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Abstract
Recent achievements in evaluating the residual consciousness of patients with disorders of consciousness (DOCs) have

demonstrated that spontaneous or evoked electroencephalography (EEG) could be used to improve consciousness state

diagnostic classification. Recent studies showed that the EEG signal of the task-state could better characterize the con-

scious state and cognitive ability of the brain, but it has rarely been used in consciousness assessment. A cue-guide motor

task experiment was designed, and task-state EEG were collected from 18 patients with unresponsive wakefulness syn-

drome (UWS), 29 patients in a minimally conscious state (MCS), and 19 healthy controls. To obtain the markers of residual

motor function in patients with DOC, the event-related potential (ERP), scalp topography, and time–frequency maps were

analyzed. Then the coherence (COH) and debiased weighted phase lag index (dwPLI) networks in the delta, theta, alpha,

beta, and gamma bands were constructed, and the correlations of network properties and JFK Coma Recovery Scale-

Revised (CRS-R) motor function scores were calculated. The results showed that there was an obvious readiness potential

(RP) at the Cz position during the motor preparation process in the MCS group, but no RP was observed in the UWS group.

Moreover, the node degree properties of the COH network in the theta and alpha bands and the global efficiency properties

of the dwPLI network in the theta band were significantly greater in the MCS group compared to the UWS group. The

above network properties and CRS-R motor function scores showed a strong linear correlation. These findings demon-

strated that the brain network properties of task-state EEG could be markers of residual motor function of DOC patients.
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Introduction

Disorders of consciousness (DOCs), caused by severe brain

injury or nervous system disease, are abnormal states of

consciousness (Giacino et al. 2014; Schiff and Plum 2000).

According to the current ‘gold standard’ behavioral score,

the JFK Coma Recovery Scale-Revised (CRS-R) (Giacino

et al. 2004), patients with DOC are subdivided into those

with unresponsive wakefulness syndrome (UWS) (Laureys

et al. 2010) and those in a minimally conscious state

(MCS) (Giacino et al. 2002). Although the behavioral score

evaluates the patient from multiple dimensions, including

hearing, vision, movement, communication, and arousal,

the assessment is still susceptible to the subjective feelings

of the attending doctors, leading to a high rate of misdi-

agnosis (Schnakers et al. 2009). Hence, searching for

objective biomarkers related to the state of consciousness is

of great significance to the assessment of patients with

DOC.

Recently, electroencephalography (EEG) and functional

magnetic resonance imaging (fMRI) have been adopted in

some studies to assess the residual awareness of DOC

patients (Malagurski et al. 2019; Bai et al. 2017a, 2020).

Although fMRI has excellent spatial resolution, its high

cost and unsuitability for patients undergoing cranial repair

have hindered its clinical application. EEG has been

accepted by most DOC researchers because of its high time

resolution, easy operation, and low price. The resting state

(Naro et al. 2018, 2016; Stefan et al. 2018), sleep (Wis-

lowska et al. 2017; Mouthon et al. 2016; Rossi Sebastiano

et al. 2018), event-related potentials (ERPs) (Li et al. 2015;

Risetti et al. 2013; Rohaut et al. 2015), and TMS (Ragaz-

zoni et al. 2013; Bai et al. 2017b; Bodart et al. 2017) EEG

of DOC patients have been widely studied to extract

characteristics for consciousness state assessment. But the

oscillations in these EEG were spontaneous or evoked and

did not correspond to cognitive processes. Compared to

these non-task-state EEG, the brain neural activity corre-

sponding to specific tasks could better reflect the residual

consciousness of DOC patients. However, as far as we

know, there has been no research on the task-state EEG of

DOC patients.

