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ABSTRACT: Topological nanophotonics is a new avenue for
exploring nanoscale systems from visible to THz frequencies, with
unprecedented control. By embracing their complexity and fully
utilizing the properties that make them distinct from electronic
systems, we aim to study new topological phenomena. In this
Perspective, we summarize the current state of the field and
highlight the use of nanoparticle systems for exploring topological
phases beyond electronic analogues. We provide an overview of the
tools needed to capture the radiative, retardative, and long-range
properties of these systems. We discuss the application of dielectric
and metallic nanoparticles in nonlinear systems and also provide an
overview of the newly developed topic of topological insulator
nanoparticles. We hope that a comprehensive understanding of
topological nanoparticle photonic systems will allow us to exploit them to their full potential and explore new topological
phenomena at very reduced dimensions.
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1. INTRODUCTION

The advent of topological condensed matter physics has
resulted in a wealth of new phases of matter to explore,
understand, and control1−5 (see Figure 1). The condensed
matter community has been able to predict and create
materials exhibiting topological phases and confirm many of
the myriad of exotic phenomena that accompany them. By
transferring these concepts to photonic systems, we can not
only study these ideas with highly tunable and controllable
platforms but also open the door to new physics which goes
beyond that found in traditional condensed matter systems.
Topological photonics6−11 has allowed for the study of non-
Hermitian topological systems,12 higher-order topological
phases,13 and topological phases in the presence of long-
range interactions.14 Photonic systems allow us to design
crystals and metamaterials free from the limitations of atomic
systems and in frequency ranges less accessible in electronic
materials.
The continuing evolution of this field has naturally led to the

exploration of topology in nanophotonic systems,15,16 bringing
with it the promise of technological benefits such as
miniaturization, heightened photon control, and access to
more elusive operating frequencies such as the THz range.
While bringing potential technological advancement (such as
improved sensors and lasers in hard-to-reach frequency
regimes), topological nanophotonics may also allow us to
discover new phenomena, with new physical properties that are

unattainable in either traditional condensed matter systems or
photonic systems. In particular, we focus on nanoparticle
systems. It is important to highlight the frequency freedom
allowed by these systems. The visible and infrared zones are
covered using metals (plasmonics)17 and high index
materials.18 We can reach the UV zone using aluminum
nanoparticles19 or silicon nanostructures (exciton-polar-
itons).20 The lower energy zone (GHz-THz) can be obtained
with semiconductor nanoparticles21 or even topological
insulators.22,23

This Perspective will review developments in the rapidly
evolving field of topological nanoparticle photonics and discuss
the avenues by which these systems could be used to further
drive our knowledge and applications of light−matter
interactions at the nanoscale.
In Section 2, we present a brief summary of the

mathematical concepts needed to understand topology, the
current state of progress in topological photonics, and the
natural progression into topological nanophotonics. In Section
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3, we use the specific example of the Su-Schrieffer-Heeger
(SSH) model using nanoparticles to showcase how the
complexity of nanophotonic systems can be exploited to
explore new physics beyond simple analogues of electronic

systems and useful methods with which to study these systems.
In Section 4, we give a short review of the current state of
nonlinear topological nanophotonics, and in Section 5, we
extend our discussion of topological nanophotonics to the

