (solar energy), which is clean and envi-
ronmentally friendly energy (Manchanda and Kumar 
2018; Velmurugan and Srithar 2011). Membrane-based 
desalination also has some advantages such as modular-
ity, compactness, and sometimes the use of solar energy, 
thus preserving depleted energy sources by using renew-
able resources (solar energy), which is clean and envi-
ronmentally friendly energy compared to multi-effect 
distillation (MED), thermal vapor compression (TVC), 
mechanical vapor compression (MVC), multi-stage flash 
distillation (MSFD), electro dialysis (ED), reverse osmo-
sis (RO), freezing, and humidification and dehumidifi-
cation (HDH) (Velmurugan and Srithar 2011). Despite 
the advantages of solar stills, the productivity is lower 
compared to the traditional desalination system. Mem-
brane distillation (MD) has a lot of advantages such as 
it is operating with low-grade thermal energy and low 
pressures and large contact area; however, it also has 
some disadvantages especially high-power consumption 
which made it essential to reduce the power consumption 
and increase the efficiency of MD to make it even more 
practical. As a result of the high energy consumption 
of MD, it was found that it urgently needs renewable 
energy sources, heat storage mediums, and new config-
urations in membrane modules to reduce the required 
energy and improve the efficiency of MD (Gonzáleza 

et al. 2017). Ding et al. (2005) analyzed a solar-powered 
membrane distillation system; results have shown that the 
plant capacity in June can reach about 300 kg/day with 
solar energy. Another effective way of water desalina-
tion in remote areas is using solar stills. Solar stills use 
the radiation from the sun to evaporate water in a basin 
and then the water vapor condensate and accumulate as 
pure water. Solar stills productivity is affected by dif-
ferent factors like wind speed, solar rays, ambient tem-
perature, glass-water temperature difference, absorber 
area, water-free surface area, water inlet temperature, 
basin water depth, and glass angle. The solar intensity, 
wind velocity, and ambient temperature cannot be con-
trolled as they are meteorological parameters, whereas 
the remaining parameters can be controlled to improve 
productivity (Sivakumar and Sundaram 2013). Therefore, 
a great effort has been made in recent years to develop 
solar desalination systems, membrane-based desalination 
systems, as well as research into sustainable and energy-
saving methods for fresh water production.

The rates of total energy consumption of desalina-
tion units depend on the design of the plant, the type of 
desalination method, the salinity of the feed water, and 
the temperature of the feed water. Thermal methods of 
water desalination require thermal energy and electrical 
energy, which makes their energy consumption higher 
than membrane methods that require only electrical 
energy to desalinate water. Therefore, the rate of total 

Fig. 1  Heat transfer mechanisms in direct contact membrane distilla-
tion system
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energy consumption required to desalinate 1  m3 of fresh 
water varies according to the desalination method used, 
where the total energy consumption required for MED 
system ranges between 14.45 and 21.35 kWh/m3, for MFS 
system between 19.58 and 27.25 kWh/m3, for TVC system 
16.3 kWh/m3, for MVC system between 7 and 12 kWh/
m3, and for ED system it is between 0.7 and 5.5 kWh/m3 
(Maleki et al. 2016; Okampo and Nwulu 2021), while 
the total energy consumption for the RO system ranges 
between 2 and 4 kWh to produce one cubic meter of fresh 
water (Maleki et al. 2016; Okampo and Nwulu 2021).

The present manuscript dealt with two very impor-
tant axes. The first axis dealt with the comprehensive 
review and a detailed comparison of the most important 
modifications and innovations that have been made to 
the design of membrane distillation units, which aims to 
reduce energy consumption rates as the following: feed 
water preheating technology, use of the thermal storage 
materials, and nanomaterials technology. Also, the sec-
ond axis dealt with a comprehensive review and detailed 
comparison of the most important modifications and 
innovations that were made to the design of solar stills, 

Fig. 2  Layout of solar-driven membrane distillation (Shafieian and Khiadani 2019)

Fig. 3  Schematic of direct 
contact membrane distillation 
assisted by solar energy (Elza-
haby et al. 2016)
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all of which aim to maximize productivity and efficiency 
as the following: pre-heating technology, use of the ther-
mal storage materials, and nanomaterials technologies. 
Finally, based on this review, the authors make some rec-
ommendations for future work in the field of solar and 
membrane desalination.