Controlling voluntary movements is an important

function of the brain and plays an important role in the

assessment of the state of consciousness. Usually, a

readiness potential (RP) can be recorded at the electrodes

on frontal and central area prior to action (Kornhuber and

Deecke 1965; Shibasaki and Hallett 2006). Also, during

motor processes, there are event-related synchronization

(ERS) and event-related desynchronization (ERD) phe-

nomena (Pfurtscheller et al. 1999), as well as changes in

the brain function network (Wisniewski et al. 2016;

Nguyen et al. 2014). Relevant studies showed that some

patients with UWS could attempt to complete some motor

tasks (Cruse et al. 2011; Pan et al. 2020; Gui et al. 2020),

but it was difficult for attending doctors to observe

behavioral responses. Fortunately, the corresponding neu-

ral activities in the cerebral cortex might be captured by

EEG. Hence, searching for task-related neural markers

based on EEG is of great significance for the assessment of

DOC patients’ motor function.

In this study, a cue-guide motor task experimental

paradigm for DOC patients was designed, and the EEG

data of recruited participants were recorded synchronously.

To obtain the neural markers used for motor function

assessment, the RP and scalp topography were plotted and

the values of time–frequency during motor preparation

were calculated. Then, the brain networks of coherence

(COH) and debiased weighted phase lag index (dwPLI)

were constructed. Finally, the correlations of network

properties and CRS-R motor function scores were

analyzed.

Materials and methods

Patients

Forty-seven hospitalized DOC patients (18 females,

49.6 ± 14.5 years old) and 19 healthy subjects (7 females,

45.5 ± 13.9 years old, control group) were recruited in this

study. The demographics and clinical data of recruited

patients are shown in Table 1. The EEG data were col-

lected in the Fifth Affiliated Hospital of Zhengzhou

University. Before each experiment, the residual con-

sciousness of each patient was assessed with CRS-R

(Giacino et al. 2004) by a skilled physician. To ensure the

consistency of the evaluation results, all the patients were

evaluated by the same physician. The patients were further

divided into an MCS group (29 patients, 6 females,

48.1 ± 13.3 years old) and a UWS group (18 patients, 12

females, 52.1 ± 16.3 years old). None of the patients had

aneurysm clips, pacemakers, other implanted devices, or

other drugs that might influence the EEG data. Each

patient’s legal representative had signed an informed con-

sent form. This study was approved by the ethics com-

mittee of the Fifth Affiliated Hospital of Zhengzhou

University.

Experimental design

The experimental paradigm is shown in Fig. 1. The block

consisted of the experiment guide and the motor task trials.

There was a 10 s interval between these two parts. All the

cues were presented with auditory information and the
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Table 1 The demographics and clinical data of recruited DOC patients

Patients Clinical diagnosis Gender/age Etiology Days since injury CRS-R sub-scores CRS-R total scores