Figure 1. Topological nanoparticle photonics in context: Most topological condensed matter concepts can be separated into phases with
topological order and symmetry protected topological (SPT) phases. Various platforms are used to study topological physics. Band structure of
Bi2Se3, adapted with permission from ref 24. Copyright 2009 Nature Publishing Group. Schematic of platform for acoustic topological insulator,
adapted with permission from ref 25, copyright 2019 Nature Publishing Group. Schematic of soft bosons in a cavity taken from ref 26. Topological
photonics draws mainly from SPT phases. Common platforms are waveguide arrays (figure adapted with permission from ref 27, copyright 2013
Nature Publishing Group. Bianisotropic materials, figure adapted with permission from ref 28, copyright 2017 Nature Publishing Group. Microring
resonators, figure adapted with permission from ref 29, copyright 2018 Nature Publishing Group. Microstructures, figure adapted with permission
from ref 30, copyright 2017 Nature Publishing Group. Photonic topological crystalline insulators using dielectric materials, figure adapted with
permission from ref 31, copyright 2020 American Physical Society. Systems with nanoscale dimensions operating from visible to THz frequencies:
Dielectric nanoparticles (adapted with permission from ref 32, Copyright 2015 American Physical Society), plasmonic nanoparticles,33 dielectric
nanostructures, figure adapted with permission from ref 34, copyright 2019 Nature Publishing Group. 2D arrays of nanoparticles35 and plasmonic
metasurfaces.36 Semiconductor nanocavity arrays,37 2D materials and hybrid systems including photonic structures,38 and topological insulator
nanoparticles.23 Figures from refs 23,26,29,33,35−37 licensed under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/. Figure from ref
38 licensed under CC BY 3.0, https://creativecommons.org/licenses/by/3.0/.
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system of topological insulator nanoparticles (in contrast to the
metallic and dielectric nanoparticles previously discussed). In
Section 6, we give a final overview and some conclusions.

2. TOPOLOGY IN PHOTONICS
Topological systems can be broadly segregated into those with
topological order stemming from long-range entanglement and
those with short-range entanglement which exhibit symmetry-
protected topology (SPT) phases, in which topologically
distinct phases of the system cannot be transformed into each
other without breaking a system symmetry.39 The topological
systems which lend themselves most readily to replication in
photonic systems are topological insulator analogues and other
short-range entangled, symmetry-protected states (see Figure
1), including both topological crystalline insulators40 and
topological noncrystalline insulators.41−43 This is primarily due
to the natural absence of photon−photon interactions in linear
optical systems, meaning that the single-particle Hamiltonians
of topological insulators are naturally replicated. Systems
relying on long-range-entanglement and many-body physics for
their topological properties may be replicated in nonlinear
photonic systems, which we discuss in Section 4.
The common signatures of topology in our systems of

interest are topological invariants and symmetry-protected
edge states,1,44 making them a key focus in photonics due to
their potential in robustly transmitting and storing information.
We will now briefly introduce the mathematics of topology,
topological invariants, the bulk boundary correspondence, and
their applications in photonics.
Phases in electronic systems and other areas of physics can

be described by local order parameters, which are measured
with local probes of the system. Topological phases invariably
require a global order parameter, known as a topological
invariant, to quantify them and which requires a global
measurement of the entire system. Taking the abstract example
of closed, 2D manifolds in 3D space, a sphere and a torus (see
Figure 2a) are topologically distinguishable and cannot be
smoothly deformed into each other due to the “cut” that would
be required to coax the sphere into the form of a torus. This
classic example is mathematically described by integrating the
Gaussian curvature, K, over the closed surface of the manifold,

. Curvature of the surface can be positive, negative, or 0.
The Gauss-Bonnet theorem

KdA g4 (1 )∫ π= −
(1)

tells us that this integral always gives an integer multiple of 4π.
The topological invariant, genus g, can be extracted from this
calculation and tells us how many “holes” are present in the
manifold and thus allows us to define distinguishable
topological phases. The sphere has g = 0 and the torus has g
= 1. In order to transition from one topological phase to
another, a cut must be made in the manifold, signaling a
discrete jump in the integer value of the genus.
This intuition of the topological phases of spatial objects can

be transferred to the classification of band structures. We give a
brief overview of this concept here but direct the reader to
some of the excellent literature on the topic for a much more
comprehensive discussion.2,45 A band structure defined by a
Hamiltonian and classified by a bulk topological invariant
may have multiple symmetries and a band gap protected by a
particular symmetry relating to the topological invariant. This
could be for example time-reversal, chiral, or parity symmetry.

