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Abstract
Studying brain connectivity has shed light on understanding brain functions. Electroencephalogram signals recorded from

the scalp surface comprise inter-dependent multi-channel signals each of which is a linear combination of simultaneously

active brain sources as well as adjacent non-brain sources whose activity is widely volume conducted to the scalp through

overlapping patterns. Evaluation of brain connectivity based on multivariate autoregressive (MVAR) model identification

from neurological time series can be a proper tool for brain signal analysis. However, the MVAR model only considers the

lagged influences between time series while ignoring the instantaneous effects (zero-lagged interactions) among simul-

taneously recorded neurological signals. Hence predicting instant interactions may result in fake connectivity, which may

lead to misinterpreting in results. In this study, we aim to find instantaneous effects from coefficients of the MVAR model

acquired using an ADALINE neural network and investigate the efficiency of the proposed algorithm by applying it to a

simulated signal. We show that our coefficients are estimated accurately from channels of the simulated signal. Moreover,

we apply the proposed method on a dataset of a group of 18 healthy children and 10 children with autism by comparing

their effective connectivity estimated by direct directed transfer function method using new and old coefficients. Finally, to

show the efficiency of the algorithm we exploit the support vector machine method for classifying the dataset. We show

that there is a significant improvement in the results obtained from the proposed method.

Keywords Autism � Effective connectivity � eMVAR � ADALINE neural network � Volume conduction �
EEG

Introduction

The brain is one of the most developed systems in the body

on which a plethora of different studies have been per-

formed to identify its structure and functionality. Network

studies of brain connectivity have discovered attributes that

promote the segregation and integration of information

flow. Anatomical and functional segregation in the

brain refers to localizationism, the existence of specialized

interconnected neurons and brain areas, while functional

integration refers to the combination of specialized infor-

mation from distributed brain regions. The balance

between segregation and integration is essential for neural

systems to have flexible cognition and behavior, miscon-

duct to this ability is a common feature of several neu-

ropsychiatric disorders. (Sporns and Tononi 2007; Sporns

2013; Lord 2017).
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Studying brain connectivity and dynamics provides an

important tool for understanding brain networks through

different brain states, and their potential association with

various behavior. In general, brain connectivity is divided

into three categories: (1) Structural connectivity refers to

the neural fiber network and the structural integrity of tracts

connecting different brain areas, (2) Functional connec-

tivity contains statistical dependencies of the undirected

brain activity across various regions, and 3. Effective

connectivity includes causal and directed connectivity of

brain activity. Investigating the connection between the

activity of different brain regions using effective and

functional connectivity is a challenging and developing

topic in neuroscience which give researchers the ability to

obtain broad knowledge and information regarding brain

activity and provides better predicting, diagnostic or ther-

apeutic approaches for neurological disorders like Autism,

Alzheimer, Parkinson, schizophrenia, and epilepsy.

Although different approaches are used to assess brain

connectivity, we will focus on analyses of directed func-

tional connectivity (i.e., effective connectivity). This cat-

egory of connectivity can be computed using several

methods including: directly from signals, i.e., data-driven,

like Granger Causality (GC), or based on a model speci-

fying the causal links, i.e., model-based, like dynamic

causal modeling (DCM) and structural equation modeling

(SEM) (Sakkalis 2011; Friston 2011; He 2019).

Granger causality (GC) is a method based on the sta-

tistical concept of causality where yjðnÞ causes yiðnÞ if the
past information of yjðnÞ can improve the prediction yiðnÞ,
which is used for connectivity estimation. Analyzing neu-

rophysiological signals using MVAR models based on the

Granger causality concept (Granger 1969) is very popular

and practical. Using this methodology, we can model the

interaction between EEG channels as linear differential

equations in which the direction can define the inter-

channel (directed or undirected) information flow (Astolfi

2008). Directed transfer function (DTF) (Kaminski 1991),

direct directed transfer function (dDTF) (Korzeniewska

2003), partial directed coherence (PDC) (Baccalá 2001)

and generalized PDC (GPDC) (Baccalá 2007) techniques

are popular connectivity measures derived from MVAR

models. A controversial issue in MVAR-based causality

analysis is that the model only reports the lagged effects,

i.e., previous influences of a time series on another set,

while instantaneous effects, considered as the volume

conduction, are not described with any coefficient in the

model.