P1 MCS F/56 Hemorrhage 76 2 3 3 0 0 2 10

P2 MCS F/56 Anoxia 70 3 3 3 1 1 2 13

P3 MCS M/35 Anoxia 188 1 2 2 1 0 2 8

P4 MCS F/56 Hemorrhage 111 3 3 3 0 1 2 12

P5 MCS F/71 Hemorrhage 57 1 3 3 1 0 2 10

P6 MCS F/67 Hemorrhage 113 1 3 3 0 0 2 9

P7 MCS M/66 Hemorrhage 77 2 3 3 1 0 1 10

P8 MCS M/54 Hemorrhage 153 2 3 2 1 0 1 9

P9 MCS M/38 Trauma 275 1 3 3 2 0 2 11

P10 MCS M/44 Hemorrhage 124 1 3 3 1 0 1 9

P11 MCS M/38 Trauma 75 2 3 5 1 0 2 13

P12 MCS M/48 Hemorrhage 63 1 3 2 1 0 1 8

P13 MCS M/31 Trauma 134 3 0 5 1 1 2 12

P14 MCS M/33 Trauma 111 3 3 2 1 1 2 12

P15 MCS M/48 Hemorrhage 80 1 3 2 1 0 1 8

P16 MCS F/30 Anoxia 129 4 4 5 2 2 3 20

P17 MCS M/48 Trauma 98 2 2 2 1 0 2 9

P18 MCS M/33 Trauma 138 4 3 2 1 2 3 15

P19 MCS M/48 Trauma 98 2 3 3 1 0 2 11

P20 MCS M/31 Trauma 166 3 3 5 1 1 2 15

P21 MCS M/64 Hemorrhage 108 3 4 3 2 1 3 16

P22 MCS M/37 Anoxia 740 1 0 3 1 0 2 7

P23 MCS M/38 Trauma 236 1 3 3 1 0 2 10

P24 MCS M/64 Hemorrhage 108 3 4 3 2 1 3 16

P25 MCS M/33 Trauma 180 4 3 2 1 2 3 15

P26 MCS M/64 Trauma 32 1 3 3 1 0 2 10

P27 MCS M/64 Hemorrhage 120 3 5 3 2 1 3 17

P28 MCS M/38 Trauma 257 1 3 3 1 0 2 10

P29 MCS M/62 Trauma 42 1 3 2 1 0 2 9

P30 UWS F/49 Trauma 68 1 1 2 1 0 1 6

P31 UWS F/74 Trauma 75 1 0 2 0 0 2 5

P32 UWS F/31 Anoxia 61 1 0 2 0 0 2 5

P33 UWS M/72 Anoxia 135 1 0 2 1 0 1 5

P34 UWS M/65 Trauma 38 0 0 1 1 0 1 3

P35 UWS M/37 Anoxia 730 1 0 2 1 0 2 6

P36 UWS M/72 Anoxia 107 1 0 2 1 0 1 5

P37 UWS F/45 Trauma 36 0 1 2 0 0 1 4

P38 UWS F/31 Anoxia 77 1 0 2 0 0 2 5

P39 UWS F/58 Hemorrhage 104 1 1 0 0 0 2 4

P40 UWS F/58 Hemorrhage 120 1 1 2 0 0 2 6

P41 UWS F/60 Trauma 330 1 0 2 1 0 2 6

P42 UWS F/31 Anoxia 61 1 0 2 0 0 2 5

P43 UWS M/65 Trauma 60 0 0 2 1 0 2 5

P44 UWS F/64 Hemorrhage 91 0 0 2 1 0 1 4

P45 UWS M/47 Trauma 70 0 0 2 0 0 1 3

P46 UWS F/58 Hemorrhage 146 1 1 2 0 0 2 6
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patients wore a headset during the experiment. In the

experiment guide stage, the subjects were informed of the

experiment tasks and precautions. In the motor task stage,

15 trials were played sequentially. At the beginning of each

trial, the subject heard a voice say, ‘raise your left hand,’

or, ‘raise your right hand’ (the choice of left or right hand

was based on the clinician’s recommendation). Then, 5 s

was allotted for the subject to perform the motor task. This

was followed by a voice saying ‘rest’, and the subject had

15 s rest time. Each subject completed two blocks of the

experiment, so 30 trials were completed by each subject.

The subject’s eyes keep open during the experiment.

Data recording and pre-processing

In the experiment, the data were collected with a

29-channel EEG recorder (Nicolet EEG V32, Natus, Uni-

ted States) and three expansion channels (two marker

channels and one EMG channel). The following channels

were selected: Fp1, Fp2, FC3, FC4, CP3, CP4, Fz, Cz, Pz,

FCz, F3, F4, C3, C4, P3, P4, FT7, FT8, F7, F8, T3, T4, T5,

T6, TP7, TP8, O1, O2, and Oz, and the channel positions

were consistent with the International 10–20 system. The

linked ears reference was used as the EEG data reference

electrode. The signals were notch filtered at 50 Hz and the

sampling rate was set to 1000 Hz. During the data

recording process, the impedance of all electrodes was kept

below 5 kX. The EMG were recorded for all subjects, but

the patients did not produce effective limb movement, so

the EMG data of all the patients were excluded.

To obtain motor onset time, the EMG data of the control

group were analyzed. With a zero-phase shift bandpass

filter, the EMG data were first filtered by cut-off frequen-

cies of 6 and 50 Hz. Then, the energy of the filtered data

was calculated, and the motor onset time was obtained by

choosing a proper threshold (Hu et al. 2017).