We consider a Hamiltonian whose parameters are defined in
Bloch space, such that a state of the system is of the form

e uq q( ) ( )iq rψ = | ⟩· , where u q( )| ⟩ shares the periodicity, q → q
+ Q, of the system such that |u(q + Q)⟩ = |u(q)⟩. The
dispersion relation is found from the eigenvalue equation of
the system

u E uq q q q( ) ( ) ( ) ( )| ⟩ = | ⟩ (2)

where E(q) represents the eigenvalues of the system. If the
parameters of the Hamiltonian are tuned such that a band gap
closure arises, this is equivalent to the “cut” in the surface of
the sphere and may signal a change in topological phase (and
thus topological invariant), as illustrated in Figure 2b.
It should be noted that not every band closure is topological

in nature, as a conventional closure can occur due to other
mechanics such as broken translation symmetry, for which
there is not a related nontrivial bulk topological invariant.
Analogous to Gaussian curvature,46 the Berry curvature of a
Hilbert space can be measured by evolving an eigenstate u q( )| ⟩
through a closed loop in the Brillouin zone of the system.
Moving through the loop, the eigenstate picks up a geometric
phase, known as the Berry phase

Figure 2. Geometric topology and band structures: (a) A local
geometry can have positive or negative curvature, K, with respect to a
reference point. When integrated over a closed surface, , the Gauss-
Bonnet theorem links the curvature of the surface to its genus, g, via
the relation ∫ KdA = 4π(1 − g). The genus of a sphere is g = 0, and
that of a torus is g = 1. (b) Link between geometric topology and
band topology. Band structures with gap, crossing, and new gap. (c)
Schematic of edge states. Dimensions and flavor of topology in the
system dictates the characteristics and the number of edge states
expected.
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i u u dq q q( ) ( )q∮γ = ⟨ |∇ | ⟩·
(3)

If the eigenstates u q( )| ⟩ evolve smoothly enough, this
expression can be written as an integral over the Brillouin zone
instead of a closed curve, such that

dB q q( )
BZ

∫γ =
(4)

where B(q) is the Berry curvature given by

i u uB q q q( ) ( ) ( )q q= ∇ × ⟨ |∇ | ⟩ (5)

In systems D1> , the well-known topological invariant
named the Chern number, C, can be defined by γ/2π. In 1D
systems, the Berry phase is replaced by the Zak phase,

i u q u q q( ) ( ) dq
BZ

∫γ = ⟨ |∇ | ⟩
(6)

and is often complemented by the winding number of the
system, , where (γ π= mod 2).
The discussion so far has only considered bulk Hamil-

tonians, but the bulk topological invariant is intriguingly linked
to the edge states of a finite system. Closure of the bulk band
gap is required at the interface of topological and topologically
trivial materials, as a topological phase transition occurs. For
finite systems, this boundary occurs at the surface of the
topological material where it interfaces with its environment.
This leads to conducting edge states, which endure as long as
the symmetry protecting the band gap in the bulk is preserved.
This makes the edge states extremely robust against
deformations of the surface and even perturbations of the
bulk Hamiltonian, as long as the perturbations do not break
the protecting symmetry. The topological invariant predicts
the number of edge states in the system (see Figure 2c), giving
the well-known bulk-boundary correspondence.2,45,47

While the above formulation was first used to define
topological phases in solid state systems, topologically
nontrivial dispersion relations (for continuum systems) and
frequency spectra (for discrete systems) can be designed on
other platforms (see Figure 1), such as ultracold atoms and
trapped ions,26,48,49 acoustic,50 and mechanical systems,25 and
in photonic materials such as photonic crystals.6

Photonic crystals (PhCs) are optical structures with
periodically varying refractive index. The reflection and
refraction of light propagating through the structure results
in energy bands for the light, in which some frequencies of
light may pass freely through the structure, while light at other
frequencies may be forbidden due to a band gap.51 Periodicity
of the refractive index should be commensurate with the
wavelength of the propagating light, such that for visible light
the periodicity will be on the order of ∼100 nm. These band
structures may have topological properties like their electronic
counterparts.
Nanophotonic systems rely on the fact that we are able to

control light at a dimension smaller than the diffraction limit.
This means that electromagnetic near-fields play an important
role together with far-field scattering. In addition, an extremely
strong interaction with light is needed if we work with such a
small dimension. An excellent system that has this character-
istic is plasmonic nanoparticles. Surface plasmons in small
nanoparticles, or particle plasmons, are collective excitations of
the conduction electrons in metal nanoparticles.17 Such
excitations can be induced and are coupled to light