Volume conduction (VC) arises from the distribution of

electrical fields for EEG and magnetic fields for MEG data.

In essence, instead of exclusively measuring the neigh-

boring brain regions, each channel includes linear

combinations of simultaneous activity of the brain and non-

brain electrical resources whose activity is widely volume

conducted to the scalp through overlapping patterns

(Nunez 1997). Acquired signals from electrodes may

demonstrate spurious effective and functional connectivity

due to volume conduction even among non-interactive

brain sources (Brunner 2016; Van de Steen 2019). Several

methods have been proposed for removing the effect of

volume conduction in estimating brain connectivity using

signals collected from multi-channel EEG recordings.

Multiple studies have proposed investigating brain con-

nectivity in source space which includes assessing under-

lying nerve sources from head EEG signals (Gómez-

Herrero 2008; Schoffelen 2009; Haufe 2013). Nonetheless,

neural source determination from EEG signals is an ill-

posed inverse problem that does not have any unique

solution without initial knowledge or strong statistical

assumptions so the accurate estimation of the connectivity

network is not guaranteed (Baillet 2001). Moreover, the

inverse problem does not remove the mixing effects com-

pletely and hence spatial leakage will still be present in the

source space especially for those that are close to each

other (Van de Steen 2019).

Autism spectrum disorder (ASD) is a heterogeneous

group of neurodevelopmental disorders that influences the

normal process of brain development which may affect

social skills and communication. Individuals suffering

from ASD have difficulties in social interactions, as well as

verbal and nonverbal communications. Moreover, they

may have limited interests and repetitive behaviors on

certain occasions. One of the most effective biomarkers for

investigating this disorder is brain connectivity. To be

specific, functional and effective connectivity are powerful

in gaining qualitatively different results which are signifi-

cant in giving us intuition about how the brain connections

are changed in autism (O’Rielly 2017; Vissers 2012; Wass

2011; Coben 2013; Maximo 2014; Ghahari 2020). Previous

studies on brain connectivity in ASD individuals demon-

strate various results, which is due to the different imaging

modalities, measurement techniques, paradigms, partici-

pant characteristics, definitions, and theoretical models for

(re)constructing brain networks to test a given hypothesis.

Although in many studies, functional Magnetic Resonance

Imaging (fMRI) has been used for investigating connec-

tivity, nonetheless, due to rich temporal dynamics, Elec-

troencephalogram (EEG) or Magnetoencephalogram

(MEG) are preferred. Both fMRI and MEG are so sensitive

to motion artifacts and mostly impractical for children with

repetitive and stereotyped behavior (Mohammad-Reza-

zadeh 2016). Initial findings in autism using MRI analysis

propose the hypothesis of overall deficiency in connection

in the neural network based on reduction in blood oxy-

genation level-dependent (BOLD) signal correlations
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among several cortical regions in adults with ASDs during

comprehension-related experiences (Just 2004). Nonethe-

less, many other studies claimed more complex patterns, a

mixture of hypo- and hyper connectivity, caused due to the

distance between the brain regions. (For review, refer to

Hull 2017; O’Rielly 2017; Vissers 2012; Mash 2017; Rane

2015).

While, based on previous works, ASDs are claimed to

be characterized by reduction in long-range connectivity

especially between frontal lobe and other brain regions;

however, in some studies, predominantly supported by

structural and functional MRI (Visser 2012; Wass 2011;

Müller 2011), increase in short-range connectivity, local

connectivity, has also been reported (Belmonte 2004;

Courchesne 2005).

On the other hand, in EEG/MEG literature, both local

hypo and hyper-connectivity are shown through coherence

analyses. Many studies reported reduced long-range

coherence patterns in resting-state EEG of ASD subjects,

yet significantly weaker connectivity between the frontal

lobe and other cortical regions (Murias 2007; Coben 2008;

Barttfeld 2011). Specifically, Duffy (2012) showed that

within the beta band, there is weaker connectivity in left

frontal–temporal, frontoparietal, and occipitofrontal

regions which are similar to what has been resulted from

multiple fMRI studies in resting state (Koshina 2008; Just

2004; Sato 2012). To put all these findings into perspective,

weakened long-range connectivity between the frontal lobe

and other cortical regions is suggested. This is not a sur-

prising pattern for ASDs, because the frontal lobe plays an

important role in verbal, cognitive, social, and interactive

functions (Courchesne 2005). Findings on short-range

connectivity in EEG/MEG literature are inconsistent. Both

intrahemispheric and interhemispheric interactions have

been shown to be decreased in delta and theta bands in

children with autism compared to healthy children (Coben

2008), while weaker connectivity between frontal and other

cortical regions has been reported in both the delta fre-

quency band (Barttfeld 2011) and alpha frequency band in

Murias (2007). On the contrary, in the delta frequency

band, increased short-range connections have been found

in left frontal (Barttfeld 2011), and within frontal in the

theta band (Murias 2007) in ASD individuals compared to

healthy subjects.