EEG data preprocessing was performed using MATLAB

and the EEGLAB toolbox (Delorme and Makeig 2004).

First, EEG data were resampled to 500 Hz and filtered with

a zero-phase shift bandpass filter at 0.1 to 45 Hz. Then, the

bad data segments were removed manually, and bad

channels were replaced with the average of nearby chan-

nels. Independent component analysis (ICA) was used to

reject artifacts (EMG, EOG, and electrocardiogram) (Jung

et al. 2000). By observing the temporal and spatial char-

acteristics of the components, these components were

removed manually. The preprocessed EEG were re-refer-

enced to the reference electrode standardization technique

(REST) (Yao 2001) and segmented to 10 s epochs (5 s

before and after the audio cue). The amplitudes of epochs

that exceeded [-100, 100] lV were excluded. Finally,

around 26 trials were reserved for each subject.

Data analysis

Reaction times

To get the reaction times of the control group, the time of

each trial from audio cue to motor onset was calculated.

Through this distribution, the motor onset time of the

control group was estimated.

Table 1 (continued)

Patients Clinical diagnosis Gender/age Etiology Days since injury CRS-R sub-scores CRS-R total scores

P47 UWS F/21 Anoxia 171 1 0 2 1 0 2 6

M male, F female. Six CRS-R sub-scores indicate the assessment of auditory, visual, motor, verbal, and communication functions, and arousal.

None of the patients showed obvious behavioral responses during EEG data recording

Fig. 1 Illustration of the cue-

guide motor task experimental

design
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Event-related potential analysis

Usually, RPs are obtained with respect to motor onset

(Russo et al. 2017). However, since the patients did not

show obvious movement, it was difficult to identify their

motor onset. In this study, the RPs were averaged with

respect to the audio cue. Hence, the RPs obtained in this

study are different from those in related literature. How-

ever, the results still showed slow rising waves and similar

spatial distribution. All the cleaned trials of each subject

were averaged, and the baseline window was set from -

0.2 s to 0 s before the audio cue. To observe the spatial

characteristics of RP, scalp maps were plotted.

Event-related desynchronization

Event-related spectral perturbation (ERSP) was calculated

by wavelet packet transform for ERD/ERS analysis

between 1 and 40 Hz and the time range of - 2 s to 5 s.

The Cz electrode’s ERSP values were averaged for each

group.

Construction of brain networks

Spectral coherence

Spectral coherence measures the correlation of two signals

in the frequency domain (Pereda et al. 2005), and its for-

mula is as follows:

Cohxy ¼
Pxy

pxxpyy

�
�
�
�

�
�
�
�

where Pxy is the cross-spectral density between two neural

signals at electrodes x and y, and Pxx and Pyy are the auto-

spectral densities for electrodes x and y.

Debiased weighted phase lag index

The weighted phase lag index measures angle differences

based on their distance from the real axis. Its formula is as

follows:

wPLIxy¼
n�1

Pn
t¼1 imagðSxytÞ

�
�

�
�sgnðimagðSxytÞÞ

n�1
Pn

t¼1 imagðSxytÞ
�
�

�
�

where imag(Sxyt) indicates the imaginary part of the cross-

spectral from electrodes x and y, and sgn indicates the sign

(–1 for negative values, ? 1 for positive values, and 0 for

values equal to zero). The dwPLI of phase relationships is

an estimator of scalp-level connectivity that is more robust

and partially invariant to volume conduction in comparison

to other estimators (Peraza et al. 2012).

In the present study, the spectral COH and dwPLI

measures were computed to estimate the functional con-

nectivity between electrodes (Vinck et al. 2011) using the

FieldTrip toolbox in MATLAB (Oostenveld et al. 2011).

The COH and dwPLI networks were constructed in delta

(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz), and gamma (30–45 Hz) bands. For each band,

35% of the connectivity matrix was set to one, and other

values were set to zero according to the functional con-

nection strength. Then, all the trials of each subject were

averaged, resulting in the averaged value of the COH and

dwPLI connectivity matrices for each subject.