Membrane distillation

Overview

During the last few years, membrane desalination showed 
a high capability to produce distilled water. Membrane 
distillation is a dual technology that combined the 
advantage of thermal distillation and membrane separa-
tion (Anvari et al. 2020). Membrane distillation (MD) 
is classified according to its operational method into; 
direct contact membrane distillation (DCMD), sweeping 
gas membrane distillation (SGMD), air gap membrane 
distillation (AGMD), and vacuum membrane distillation 
(VMD) (Anvari et al. 2020). The advantages of mem-
brane distillation over other desalination processes are 
concentration polarization, high rejection of non-volatile 
compounds, limited fouling, low operating temperature, 
and low operating pressure (Anvari et al. 2020). There-
fore, membrane distillation technology has gained great 
attention for processes of desalination and treatment of 
wastewater (Anvari et al. 2020).

Heat transfer in MD process

The performance of membrane distillation technology 
depends on the temperature gradient between the feed 
side and the distillate side, which results in the transfer 
of heat from the hot side of the membrane to the cold 

side, and thus the water phase change from a liquid to a 
vapor state on the surface of the feed side of the mem-
brane. As shown in Fig. 1, the heat transfer through the 
membrane occurs in three regions: the feed layer  Qf, the 
membrane  Qm, and the permeate layer  Qp, calculated 
using Eqs. (1)–(3).

where;  hf is the coefficient of heat transfer on feed side,  hp 
is a coefficient of heat transfer on permeate side,  Tf is a feed 
temperature,  Tfm is a membrane surface temperature in feed 
side,  Tp is a permeate temperature,  Tpm is a membrane sur-
face temperature in permeate side,  km is a membrane thermal 
conductivity, δm is the membrane thickness, J is the mem-
brane flux, and ΔHv is the evaporation enthalpy.

The overall heat transfer through the three regions Q is 
calculated as follows:

Coefficient of overall heat transfer H is calculated as 
follows:

(1)Q
f
= h

f

(

T
f
− T

fm

)

(2)Q
m
= Q

cm
+ Q

v
=

k
m

δ
m

(

T
fm

− T
pm

)

+ JΔH
v

(3)Q
p
= h

p

(

T
pm

− T
p

)

(4)Q = Qf = Qm = Qp

(5)

H
(

Tf − Tp
)

= hf
(

Tf − Tfm
)

=

km

δm

(

Tfm − Tpm
)

+ JΔHv = hp
(

Tpm − Tp
)

(6)
1

H
=

1

hf
+

1

k
m

δ
m

+
JΔHv

(Tfm−Tpm)

+

1

hp

Fig. 4  Test rig of solar-powered 
membrane distillation with 
energy storage mediums 
(Abdelgaied et al. 2020)
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The membrane surface temperatures on feed and perme-
ate sides  Tfm and  Tpm are calculated as follows:

Membrane distillation performance enhancement 
techniques

The most encountered problem in membrane desalina-
tion is that it requires high power consumption; a lot of 
research investigated the performance of membrane desali-
nation with different techniques of improvement to reduce 
the power consumption and increase the productivity of 
the membrane distillation. Preheating the inlet water to the 
membrane is one of the most common methods. Preheating 
can be done by external heaters like electrical heaters, and 
it can take place by using solar energy to preheat the water 
inlet by using solar preheaters, which in turn can reduce 
the power consumption cost of the electric heater, and it 
is a renewable and cleaner source of energy (Shafieian and 
Khiadani 2019). Another very effective way to improve the 
membrane performance is using thermal storage mediums 
especially, with solar-driven membranes as the thermal 
storage medium works as a heat supply for preheating the 
feed flow when the solar irradiance decreases (Abdelgaied 
et al. 2020). New configurations of membranes with nano-
materials can also be used to improve membrane perfor-
mance (Elango et al. 2015).