(polaritons). Plasmonics is the branch of photonics that
studies such excitations. Plasmonic structures are fascinating
for two main reasons: first, they allow subdiffraction local-
ization and guiding of light; second, such excitations happen in
the visible region of the optical spectrum. Typically used
materials are gold and silver due to their good conduction
properties. Arrays of nanoparticles can create plasmonic band
structures and plasmonic band gaps reminiscent of those in
photonic crystals, allowing more options to tailor light−matter
interactions.52,53

Photonic states (such as those in photonic crystals or the
plasmon-polaritons in nanoparticles) take the place of
electronic wave functions in band theory, and the mathemat-
ical formulation of topological properties follows, with some
stipulations. Due to the lack of a Fermi level, systems such as
photonic band gap materials may qualitatively reproduce the
band structure of an electronic counterpart, but the system will
need to be pumped in order to observe topological properties.
For topological phases protected by fermionic time-reversal
symmetry (such as 2 topological insulators), we should recall

that electrons obey the condition 1f
2 = − , where f is the

fermionic time-reversal operator. Photons are bosonic and
obey the bosonic time-reversal condition 1b

2 = . To
reproduce the symmetry conditions required for true
symmetry-protection of the phase, the bosonic time-reversal
symmetry must be incorporated with some other property of
the system to produce spin-like behavior, for example, by using
the clockwise and counterclockwise modes in optical
resonators.27,29,54,55 Pseudofermionic time-reversal symmetry
can be implemented in photonic crystals in bi-anisotropic
materials by enforcing ϵ = μ, such that TE and TM modes
propagate with equal wavenumbers and one can construct
states analogous to the spin-degenerate states of electronic
systems.28 We can also use systems with additional symmetries,
such as a crystal symmetry, in combination with bosonic time-
reversal symmetry to produce the pseudofermionic time-
reversal symmetry of photonic topological crystalline insu-
lators.31,56,57

In photonic systems, it may be more natural to consider
topological phases which do not rely on spinful time-reversal
symmetry, such as the 1D Kitaev chain,58,59 which explicitly
breaks time-reversal and chiral symmetry, but preserves
particle−hole symmetry. Another option is to make use of
the photonic disordered geometric phase.60,61 The Su-
Schrieffer-Heeger (SSH) model, which has spinless time-
reversal symmetry, particle−hole symmetry, and chiral
symmetry, has had much success in photonic systems and
has been the ideal toy model for going beyond standard
phases,33,59,62−66 with additional interactions, non-Hermiticity,
and the inclusion of strong-coupling.67,68 The work in refs 66
and 69 use a quantum-optics-like formalism, which does not
account for coupling to far field photons. The formalism was
updated in ref 70 to include coupling to the far field. It was also
used in ref 68 with nanoparticles confined in a waveguide. A
similar approach was used in ref 71 which showed type I and II
Dirac polaritons in honeycomb arrays and in ref 72 for
pseudomagnetic fields in strained arrays of nanoparticles.
Recently, the bulk-boundary correspondence was general-

ized to higher-order effects such that an N-dimensional bulk
defines its (N − M)-dimensional boundary state, where 1 ≤ M
< N.73 By extending the SSH and other models to higher
dimensions, higher-order topological phases result in novel
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edge states such as corner states.74,75 Including internal degrees
of freedom as additional, synthetic dimensions, even higher
dimensional systems may be achieved.76,77