The hypothesis of long-range versus short-range con-

nectivity remains elusive, especially in EEG/MEG, but

confirm that in people with ASD, brain regions connect in a

different way than they do in healthy people and it is

characterized by abnormal patterns of brain connectivity.

These methods have great amounts of time separability, in

millisecond scale, however, due to the lack of spatial res-

olution for recognizing the sources close together and also,

the effect of volume conduction on the signals recorded

from close electrodes (Srinivasan 2007) findings on short

range connection patterns resulted from EEG studies are

not consistent enough. In previous studies on these

modalities, the long-range underconnectivity approach has

been well proven, but local over connectivity results are

inconsistent and should be investigated more in detail

(Mash 2017; O’Reilly 2017).

In this study, we aim to present a framework to reduce

the zero-lagged causality (i.e., volume conduction effects)

based on MVAR models. We apply our method to a the-

oretical simulated example and compare their estimated

coefficients before and after including the zero-lagged

term. Then, we present an application of the framework to

a resting state EEG dataset that entail utilization of both

coefficients and investigation of different aspects of causal

information transfer based on dDTF. Finally, we classify

our dataset into two group of typically developed individ-

uals and children with autism.

Method

Multivariate Autoregressive models are a proper tool for

studying physiological time series like EEG.

Y nð Þ ¼
Xp

k¼1

A kð ÞY n� kð Þ þ U nð Þ ð1Þ

where A(k) describes the lagged interactions among

observed time series and p ¼ 1; . . .P is the model order,

defining the maximum lag used for measuring the inter-

actions. The input U(n), is assumed to be composed of

white and uncorrelated noise. Since MVAR is strictly a

causal model, it only reports the lagged effects, namely

previous influences of a time series on another set, while

instantaneous effects which are considered as the volume

conduction (effect of yjðnÞ on yi nð Þare not described with

any coefficient in the model. The problem here is any zero-

lag correlations in Yk cannot be described by the MVAR

model because A(k) is defined only for positive lags (k = 0

is not considered in the Eq. 1) As a result of ignoring

instantaneous interactions in the model, spurious connec-

tivity is produced in the model which may cause misin-

terpretation in the results (Lutkepohl 1993; Faes 2010). To

encounter this issue Faes and Nollo (2010) suggested

exploiting an extended version of MVAR which includes

instantaneous interactions. Equations 2 demonstrates the

extended MVAR (eMVAR) model.

Y nð Þ ¼
Xp

k¼0

B kð ÞY n� kð Þ þW nð Þ ð2Þ

where Y(n)= ½y1ðnÞ; . . .; yMðnÞ�T is the observed time series,

p the model order,, B(k) areM 9 M coefficients matrices in
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which bij kð Þ presents the dependence of yjðn� kÞ onyiðnÞ;
(i, j = 1,…,M; k = 0, 1,…,p) and W=½W1; . . .;WM�T is an

innovative term that is composed of white and independent

scalar processes. As it is shown, in contrast with (1), in (2)

k takes the value 0 as well, which cause the model to

account the instantaneous effect from yjðnÞ to yiðnÞ in the

form of the coefficients bij 0ð Þ of the matrix B(0). Below we

can see the relationship between these two models:

Y nð Þ ¼
Xp

k¼1

LB kð ÞY n� kð Þ þ LW nð Þ

A kð Þ ¼ LB kð Þ k� 1

U nð Þ ¼ LW nð Þ
L ¼ I� B 0ð Þ�1

ð3Þ

where I is the M 9 M identity matrix, L results from

Cholesky decomposition method applied to the covariance

of U(n) and B(0) is estimated using L such that,

B 0ð Þ ¼ I � L�1. We should take this into consideration

that, when B(0) = 0, instantaneous causality is missing and

remained causality is equal to the lagged causality while,

when B(0) is not only extended causality differs from

lagged causality, but also lagged causality estimated from

Eq. (3) differs from lagged causality estimated from the

model (1) because the inclusion of instantaneous effects in

the MVAR model changes also the values of the lagged

effects (Bk 6¼ Ak for k[ 0) (Faes 2010,2013).