Feed‑water preheating technology

Different researches were done on preheating the feed water 
before its entering the membrane to increase the vapor pres-
sure difference across the membrane sides which in turn 
increases the productivity. Shafieian and Khiadani (2019) 
studied experimentally and theoretically the behavior of the 
thermal-driven direct tubular contact membrane shown in 
Fig. 2 by using an electric heater to preheat the feed water 
before entering the membrane. They found that lower perme-
ate temperature, as well as, higher feed water temperature 
results in higher freshwater production, and improves the 
freshwater production of the tubular DCMD unit. The system 
consists of three main loops including the solar heating loop, 
membrane feed loop, and membrane permeate loop. Three 
different operating cases were investigated (summer without 

(7)Tfm = Tf −

�
k
m

δ
m

(

T
fm

− T
pm

)

+ JΔH
v

hf

(8)Tpm = Tp −

�
k
m

δ
m

(

T
fm

− T
pm

)

+ JΔH
v

hp
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cooling unit (Case I), summer with cooling unit (Case II), 
and winter without cooling unit (Case III)). They found that 
except for a few minutes in the morning, the solar collector 
was able to provide all required thermal energy to heat the 
feed water before entering the membrane unit. By adding 
permeate water cooling unit in the summer, the maximum 
production rate will be increased from 2.78 L/m2 h in Case I 
to 3.81 L/m2 h in Case II, as well as the overall efficiency of 
the system will be improved from 46.6% in Case I to 61.8% 
in Case II. Elzahaby et al. (2016) studied a direct contact 
membrane distillation system assisted by a cooling water tank 
and solar energy shown in Fig. 3. Effect of salt concentration, 
feed temperature, feed flow rate, the cooling temperature was 
investigated. They conducted that the water production rate 
increases with increasing the feed temperature; however, in 
this study, to avoid scale formation, the feed temperature is 
limited to 70 ◦C . Recently reported studies examining the 
effect of feed water preheating systems on the performance 
of membrane distillation systems are summarized in Table 1.

Membrane with thermal storage mediums

Thermal storage mediums are used in membrane desali-
nation systems to store waste heat from any other pro-
cess. It is often used with solar systems as it stores heat 
from the sun in daytime and use it as heat source for feed 
flow of membrane at night. Thermal storage mediums 
can be sensible like molten salt or latent like paraffin 
wax. Abdelgaied et al. (2020) built a test rig shown in 
Fig. 4 to improve a behavior of solar-assisted membrane 
distillation using the energy storage medium as paraffin 
wax. They conducted that the freshwater production rate 
is varying between 3.47 and 4.35 l/h at a feed flow rate of 
16 l/min, respectively. Also, the gain output ratio reached 
1.123 and 1.25 for 12 and 16 l/min feed flow rate, respec-
tively. Recently reported studies examining the effect of 
thermal storage mediums on the performance of mem-
brane distillation systems are summarized in Table 2.

Table 4  Recent studies on the performance of membrane distillation systems using nano-zeolite

Reference Material
used

Operating conditions Results

Anis et al. (2019) Nano-zeolite 25 bars, 25,000 mg/L NaCl solution For 0.5 wt.% nano zeolite:
A salt rejection of 99.52% with a flux increase of 34.2%

Liu and Chen (2013) Nano-zeolite Aqueous NaCl (with initial NaCl 
concentration of 1 mol/L

100% rejection of salt, the permeability is about 2 × 10−9 m/Pa.s

Kim et al. (2013) Nano-zeolite - 98.8% Salt rejection and 37.8 L/  m2.h water flux

Fig. 5  A solar still coupled with 
solar collector (Badran and Al-
Tahaineh 2005)
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Nanomaterials in membrane distillation

Nanomaterials can be described as a material that is in one 
dimension is less than 100 nm. At this size, material proper-
ties may change on the chemical and physical sides. Nano-
materials are characterized by a large surface area, more 
strength, and stability. Carbon-based nanomaterials and 
nano-zeolite will be discussed as they showed a remarkable 
improvement in water desalination.