Photonic materials often exhibit loss and gain (the changing
amplitude of fields), making for interesting behaviors and
applications. The loss and gain can be represented by
imaginary components in the frequency, wavevector, or
dielectric tensor. Photonic systems are thus an ideal platform
with which to study non-Hermitian topology, which has been a
topic of increasing interest in both the condensed matter and
photonics communities.78,79 The ability to manipulate loss and
gain in photonic materials has led to the area of active
photonics,9 and by exploiting the edge states of topological
photonic materials, it has been possible to demonstrate lasing
from topological edge states and nanocavities.30,37,80−85

The rest of this article highlight systems we think are of
particular interest to push forward our knowledge of
topological nanophotonics, and some of the concepts and
methods useful for their study. Not all topological photonic
systems can be easily implemented at the nanoscale. They may
have fundamental size limits, or the time-reversal breaking
mechanisms required to observe edge states may simply be too
weak at THz or higher frequencies. 1D topological phases
without spinful time-reversal (TR) symmetry such as the
Kitaev chain and SSH model are natural models to study, and
they find natural implementation in systems of nanoparticles,
both dielectric and metallic.32,33,59,86−88 Higher-order systems
such as 2D arrays of nanoparticles and plasmonic meta-
surfaces35,36,89 allow us to study edge modes, such as in the
expanded/contracted honeycomb lattice90 and the valley states
which emerge on a square lattice.91 An experimental study of
the edge states in the honeycomb system92 allowed for the
differentiation of contributions from higher-order Bloch
harmonics and demonstrated the robustness of the edge states
at telecom frequencies. The study of edge states in topological
photonic systems can give us crucial insights on the topological
properties of these systems. However, plasmonic systems suffer
large losses during nanoscale propagation, so a key focus in
topological nanophotonics will be particle-like (or localized)
states36,93−97 such as corner states, which have tight confine-
ment in all directions.33,74,82,98−100

Strong confinement of light at subwavelength scales is
required for enhancing light−matter interactions, and very
strong enhancement can lead to a nonlinear response.
Nanostructures made of high-index dielectric materials,
which can support both electric and magnetic Mie resonances,
have also shown great promise for nonlinear topological
nanophotonics, the general topic of which is discussed in more
detail in Section 4. Topological insulator nanostructures are a
platform for topological nanophotonics somewhat distanced
from the photonic materials emphasized in the rest of this
article. Topological insulator (TI) nanostructures are elec-
tronic TI materials with nanoscale dimensions, which support
topological surface states. Due to confinement on the surface,
the surface states are discretized and can couple to THz
frequency light. These systems are discussed more in Section 5.
There are other nanophotonic systems of interest, such as
semiconductor photonic crystal systems (which are useful for
creating topological waveguides and topological nanocav-
ities37,101). Two-dimensional materials in combination with
photonic structures have been shown to host topological
polaritons.38,102 Other works with discussion beyond the scope
of this Perspective are given in refs 15, 16, and 103.

Topological Phases Using the Dipolar Response of
Nanoparticles. The topological condensed matter systems we
aim to emulate in photonic systems (discussed in Section 2)
can be formulated successfully with tight-binding models, due
to the rapid decay of interaction strengths on the scale of
atomic spacing in materials. However, while topological
phenomena are qualitatively reproduced in photonic systems,
we must treat these systems carefully. We must understand
where properties of electronic and photonic systems overlap,
and where the correct treatment of photonic systems results in
a divergence of behavior from their electronic counterparts.
This can lead us to new and unusual regimes to study. To
discuss some of the differences between electronic and
photonic implementations of topological phases, we will use
the example of the SSH model, whose successes in various
photonic implementations were already described in Section 2.