Brain network measures

Two network measures, degree and global efficiency (La-

tora and Marchiori 2001), were used to explore the prop-

erties corresponding to information processing in the

human brain network. Brain-network measurement algo-

rithms were implemented by the Brain Connectivity

Toolbox (Rubinov and Sporns 2010).

Statistical analysis

For the node degree value of each channel analysis, a two-

tailed t-test was performed at each channel between any

two groups. To reduce the false positive rate for multiple

comparisons, statistical tests were corrected with the

BHFDR method (Benjamini and Hochberg 1995). When

testing the significant changes of the COH and dwPLI

network properties among the UWS, MCS, and control

groups, ANOVA was applied. Post hoc analysis was per-

formed between any two groups. To assess the relation-

ships between patients’ behavioral score and network

properties, Pearson’s correlation coefficients between CRS-

R motor function scores and network properties were

calculated.

Results

Event-related potential results

Figure 2a shows the movement onset distribution of all the

subjects in the control group. The distribution curve

reached the peak at about 1.1 s after the audio cue. Fig-

ure 2b shows the grand average ERP waveforms of the Cz

channel. The control group showed a slowly rising negative

potential 0.5 s to 1.3 s after the audio cue, but the wave-

form was influenced by the audio evoked potential. Simi-

larly, patients in the MCS group showed an RP-like

potential 1.8 s to 2.6 s after audio, which is consistent with

the RP waveform reported in the relevant literature (Russo
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et al. 2017; Schurger et al. 2021). However, the RP-like

potential obtained in this study lasted for a shorter time.

This is because the epochs were extracted based on the

audio cue onset rather than the classical onset of the

movement. No RP-like potential was found in the UWS

group.

To verify that the RP-like potential was truly an RP and

reflected the motor preparation process, the ERP’s scalp

topography and the time–frequency map were further

analyzed. Figure 2c shows the grand average scalp topog-

raphy sequence of ERP from 0 to 3 s. In the control group,

the scalp topography showed a negative deflection above

the frontal-parietal lobe from 0.9 s to 1.3 s. The patients in

the MCS group showed the same results above the frontal-

parietal lobe from 2.3 s to 2.5 s. These spatially distributed

characteristics of scalp topography are also consistent with

Fig. 2 The results of ERP analysis for UWS, MCS, and control groups. a Movement onset distribution of subjects in control group. b Grand

average ERP waveforms of Cz channel. c Scalp topography sequence of ERP. d Time–frequency maps of Cz channel
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the RP (Schmidt et al. 2016). The above phenomenon did

not appear in the UWS group. Figure 2d shows the grand

average time–frequency map of the Cz channel. The con-

trol group has a significant power decrease 1 s after the

audio cue in the alpha and beta bands. The MCS group also

had a weak low-alpha band power reduction after the audio

cue. The results are consistent with the ERD phenomenon

reported in the relevant literatures (Wang et al. 2020;

Mohseni et al. 2020). The UWS group did not exhibit the

ERD phenomenon after the audio cue. In summary, RP was

observed in the MCS group but not in the UWS group.

COH networks

The scalp distributions of the COH network node degree

value in the delta, theta, alpha, beta, and gamma bands are

illustrated in Fig. 3a. In the theta and alpha bands, the

control group had a higher node degree value in the central

area of the frontal lobe. The MCS group had a higher

degree of nodal value in the right area of the frontal lobe,

but the UWS group did not show this phenomenon. To find

the channels showing significant difference, ANOVA post

hoc comparison among the three groups was performed.