Carbon‑based nanomaterials

Carbon-based nanomaterials such as carbon nanotubes 
and graphene have been widely used for their important 
features like high surface area, high thermal conductiv-
ity, have a low thermal expansion coefficient, and high 
mechanical strength. These properties, especially the high 
thermal conductivity, tend to improve the performance 

of membrane productivity and salt rejection. Bhadra 
et al. (2013) utilized the carboxylated nanotubes which 
are more polar to improve the productivity of membrane 
distillation (MD), a sweep gas membrane with 1 L/min 
dry air was used and results showed a flux reaching 
19.2 kg/m2 with salt rejection 99%. Recently reported 
studies examining the effect of carbon-based nanomate-
rials on the performance of membrane distillation systems 
are summarized in Table 3.

Nano‑zeolite in membrane distillation

Nanosized zeolites are crystalline microporous sol-
ids with physicochemical characteristics like those 
of micron-sized crystals (Mintova et al. 2016). Nano-
zeolite is characterized by a large surface area and easy 
shaping. Using nano-zeolite in desalination showed 
a promising future in increasing the productivity of 

Fig. 6  Layout of hybrid humid-
ification-dehumidification/solar 
still integrated with photovoltaic 
panels and solar concentrators 
(Mahmoud et al. 2018)
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membrane distillation. Anis et al. (2019) found that with 
0.5% weight of nano-zeolite, the productivity increased 
by 34.2% with the salt rejection of 99.52%. Recently 
reported studies examining the effect of Nano-zeolite on 
the performance of membrane distillation systems are 
summarized in Table 4.

Solar stills

Overview

The use of solar distillers is one of the appropriate ways 
to address the problem of freshwater scarcity, but the 
main problem of solar distillers is the low rate of daily 
water production. The intensity of solar radiation has a 
direct impact on the productivity of solar distillers since 
the hot and dry climatic conditions characterize most of 
the remote regions that suffer from water scarcity and 
have a high solar intensity. The use of solar distillers 
can help these countries save drinking water. The perfor-
mance of solar distillers is mostly affected by the rates 
of water evaporation and condensation on the glass sur-
face, where the increase in the temperature difference 
between the basin water and the glass cover (condensing 
surface) helps to increase the water productivity of the 
solar distillers.

Theoretical analysis of solar stills

Thermal analysis of the solar distillers was found to be 
dependent on the co-efficient of internal heat transfer and 
efficiency. The formula of these parameters was discussed 
below (Baskaran and Saravanane 2021):

The thermal efficiency ηth of the solar distiller depends 
on the entirety of hourly productivity ṁdw , latent heat of 

vaporization  hfg, solar intensity I(t), and the projected area 
A of solar distillers which calculated as follows:

Latent heat of vaporization  hfg and entirety of hourly pro-
ductivity ṁdw calculated by the following Eqs. (10), (11):

The co-efficient of evaporative heat transfer  hew calcu-
lated by:

The co-efficient of convective heat transfer  hcw calculated 
by:

The co-efficient of radiative heat transfer  hrw calculated 
by:

where, ε
w
= ε

g
= 0.9 , Tw is basin water temperature, T

g
 

is glass cover temperature, and P
w
 and P

g
 are partial vapor 

pressures at free water surface and glass cover, respectively.

(9)𝜂th =

∑

ṁdwhfg
∑

I(t)A

(10)

hfg = 10
3
× [2501.897 − 2.407Tw

+ 1.192 × 10
−3T2

w
− 1.596 × 10

−5T3

w

(11)ṁ
dw

= 3600

(

h
ew

h
fg

)

A

(

T
w
− T

gi

)

(12)h
ew

= 16.273×10
−3
h
cw

[(

Pw − Pg

)

(

T
w
− T

g

)

]

(13)

h
cw

= 0.884

[

(

T
w
− T

g

)

+

(

Pw − Pg

)(

T
w
+ 273

)

(

268.9 × 10
3
)

− P
w

]1∕3

(14)

h
rw

=

(

1

�w
+

1

�g
− 1

)

σ

[

(

T
w
+ 273

)2
+

(

T
g
+ 273

)2
]

Fig. 7  Single slope still with 
magnets and graphite plate fins 
(Dhivagar and Mohanraj 2021)
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Solar still performance improvement

Solar stills use the heat from the sun’s irradiance to evapo-
rate the water and then condense it on a glass sheet to pro-
duce pure water. The main goal to improve the distillers 
performance is to increase the amount of heat absorbed by 
the solar still, this can be achieved by using thermal stor-
age materials with high thermal conductivity to increase the 
absorbed heat and even store it; also preheating the feed flow 
to the solar still can improve the performance as it makes the 
process faster and requiring less sun irradiance; another way 
is to use the nanofluids due to high thermal conductivity of 
these materials.