In this study, a novel method is proposed for estimating

the B(0) term describing the volume conduction effect.

Since MVAR is a linear model, we exploit the Adaptive

Linear Neural Network (ADALINE) due to having a linear

transfer function aiming to reduce the dependency between

the channels. To obtain the instantaneous effects, we set the

input and output of the ADALINE the same and equal to

the EEG signal and for attaining the instantaneous effects

of volume conduction, weights in each row (channel) of the

input which was linked to the corresponding channel in the

output was set to zero (wi;j ¼ 0 for i ¼ j). Then we tried to

find the remaining weights which were actually the inter-

channel influences. The bias was set to zero. The resulting

matrix which is a square matrix with diagonal elements

equal to zero is, in fact, the B0 volume conduction matrix

which shows the instantaneous effect. Now in practice after

estimating A kð Þ from the strictly causal MVAR model (1)

we should solve the instantaneous model by ADALINE

network to estimate B 0ð Þ then using the following equa-

tion, we can calculate the B(k) coefficients which describes

only the lagged interactions:

Y nð Þ ¼
Xp

k¼1

L�1A kð ÞY n� kð Þ þW nð Þ ð4Þ

B kð Þ ¼ L�1A kð Þ ¼ I� B 0ð Þ½ �A kð Þ ð5Þ

By removing B(0) from AR coefficients of the observed

time series from Y(n) channels, we aim to reduce the

dependency between the channels resulting in improving

the prediction of sources parameters via the sensor level.

We can implement this procedure to connectivity measures

based on multivariate autoregressive (MVAR) modeling.

Here in this study, we estimate and compare the effective

connectivity via the dDTF method using both A(k) and

B(k).

DTF determines the interrelations between two signals

with respect to all other existing signals in a system. As it is

shown on Eq. 6. it is defined using the transfer matrix, Hij,

and represents the connection between the jth input and the

ith output of the system (Kaminski 2014):

c2ij fð Þ ¼
Hij fð Þ
�� ��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 Him fð Þj j2

q ð6Þ

where H fð Þ ¼ ½I � Aðf Þ��1 ¼ Aðf Þ�1
is a M �M transfer

matrix. However, DTF demonstrates both direct and indi-

rect activity propagation within the whole system, hence to

obtain, only direct propagations, dDTF was proposed. To

remove the dependence of the denominator of DTF on the

frequency and allowing more interpretable comparison of

information flow at different frequencies, full frequency

Directed Transfer Function (ffDTF) was defined (Korze-

niewska 2003).

g2ij fð Þ ¼
Hij fð Þ
�� ��2

P
f

PM
k¼1 Hik fð Þj j2

ð7Þ

Partial coherence (pCoh) is also given by a formula on

Eq. 8, in which Sðf Þ is the Spectral matrix (Bendat and

Piersol 1986):

pcoh ¼
cSij fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cSii fð ÞcSjj fð Þ
q

Ŝ fð Þ ¼ S fð Þ�1

ð8Þ

Finally, dDTF is obtained from multiplying ffDTF by

pCoh (Korzeniewska 2003):

d2ij fð Þ ¼ g2ij fð ÞP2
ij fð Þ ð9Þ

Figure 1, demonstrates the flowchart of the algorithm

procedure.
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Results

Theoretical simulation

In this section to provide better observation and under-

standing of the proposed method we describe the analysis

of AR coefficient for a simple theoretical example to show

how the instantaneous effect impacts the measurements in

the sensor space. Then, we investigate two non-interacting

sources with a simulated signal of length 10,000 presented

below in Eqs. (10) and (11) in which, the time series X

represent the source signals. The coefficient matrix is the

AR coefficient and the d values are uncorrelated white

noise. Y represents the sensor signals produced by channels

in which the volume conduction effect is multiplied and the

model order p is set to 2.