3. SSH MODEL WITH 1D CHAIN OF NANOPARTICLES
The original Su-Schrieffer-Heeger (SSH) model described the
physics of the polyacetylene chain,104,105 the electronic
properties of which can be accounted for through a tight-
binding model where each unit cell contains two lattice sites,
and (noninteracting) electrons can hop between adjoining
lattice sites with intracell hopping v and intercell hopping w
respectively, depicted in Figure 3a. The Hamiltonian of this
system with finite length and N unit cells is given by

v n B n A w n A n B, , 1, , h.c.
n

N

n

N

SSH
1 1

1

∑ ∑= | ⟩⟨ |+ | + ⟩⟨ | +
= =

−

(7)

where n A,| ⟩ and n B,| ⟩ are states with an electron on unit cell n
and sublattice A/B, and h.c. is the Hermitian conjugate.
For the case of the infinite chain, the chain is translationally

invariant, and we can write the eigenstates as Bloch waves,
q q u q( ) ( )|Ψ ⟩ = | ⟩| ⟩, where

q e n
n

inqd0∑| ⟩ = | ⟩
(8)

and d0 is the lattice spacing. The Bulk momentum-space
Hamiltonian

q q q( )SSH SSH= ⟨ | | ⟩ (9)

has eigenstates u q( )⟨ such that

q u q E q u q( ) ( ) ( ) ( )SSH | ⟩ = | ⟩ (10)

For the continuum system N → ∞, the continuum
dispersion is found to be

E q v w vw qd( ) 2 cos( )2 2
0= ± + + (11)

with a band gap |v − w| which closes at v = w. As discussed in
Section 2, topological phase transitions occur at band
crossings, and this is one such example. The bulk Hamiltonian
displays sublattice symmetry, q q( ) ( )z zSSH SSHσ σ = − where
σz is the Pauli matrix [1, 0; 0, −1]. The sublattice symmetry
causes the eigenvalue spectrum to be symmetric about E = 0,
as

q u q q u q E q u q( ) ( ) ( ) ( ) ( ) ( )z z zSSH SSHσ σ σ| ⟩ = − | ⟩=− | ⟩
(12)
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The system also has inversion symmetry, such that E(q) =
E(−q). In the continuum case, the explicit form of the
eigenstates is given by

u q e( )
1
2 1

i qi
k
jjjj

y
{
zzzz| ⟩ =

ϕ−

(13)

The Zak phase (as described in Section 2), found by
traversing the Brillouin zone in a a closed loop, can be
calculated as

i u q
q

u q q

q a q a

( ) ( ) d

( / ) ( / )
2

mod 2

BZ
∫γ

ϕ π ϕ π
π

= ⟨ | ∂
∂

| ⟩

=
= − = −

(14)

which for v > w gives a Zak phase of γ = 0, and for v < w gives a
Zak phase of γ = π. As long as v ≠ w, this system is in a phase
with γ = 0 or π, denoting the trivial and nontrivial phases,
respectively. The SSH is often referred to as a 1D topological
insulator, and is classified as a  topological insulator under
the Cartan symmetry classification.
The bulk-boundary correspondence tells us that there is a

connection between the bulk topological invariants γ, and the
number of edge states in the finite system. We can refer back to

the discrete Hamiltonian of the system SSH (eq 7) and write
it as an eigenvalue problem with eigenvectors of the form

a b a b a b( , , , , ..., , )N N1 1 2 2
T|Ψ⟩ = . For the case v < w, edge

modes appear in the gap with E = 0, associated with the left
and right edges of the chain, with approximate solutions
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For v > w there are no edge states, and the normalized Zak
phase γ/π tells us the number of edge state modes per edge.
The compelling simplicity and richness of physics in this

system have led to its being a natural candidate for photonic
and nanophotonic analogues33 even in order to tackle heat
radiative problems.106,107 The system on which we focus is the
chain of nanoparticles, irradiated with light. In metallic
nanoparticles, incoming light (or more specifically, the
incoming electric field) affects the electrons on the surface of
the particles resulting in localized surface plasmon modes. By
restricting ourselves to studying small particles such that a≪ λ
(where a is the particle radius and λ is the wavelength of
incoming light), the scattering of incoming light by each
nanoparticle is approximately the same as that of a dipole (as
higher-order terms in the Mie expansion of the scattered light
are insignificant). When multiple nanoparticles in close
proximity are considered, this dipolar approximation is
worsened due to the nanoparticles being affected by the
scattered fields of the surrounding nanoparticles. By keeping
nanoparticles at a minimum separation of 3a, this issue is
largely avoided and the dipolar approximation holds. For a
single nanoparticle, the relationship between the electric field E
at the position of the nanoparticle and the dipole moment p is
given by

p E( )Bα ω= ϵ (16)

where ϵB is the relative permittivity of the background material,
and α(ω) is the frequency-dependent polarizability of the
nanoparticle. As we are working in the limit a ≪ λ, we assume
only the first Mie coefficient contributes to the polarizability,17

such that α(ω) = αQS(ω) (with QS meaning quasi-static),
where

a( ) 4
( )