Preheating the feed flow of solar still

Badran and Al-Tahaineh (2005) investigated the effect of 
using solar heaters on the production of the solar stills, 

Fig. 5; they found that coupling of a solar collector with 
distiller improved the production by 36%, as the productivity 
with solar collector 3510 mL and without the solar heater 
was 2240 mL. Mahmoud et al. (2018) studied the effect of 
adding a solar concentrator to increase the heat directed to 
the solar still integrated with humidification-dehumidifica-
tion desalination system shown in Fig. 6; results showed 
that with a concentration ratio of 4 and a Basin water height 
of 0.01 m, the system yield was about 16.3 kg/m2 . Recently 
reported studies examining the effect of feed water preheat-
ing technologies on the performance of solar distillers are 
summarized in Table 5.

Solar still with thermal storage mediums

Thermal storage mediums are integrated with solar stills 
to increase the heat absorbed by the basin of the still and 
to work as a heat source at night. Dhivagar and Mohanraj 

Table 7  Recent studies on the performance of solar distillers using nano  Al2O3

Ref Nature Solar still type Material used Results

Kabeel et al. (2014) Experimental Single slope Al2O3 With the external condenser, the solar 
still water productivity increased by 
about 116%

Water cost 0.041 $/L
Sahota and Tiwari (2016) Theoretical Double slope 0.12%  Al2O3 concentration The enhancement of yield has been 

found to be 12.2%
Chaichan and Kazem (2018) Experimental Single slope Paraffin wax with a nano-Al2O3 Distillate yield improved by 60.53%
Modi et al. (2021) Experimental Single-basin dual-slope 0.1%  Al2O3 Use of  Al2O3 improved the yield by 

28.53%
Kabeel et al. (2017a) Numerical Single slope 0.2%  Al2O3 and 0.2%  Cu2O The daily efficiency improved by 

73.85% and 84.16% for  Al2O3 and 
 Cu2O nanoparticles, respectively

Shanmugan et al. (2018) Experimen-
tal + Theo-
retical

Single slope Al2O3 The daily yield was 7.460 kg/m2 in 
summer and 4.120 kg/m2 in winter

Table 8  Recent studies on the performance of solar distillers using CuO nanomaterial

Ref Nature Solar still type Material used Results

Modi et al. (2021) Experimental Dual slope 0.1% CuO concentration Use of CuO improved the yield by 58.25%
Kabeel et al. (2017b) Experimental Single slope 10 to 40% CuO concentration Utilizing CuO nanoparticles boosted the distillate by 

16% and 25% at CuO concentration of 10% and 40%, 
respectively

Gupta et al. (2016) Experimental Single slope 0.12% CuO concentration Solar still with added nanoparticles produced 3445 ml/m2 
per day at water depth of 5 cm

El-Gazar et al. (2021) Experimen-
tal + Theo-
retical

Single slope Al2O3 + CuO 0.025% for each Enhancement in the still output yield reached 27.2% in 
summer and 21.7% in winter compared to reference still

Attia et al. (2021) Experimental CuO-water–based nanofluid Daily yield reached 6.8 L/m2 with an improvement of 
76.6%

Water cost 0.0066 $/L
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(2021) used 16 magnets and 20 graphite plate fins shown 
in Fig.  7. The results conducted that the yield, energy, 
and exergy efficiency of graphite plate fins and magnet 
solar still (GPF-MSS) were increased by 19.6, 21.4, and 
18.1%, respectively, compared with conventional solar still. 
Recently reported studies examining the effect of thermal 
storage mediums on the performance of solar distillers are 
summarized in Table 6.