X ¼
x1 nð Þ ¼ 0:9x1 n� 1ð Þ � 0:5x1 n� 2ð Þ þ d1 nð Þ
x2 nð Þ ¼ 0:7x2 n� 1ð Þ � 0:3x2 n� 2ð Þ þ d2 nð Þ

8
<

:

ð10Þ

Y ¼ y1 nð Þ ¼ 0:9x1 nð Þ � 0:3x2 nð Þ
y2 nð Þ ¼ 0:2x1 nð Þ þ 0:7x2 nð Þ

�
ð11Þ

In this order to demonstrating the efficiency of our

method, we estimated the AR coefficients both from

sources (X(t)) and from channels (Y(t)) based on Vieira

Morf, that represent the best estimation of coefficient, to

compare the results before and after including the zero-lag

term. Then, by estimating instantaneous effects (B0) using

ADALINE network and subtracting them from pre-ob-

tained coefficients (A(k)), new coefficients (B(k)) would be

determined. The results are shown in Tables 1 and 2. We

implemented the method ten times, with different random

initialization, and the results are shown by ‘‘mean ± s-

tandard deviation’’ of the estimations.

Table 1 contains the source-estimated coefficients of

both time series when there is no mixing effect. Our pro-

posed method has no significant effect on coefficients, and

both measurements show almost the same well-estimated

results. Table 2 illustrates the results when zero-lagged

terms are included, the mixing matrix multiplied in Y time

series, mapping signals from sources to channels. As it is

observable this instantaneous term alters the estimation of

the coefficients and lead to spurious connectivity between

two non-interacting sources. Using our proposed frame-

work, we tried to reduce zero-lagged effects from AR

coefficients acquired from mixed time series to mitigate the

dependency between them. The coefficients are zero in

both directions between the two sources x1 and x2 (A12-

= A21 = 0) while, the estimated values are larger than zero

between the two sensors y1 and y2, exploiting new method

moves this bidirectional interaction towards zero. Also, the

small value of SDs for both methods emphasize appropri-

ate repeatability of results.

After assessing the coefficients, we applied Frequency

Response Analysis (FRA) to graphing the dynamic

response of our results to see exactly how the magnitude

and phase response changes over a range of different fre-

quencies. We used frequency peak to compare the dis-

crepancy between the frequency responses of both sensor-

estimated coefficients with the originals to provide an ini-

tial assessment of the similarity. Figure 2, demonstrate the

comparison of FRA, as it has shown frequency peak of our

proposed method is closer to the frequency peak of the

original coefficients and provide a more reliable

estimation.

Dataset

In this study we use a dataset of children with ASD,

recorded by Dr. Coben and his team at Integrated Neuro-

science Services (INS). The dataset contains EEG signals

from 10 children suffering from autism and 18 typically

developed (TD) children. EEG was recorded with 19

electrodes according to the 10–20 standard with sampling

rate of 128 HZ in eyes-open resting state while individuals

are asked to try to keep their eyes on a cross sign on the

screen in front of them.

To reduce the computational load, we selected 9 sepa-

rate channels from different regions of the brain including:

Fig. 1 The flowchart of the algorithm procedure
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(F3, Fz, F4, C3, Cz, C4, P3, Pz, P4). As for data processing,

we used EEGLAB toolbox in MATLAB (Delorme 2004).

A high-pass filter with a cut-off frequency of 1 HZ is

applied to the data for baseline drift removal. Then the data

is cleaned by the ASR plugin and to attenuate the power

line noise (60 Hz), the Cleanline plugin was used. Then the

Independent Component Analysis (ICA) is used to remove

the EOG and EMG artifacts. MVAR model is fitted using

Vieira Morf algorithm. Akaike Information Criterion (AIC)

was also used for model order selection. We focused on

computation of effective connectivity, direct Directed

Transfer Function (dDTF) was computed from both

Table 1 Original and estimated source coefficients (from X time series) for the simulated model by proposed method for lag = 1, 2

Source coefficients Originals Estimated A(k) Estimated B(k) Originals Estimated A(k) Estimated B(k)

Lag = 1 Lag = 2

1 ? 2 0.9 0.8990 ± 0.0077 0.8993 ± 0.0079 - 0.5 - 0. 5012 ± 0.0075 - 0.5011 ± 0.0079

2 ? 1 0 0.0026 ± 0.0073 - 0.0031 ± 0.0191 0 0.0023 ± 0.0061 0.0036 ± 0.0074

1 ? 2 0 - 0.0040 ± 0.0072 - 0.0060 ± 0.0120 0 0.0010 ± 0.0067 0.0013 ± 0.0126

2 ? 2 0.7 0.6981 ± 0.0099 0.6980 ± 0.0103 - 0.3 - 0.2970 ± 0.0067 - 0.2973 ± 0.0065