( ) 2QS
3

0
B

B
α ω π

ω
ω

= ϵ
ϵ − ϵ
ϵ + ϵ (17)

The dielectric function of the sphere, ϵ(ω), can be
approximated using a Drude-Lorentz model or measured
experimentally. We can use the elegant method of Green’s
functions108,109 to formulate the electric field radiated by the
nanoparticle

k
E r G r r p( ) ( , , )

2

0 B
0 0ω=

ϵ ϵ
⃡

(18)

The dyadic Green’s function in 3D space is given by

Figure 3. SSH with nanoparticles: (a) 1D SSH model, with
alternating nearest-neighbor interactions of magnitude v and w,
respectively. (b) Chains of nanoparticles, as dipoles. Interaction
strength can be tuned by varying relative nanoparticle positions along
the chain. (c) Unlike the atoms of the original SSH model, dipoles
have long-range interactions, described by the dyadic Green’s
function. (d) Comparison between short-, mid-, and long-range
interaction.
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where R = r − r′, R = |R| and k c/B ω= ϵ is the wavevector
(ϵB is the background dielectric constant). Green’s function eq
19 is constituted by three terms. The first decays as (kR)−3 and
is the leading term in the near-f ield zone; in the mid-range zone,
the (kR)−2 term matters more, while in the far-f ield, the (kR)−1

term dominates (see Figure 3c and d).
By considering the electric field contributions from an array

of nanoparticles, and combining eqs 16 and 18, we arrive at the
coupled-dipole equations

k
p G r r p

1
( )

( , , )n
m n

n m m

2

0
∑

α ω
ω=

ϵ
⃡

≠ (20)

where pn is the dipole moment of the nth particle, and
G r r( , , )n m ω⃡ is the dyadic Green’s function between the
positions of the nth and mth particles at frequency ω. Green’s
functions provide a powerful method to study light scattering
problems. Recently, Silveirinha has shown that these are also
an excellent tool to obtain gap Chern numbers of a photonic
system without detailed knowledge of its band structure.110

As we can see from the form of the dyadic Green’s function,
the interaction between dipoles can be tuned by their
separation, R = rn − rm. In order to reproduce the properties
of the SSH model, we consider a chain of metallic
nanoparticles as illustrated in Figure 3b, with alternating
spacing. The nanoparticles are centered on the x-axis, and each
unit cell contains two nanoparticles, labeled A and B. The
nanoparticles are each of radius a, the unit cells are separated
by a distance d, and the internal spacing between nanoparticles
A and B in a unit cell is t = βd/2. For the dipolar
approximation to hold (such that separation of the particles
is ≳3a) and eq 20 to remain valid, is it necessary that t ≳ 3a
and d − t ≳ 3a. The spacing between nanoparticles is staggered
when β ≠ 1.
As illustrated in Figure 3c, the unadulterated form of the

coupled-dipole equations allows for long-range interactions
between all dipoles. The original SSH model only considers
nearest-neighbor (NN) interactions, such that R < d. In this
context, we take the quasi-static (QS) limit, kd ≪ 1,
simplifying the dyadic Green’s function given in eq 19 such
that
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This is similar to only taking the near-field contribution to
the Green’s dyadic, except that phase information caused by
finite light speed is also lost, such that eikR → 1. As the chain is
confined to the x-axis, the Green’s dyadic is diagonal and the x
components lie in the axis of the chain, while the y and z
components are transverse. The three nonzero components of
the Green’s dyadic are given by
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In order to map a path to the SSH model,111 we relabel the
particles such that pn