Comparing the MCS and UWS groups, there were signif-

icant differences in the FC3 and CP3 channels in the delta

band, the FT7, F4, and FC4 channels in the theta band, and

the F4, FC4, and C4 channels in the alpha band (P\ 0.05,

FDR corrected). Comparing the control and UWS groups,

there were significant differences in the F8 and FT8

channels in the delta band, the FP1, F3, Fz, FCz, Cz, and Pz

channels in the theta band, the FP1, Fz, FCz, Cz, and Pz

channels in the alpha band, and the Pz channel in the beta

band (P\ 0.05, FDR corrected). Comparing the MCS and

control groups, there were significant differences in the T3,

C3, F4, and FT8 channels in the delta band, the FT8, Fz,

FCz, Cz, and Pz channels in the theta band, the Fz, FCz,

Cz, and FT8 channels in the alpha band, the CP3 and FT8

channels in the beta band, and the FT8 channel in the

gamma band (P \ 0.05, FDR corrected). The results

demonstrated that the node degree characteristics of the

three groups had significant differences in the theta and

alpha bands, and the channels were mainly distributed on

the movement-related brain areas. Therefore, the node

degree values of seven electrodes (Fz, F4, FCz, FC4, Cz,

C4, and Pz) were averaged for further analysis.

Figure 3b and c show the box-normal curves of the

average node degree values for the theta and alpha bands.

The node degree values of the theta and alpha bands in the

control group were the highest, followed by the MCS group

and then the UWS group. There were significant differ-

ences among the three groups (P\ 0.05, FDR corrected).

dwPLI networks

Figure 4a shows the grand average connection matrix of

the dwPLI networks in the delta, theta, alpha, beta, and

gamma bands. In the theta band, the connections of the

MCS and control groups were higher than that of the UWS

group, but not significantly. In the alpha band, the con-

nection strength of the control group was highest. The

UWS group had the lowest connection strength. In the

delta, beta, and alpha bands, the three groups did not show

differences. Therefore, the functional connection matrix of

the first 14 channels was selected for further analysis. The

positions of the 14 selected channels are shown in Fig. 4d.

Figure 4b shows the global efficiency value in the theta

band. The control group had the highest global efficiency

value, and the UWS group had the lowest global efficiency

value. There was a significant difference between the UWS

and MCS groups as well as between the UWS and control

groups (P \ 0.01, FDR corrected). Figure 4c shows the

global efficiency value in the alpha band. Similarly, the

global efficiency value of the control group was the high-

est, and that of the UWS group was the lowest. There was a

significant difference between the UWS and control groups

(P\ 0.01, FDR corrected).

Correlation of network properties and motor
function scores

Figure 5a and b show the Pearson’s correlation results

between the CRS-R motor function score and COH net-

work degree in the theta and alpha bands. The COH net-

work degrees of these two bands had significant linear

correlations with the motor function scores (Degree-Theta:

r = 0.45, P \ 0.0001; Degree-Alpha: r = 0.49, P

\ 0.0001). Figure 5c and d show the Pearson’s correlation

results between the CRS-R motor function score and

dwPLI network global efficiency in the theta and alpha

bands. Similarly, the dwPLI network global efficiencies of

these two bands had linear correlations with the motor

function scores (GE-Theta: r = 0.21, P = 0.08; GE-Alpha:

r = 0.28, P\ 0.05).

Discussion

The aim of this study was to explore biomarkers that can be

used to evaluate the residual motor function of DOC

patients. Therefore, the ERP, COH, and dwPLI networks of

the motor preparation process were analyzed. The results

demonstrated that, compared with the UWS group, (1) the

MCS group exhibited obvious RP during the motor

preparation process; (2) the node degree properties of the
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theta and alpha band COH network significantly increased

in the MCS group; (3) the global efficiency properties of

the dwPLI network in the theta band significantly increased

in the MCS group; and (4) there was a strong linear cor-

bFig. 3 Node degree characteristics of COH networks in delta, theta,

alpha, beta, and gamma bands. a Scalp distribution of node degree

value. b, c Box-normal curves of the average node degree values (Fz,

F4, FCz, FC4, Cz, C4, and Pz) for (b) theta and (c) alpha bands (*P
\ 0.05, **P\ 0.01, FDR corrected)

Fig. 4 Global efficiency characteristics of dwPLI networks in the

delta, theta, alpha, beta, and gamma bands. a The grand average

connection matrix of the dwPLI network. (b, c) The global network

efficiency of 1–14 channels in (b) theta and (c) alpha bands (**P
\ 0.01, FDR corrected). d The positions of 14 selected channels

(green dot). (Color figure online)
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relation between the above network properties and the

CRS-R motor function score.