Results of estimated coefficients are shown by mean ± standard deviation

Table 2 Original and estimated sensor coefficients (from Y time series) for the simulated model by proposed method for lag = 1, 2

Sensor coefficients Originals Estimated A(k) Estimated B(k) Originals Estimated A(k) Estimated B(k)

Lag = 1 Lag = 2

1 ? 1 0.9 0.8819 ± 0.0073 0.8830 ± 0.0071 - 0.5 - 0. 4826 ± 0.0084 - 0.4854 ± 0.0048

2 ? 1 0 0.0760 ± 0.0102 0.0116 ± 0.0259 0 - 0.0765 ± 0.0080 - 0.0487 ± 0.0114

1 ? 2 0 0.0390 ± 0.0057 - 0.0007 ± 0.0108 0 0. 0409 ± 0.0050 - 0.0188 ± 0.0066

2 ? 2 0.7 0.7144 ± 0.0090 0.7070 ± 0.0075 - 0.3 - 0.3141 ± 0.0059 - 0.3095 ± 0.0050

Results of estimated coefficients are shown by mean ± standard deviation

Fig. 2 Comparison of FRAs calculated from both estimated coefficients (A(k) and B(k)) and original coefficients
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A(k) and B(k) coefficients. Then, statistical significance of

estimated interactions was assessed based on the surrogate

data test by generating phase randomization (p-

value\ 0.05).

Group analysis

For group analysis, to compare the connectivity discrep-

ancy between two groups, average is taken from all sub-

jects with autism and healthy individuals. Here as an

exemplification, effective connectivity of three bands of

frequency (Delta, Theta and alpha) with both A(k) and

B(k) coefficients for two groups are illustrated in Figs. 3

and 4, respectively, in which A(k) coefficients are estimated

by strictly causal MVAR modeling and B(k) coefficients

are lagged coefficients for which the instantaneous effect, B

(0), is removed from the MVAR model estimating (A(k)).

We used BrainNet Viewer software for visualizations (Xia

2013).

In Figs. 3 and 4, brain regions are approximately

determined according to Kabdebon (2014), and to be more

observable and differentiable between two cases, the

thickness of the arrows corresponds to the intensity of

information flow. In Fig. 3, the effective connectivity of

children with autism using both A(k) and B(k) are

demonstrated. For children with autism, interactions based

on both coefficients have almost the same pattern, overall

connectivity decreased from Delta to Alpha band of fre-

quency. The intensity of connectivity in individuals with

autism is more concentrated in right lobe; they are mostly

directed from frontal lobe toward posterior (occipital,

temporal and parietal). While, long-range intra-hemi-

spheric connections in both coefficients are decreased

specially in left hemisphere, connectivity is increased in

frontal lobe in A(k). Interactions with A(k) coefficients is

significantly lower than their connectivity with B(k) coef-

ficients in alpha band.

Figure 4, illustrate the effective connectivity of typically

developed individuals using both A(k) and B(k). They have

almost the same pattern in each column, overall connec-

tivity decreased from Delta to Alpha band of frequency.

Connectivity based on A(k) coefficients are significantly

low, their values are close to zero. Nevertheless, with

B(k) coefficients connections are spread out all across the

head and show a symmetry connection. Overall connec-

tivity values in healthy children are weaker than their

autistic counterpart.

Classification

To investigate and evaluate extracted connectivity using

dDTF for both A(k) and B(k) coefficients (volume con-

duction is removed in B(k) using proposed method), we

applied support vector machine (SVM) with RBF kernel

function. Due to lacking enough subjects, we exploited

Leave One Out (LOO) approach for splitting train and test

dataset. Connectivity between channels and frequency have

been considered as features for classifier. Below in Table 3,

accuracy, sensitivity, specificity and precision are calcu-

lated for both A(k) and B(k) through confusion matrix. we

had improvement in dDTF classification with 96% accu-

racy using B(k) coefficients.

Discussion

Previous works on effective connectivity in autism have

mostly been relying on either model-based method, say

dynamic causal modeling (DCM), and structural equation

modeling (SEM)), or task-based methods (Wicker et al.