Solar still with nanomaterials

Nano Al2O3

Xia et al. (2016) conducted the influences of adding nano 
 Al2O3 and Ti O

2
 on heat transfer rate; they found that that 

the thermal conductivity and dynamic viscosity of  Al2O3 
and Ti O

2
 nanofluids are both improved with the increase of 

Table 9  Recent studies on the performance of solar distillers using other nanomaterials

Ref Nature Still type Material used Results

Omara et al. (2015) Experimental Single slope Al2O3 + cuprous oxide The yield enhanced by 285.10% 
and 254.88% for using cuprous 
and  Al2O3 nanoparticles, respec-
tively

Kabeel et al. (2019a, b) Numerical Single slope 0.02% cuprous oxide The daily yield improved by 
106.86%

Shanmugan et al. (2020) Experimental + Theoretical Single slope TiO2 In summer: average daily produc-
tivity was 7.89 L, and average 
efficiency of a system was 
36.69%

In winter: average daily productiv-
ity was 5.39 L, and average effi-
ciency of a system was 57.16%

Kabeel et al. (2019a) Experimental Pyramid solar still TiO2 black paint coated solar 
still

The distilled yield improved by 
6.1%

Nijmeh et al. (2005) Experimental Dual slope KMnO4 The improvement in energy effi-
ciency reached 26%

Elango et al. (2015) Experimental Single slope Al2O3, ZnO,  Fe2O3 and  SnO2 The yield improved 29.95, 12.67, 
and 18.63% for  Al2O3, ZnO, and 
 SnO2 nanofluids, respectively

Kabeel et al. (2018) Experimental Single slope Graphite nanoparticles The daily yield reached 7.73 L/m2

Kabeel et al. (2019b) Experimental Single slope Paraffin wax and graphite nano-
particles

The daily yield reached to 7.123, 
7.475, 7.937, 8.249, and 8.52 L/
m2 for 0.0, 5, 10, 15, and 20% 
graphite mass concentrations, 
respectively

Kabeel et al. (2020b) - Stepped solar still Graphite and PCM + internal 
reflectors and evacuated tube 
collector

The daily distillate productivity 
varied between 13.6 and 13.62 
L/m2

Rufuss et al. (2018) Experimental Single slope PCM +  TiO2, CuO, and GO 
nanoparticles

Add  TiO2, CuO, and GO nano-
particles to PCM improved the 
yield to 3.92, 4.94, 5.28 and 
3.66 L/m2 per day, respectively

Water cost reached 0.026 $/L
Nazari et al. (2019) Experimental + Theoretical Single slope Cu2O nanofluid + thermoelectric 

cooling channel
Use of 0.08%  Cu2O improved the 

yield and energy efficiency by 
82.4% and 81.5%, respectively

Water cost reached 0.021 $/L
Kabeel et al. (2017c) Numerical Single slope Cu2O +  Al2O3 Use of 0.02%  Cu2O and  Al2O3 

improved the daily yield to 
4090 ml/m2 and 2875 ml/m2, 
respectively

Arani et al. (2021) Experimental SiO2 nanoparticles Productivity improved by 55.18%, 
and water cost reached 0.012 
$/L

38893Environmental Science and Pollution Research (2022) 29:38879–38898



1 3

particle volume fraction. Kabeel et al. (2014) experimented 
the addition of  Al2O3 to a single-sloped solar still with exter-
nal condenser to improve the condensation of the evaporated 
water of the still; results have shown a 116% improvement in 
the productivity of the still. Recently reported studies exam-
ining the effect of nano  Al2O3 on the performance of solar 
distillers are summarized in Table 7.

Nano CuO

Kabeel et al. (2017a) tested experimentally the effect of 
CuO concentration on the distillate of the solar still; they 
found that with 10% CuO concentration, the distillate 
increased by 16%, and by increasing the CuO concentration 
to 40%, the distillate increased by 40%. Recently reported 
studies examining the effect of CuO nano material on the 
performance of solar distillers are summarized in Table 8.

Other nanomaterials

Cuprous oxide  (Cu2O), titanium dioxide  (TiO2), potas-
sium permanganate  (KMnO4), zinc oxide (ZnO),  Fe2O3 and 
 SnO2 nanomaterials can also be used to enhance the distiller 
yield. Elango et al. (2015) compared between using of dif-
ferent nanomaterials on the performance of a single slope 
solar still,  Al2O3, ZnO,  Fe2O3 and  SnO2 were tested, results 
showed that the yield improved 29.95, 12.67, and 18.63% 
for  Al2O3, ZnO, and  SnO2 nanofluids, respectively. Recently 
reported studies examining the effect of other nanomateri-
als on the performance of solar distillers are summarized 
in Table 9.