Currently, researchers generally deem that the RP

reflects the motor planning and preparation process

(Klimkeit et al. 2005; Liu et al. 2017). Even if there is no

follow-up motor execution, the RP can still be obtained

through motor imaging (Wang et al. 2020). In the grand

average ERP results, the MCS group showed obvious RP.

The result indicated that some patients in the MCS group

could understand the audio cue and try to complete the

required motor tasks. However, owing to the damage of the

brain’s neural network, no motor action occurred. This

result confirmed the separation of cognitive and motor

functions in some DOC patients reported previously (Cruse

et al. 2011; Pan et al. 2020). Compared with the MMN, P1,

N1, and P300 components, which have been used in con-

sciousness assessment (Bai et al. 2020), RP relies on higher

level consciousness and cognitive functions, so it could

provide more valuable information for consciousness

assessment. The onset of each epoch in this study was not

calculated according to the traditional hand movement, and

each participant completed few trials, so the individual

RP’s waveform was unstable, which made it difficult to

provide high-quality consciousness assessment

information.

The power of the EEG signal was adopted in con-

structing the COH network because the power-based con-

nectivity could represent the number of neurons or spatial

extent of the neural population (Pereda et al. 2005).

Therefore, the COH network could reflect the size of the

neural population participating in the motor preparation

process. Patients in the MCS group had a higher degree of

nodal value in the right-frontal area. The results were

consistent with the enhancement of the COH brain network

connection in the motor-related brain area during the motor

preparation process reported by our previous study (Zhang

et al. 2020). The statistical results showed that the nodes

with significant differences between the three groups were

mainly distributed in the motor-related brain areas. As

expected, the results indicated that the number of neurons

involved in the motor preparation process was larger in the

MCS group than in the UWS group. In other words, the

Fig. 5 Correlations between network properties and motor function

score. a, b Pearson’s correlation between motor function score and

degree in (a) theta and (b) alpha bands. c, d Pearson’s correlation

between motor function score and degree in (c) theta and (d) alpha
bands. The subjects with a 6-point motor score are healthy controls
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patients in the MCS group retained a more complete motor

function network. The results also proved the rationality of

using the COH network properties to assess the patient’s

state of consciousness.

Only the phase of the EEG signal was applied in con-

structing the dwPLI network, and the phase-based con-

nectivity likely represented the information interaction

between different neural populations (Vinck et al. 2011).

The dwPLI network could reflect the information com-

munication ability of the brain areas during the motor

preparation process. Accordingly, the dwPLI network

connection strength of patients in the MCS group was

significantly stronger than that in the UWS group. The

connection strengths with obvious differences were mainly

distributed in the frontal and parietal areas of the scalp (the

first 14 electrodes). The results indicated that, in the MCS

group, the information interaction capability among neural

populations was stronger and the remaining network con-

nections between brain areas were better preserved. In this

study, the COH and dwPLI networks could evaluate the

patient’s residual motor function from two perspectives:

the number of residual neurons in motor-related brain

regions and the connection strength between neural

populations.

There was a strong correlation between the network

properties and the CRS-R motor function score in this

study. Similarly, recent studies based on resting state EEG

showed that DOC patients with a better state of con-

sciousness tended to show stronger functional connectivity.

The results of the present study indicated that the COH and

dwPLI network properties of the motor preparation process

could be used for the assessment of consciousness level.

The research is significant due to the lack of task-state

characteristics in consciousness assessment, and it will help

us improve the accuracy of consciousness level assessment.

This study was mainly based on the scalp EEG signal,

which offers insufficient spatial resolution when charac-

terizing inter-brain information exchange. In future studies,

fMRI and EEG technology can be integrated to ensure the

time accuracy of the signal and improve the spatial reso-

lution of the brain areas.

This study calculated the brain network characteristics

during motor preparation and analyzed the correlation with

the motor function score. Our results confirmed that these

brain network properties could be markers of residual

motor function of DOC patients.
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