2008; Grezes et al. 2009; Sato et al. 2012; Shih et al. 2010).

However, these kinds of methods mainly rely on a prior

specification of the connectivity linkages meaning the

structural graph must be known in advance (Sakkalis

2011). Moreover, without having fundamental knowledge

of functional differences between individuals with ASD at

rest state, task-dependent changes in brain function are

difficult to describe (Wang 2013). In this study we used

MVAR based connectivity analysis on resting state EEG

data. MVAR based measures are data-driven techniques

that do not assume any specific underlying model or prior

knowledge but are influenced by volume conduction and

their straight application to sensor EEG data can lead to the

detection of spurious connections. Although in several

works which have suggested studying at source space,

some researchers have tried to reduce the undesired influ-

ence of VC effects on the estimated connectivity networks

by solving the EEG/MEG inverse problem and estimating

the connectivity among the estimated brain sources; how-

ever, due to the ill-posed nature of the EEG/MEG inverse

problem, the accurate estimation of the connectivity net-

work is not guaranteed. Mixing effects caused by volume

conduction can also occur in the source space (Van de

Steen 2019). Results derived from MVAR model coeffi-

cients do not include zero-phase terms as a result of which,

neglecting instantaneous effects by the model can affect the

correlation structure of the model residuals, which are

normally assumed to be uncorrelated and also the lagged

dependencies (Lutkepohl 1993). For overcoming this

issues eMVAR modeling was proposed (Faes 2010). The
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basic problem in eMVAR method is that the instantaneous

model may suffer from lack of identifiability, being related

to the zero-lag covariance structure of the observed data. In

the other words, there may be several combinations of

L (or, equivalently, B (0)) and W(n) which result in the

same U(n), and thus describe the observed data

Y(n) equally well. The easiest way to solve this ambiguity

is to impose a priori the structure of instantaneous causa-

tion, i.e., to set the direction (though not the strength) of the

instantaneous transfer paths. Nevertheless, if similar prior

knowledge is not available, as happens e.g., in the analysis

of EEG data, other ways have to be followed to overcome

problem of identifiability of the extended model (Faes

2013). To get the better of this, we proposed a novel

method to estimate zero lag effects using ADALINE that

only needs to fit the time series in this network. We showed

that we can improve the connectivity results by reducing

the channel dependencies and undesired effects of instan-

taneous correlations between time series.

Fig. 3 Effective connectivity

representation of band

frequencies (Delta, Theta,

Alpha) with A(k), right column,

and B(k), left column,

coefficients of ASDs (thickness

of the arrows corresponds to the

intensity of information flow)
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Evaluating effective connectivity in both TD and ASD

groups in the resting state shows a weaker left frontal to

temporal-parietal-occipital connectivity in children with

ASD cases compared to control subjects. This finding is

aligned with results from several fMRI studies (Just 2004;

Koshino 2008; Sato 2012) and EEG study (Duffy 2012) in

resting state and converge to suggest weakened long range

connectivity between the frontal lobe and other cortical

regions. Weaker frontal connectivity based on

Fig. 4 Effective connectivity

representation of band

frequencies (Delta, Theta,

Alpha) with A(k), right column,

and B(k), left column,

coefficients of TDs (thickness of

the arrows corresponds to the

intensity of information flow)

Table 3 Classification results for A(k) and B(k) coefficients (%)

dDTF Accuracy Sensitivity Specificity Precision

A(k) 88 80 94 88.8

B(k) 96 90 100 100
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B(k) coefficients is correspondent with (Coben et al. 2008;

Dawson et al. 1995), also intra-hemispheric connections in

children with autism compared to healthy individuals

reduced which is compatible with (Coben 2008; Elhabashy

2015; Lushchekina 2016).

In conclusion, evaluating effective connectivity indi-

cates that ASD is a disorder characterized by abnormal

patterns of brain interaction. the proposed method for the

assessment of causality has been shown to be useful in

practical analysis, for counteracting the problems arising

from the presence of instantaneous effects in multiple

interacting time series. Our results are compatible with

previous studies indicating that brain activity in frontal, is

poorly coordinated in individuals with ASD compared to

healthy subjects. The way we used our proposed method

and how it affects the results is shown and described under

the simulation section. Moreover, for performance evalu-

ation, we can see that our proposed method achieves 96%

accuracy in SVM classification.
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