Conclusion

In addition to the importance of both membrane desali-
nation plants and solar stills in the field of water desal-
ination, this paper aims to provide a comprehensive 
review of the most important recent studies aimed at 
improving performance that was conducted on both 
membrane desalination plants and solar stills. The 
improvement axes that were carried out on both the 
membrane desalination plants and the solar stills were 
categorized according to three axes that are very effec-
tive and have a direct impact on the performance of 
the membrane desalination plants and the solar stills, 
which are as follows: feed water preheating technolo-
gies, thermal storage materials, and nanoparticles. This 
survey focuses on showing the impact of the previous 
improvement axes on pure water productivity, energy 
efficiency, and the cost of producing pure water. The 
most important results can be outlined as follows:

•  The contribution of solar heat and waste heat used in 
the operation of the process leads to a lower cost of water 
production as well as making the desalination system 
more competitive, sustainable, and economically viable 
for small and remote applications.
•  Permeate pure water through the membrane was 
increased by 52 g/m2/min for increasing the feed water 
temperature from 30 to 60 °C.
•  Using waste heat and solar thermal energy reduced the 
cost of pure water produced from the membrane distil-
lation plant from 6.80 $/m3 to 1.6 $/m3 compared to a 
membrane distillation plant that operated with standalone 
grid electricity.
•  The overall system efficiency of the membrane distil-
lation plant improved from 46.6% to 61.8% for utilizing 
the pre-cooling unit on the permeate flow loop before 
entering the membrane unit.
•  The pure water productivity of the membrane distilla-
tion system will be improved by a rate varying between 
33.11 and 43.18% compared to cases without PCM.
•  Use of thermal storage materials improved the cumula-
tive yield and the gain output ratio of membrane distilla-
tion units by a rate up to 43.2% and 34.4%, respectively.
•  With an increase in the amount of MWNTs in the 
membrane, the water flux increased from 14.86 to 28.05 
L/m2.h, while the salt rejection decreased slightly.
•  For utilizing 0.5 wt.% nano-zeolite, the salt rejection 
reached 99.52% and the water flux increased by 34.2%.
•  Using the solar collector as a feed water preheating 
unit is the effective choice that increases the pure water 
productivity and energy efficiency with rates reaching 
40.98% and 57.4%, respectively, and reduces the cost of 
producing pure water to a rate reached 0.0102 $/L.
•  The utilization of nanofluid improved the cumulative 
productivity of solar stills by a rate up to 116%, and also 
the use of thermal storage materials (PCM) improved the 
cumulative productivity of solar stills at a rate of 105.5%.

Recommendation and future scope

In the processes of reducing the electricity consump-
tion rates in membrane distillation units, various modi-
fications were shown in many of the recent studies that 
were conducted, all of which aim to reduce the elec-
trical power consumption rates, but there is still room 
for brainstorming. Also in the processes of enhancing 
the cumulative yield and raising the efficiency of solar 
stills, various modifications were presented in many of 
the researches that were conducted, all of which aim to 
enhance the cumulative yield and raise the efficiency of 
solar stills, but there is still room for a brainstorm. The 
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following are the most important recommendations that 
could be useful for further study, correction, and modi-
fication of membrane distillation units and solar stills.

•  The heat released from the waste outlets in industries 
and exhaust of the engine is the most effective choice as 
a feed water preheating unit to improve the performance 
of membrane distillation units.
•  Development of the new combination of the membrane 
distillation and solar still to achieve the highest perfor-
mance and lower cost.
•  Incorporating high-performance nanomaterials, ther-
mal storage materials, and feed water preheating units in 
the water treatment process are good choices to achieve 
the highest performance and lower cost.
•  Future studies are also required to be focusing more on 
the effects of novel combinations of effective modifica-
tions in order to determine the best designs of the solar 
stills that achieve the highest performance and lower cost.
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