A and pn
B are the dipoles for particles A and

B, respectively, in the nth unit cell. Considering nearest-
neighbor (NN) interactions only, and setting v = x, y, z,
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where mv = 2 when v = x, mv = −1 when v = y, z. If we wish to
enforce open boundary conditions, p 0v n

A B
,

, = for n ≤ 0 or n >

N. From here we can identify the direct mapping to the
original SSH model

v
m
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m
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2 1 2 1
(2 )

v v

0
3 3

0
3 3π β π β

→
ϵ

→
ϵ − (24)

The transition between topological and trivial phases is now
dictated by β, where β < 1 gives a trivial phase, and β > 1 gives
the topological phase. Solving the coupled-dipole equations for
ω would give a dispersion relation equivalent to the dispersion
relation E(q) described in the electronic system. The phase
transition relating to the crossing of bands occurs when β = 1.
In our quest to replicate the properties of the electronic SSH

model, we have made various assumptions. The liberally used
QS approximation neglects retardation effects (the phase
properties caused by the finite speed of light) and the
inherently long-range nature of the electric field. This is
compounded by only considering NN contributions. The use
of QS polarizability also results in the neglect of radiative
damping and depolarization effects.
As progress is being made to probe topological nano-

photonic systems extending beyond these approximations,
clever methods are needed to facilitate accurate and fast
calculations. This need is heightened even more if we wish to
tackle larger systems or higher dimensional arrays. In the next
subsections, we will discuss how to go beyond the current
approximations, and methods for tackling long-range calcu-
lations using the SSH2D model as an example. The methods
and results also apply to more general nanophotonic systems.
By discussing extensions to the current work using the SSH2D
model, we hope to demonstrate the ongoing potential for
studying rich and interesting topological phases in nano-
photonic systems.

Linearization in Plasmonics. When particles are large
enough to be treated classically (a ≳ 2−3 nm), but still small,
bands tend to be flat around the surface plasmon frequency.112

We can linearize the Green’s dyadic by taking ω = ωsp, so

k
p G r r p

1
( )

( , , )n
m n

n m m

2

0
sp∑

α ω
ω≃

ϵ
⃡

≠ (25)

The linearization speeds up infinite system calculations
drastically by removing the frequency dependence from the
bulk Bloch Hamiltonian, which must be computed only once
per k-point.112 It also facilitates finite systems calculations. In
this case, the interaction matrices can easily be computed
exactly, but diagonalizing many large (non-Hermitian)
matrices is computationally challenging.
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This approximation works for small particles due to the fast
variation on ω of the polarizability as compared to that of the
Green’s function. However, for larger particles the linearization
becomes inaccurate, especially near the light and diffraction

lines k k c/x
l

y
p

b
( )2 ( )2

ω+ = ϵ , where k k lx
l

x d
( ) 2= − π and

k k py
p

y d
( ) 2= − π , l and p being integers.

Quasi-static vs Modified Long-Wavelength Approx-
imation. In this section we analyze the radiative and
retardation effects for a single nanosphere. The properties of
the nanoparticle are represented by the polarizability α(ω),
which, in the quasi-static approximation (repeating eq 17), the
polarizability is given by

a( ) 4
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( ) 2QS
3

0
B

B
α ω π

ω
ω

= ϵ
ϵ − ϵ
ϵ + ϵ (26)

where ϵB is the permittivity of the background dielectric and
ϵ(ω) is the dielectric constant of the metal, which considering
Lorentz and Drude terms can be expressed as113
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(27)

where ϵr is the static dielectric constant, ωP,j are plasma
frequencies, γj and Γj are the damping constants, Ωj is the
resonant frequencies, and Δϵj are related to the oscillator
strengths.
However, the quasi-static polarizability (eq 26) neglects

radiative damping and retardation and is thus inconsistent with
the optical theorem. The modified long-wavelength approx-
imation (MLWA) correction to the polarizability extends the
quasi-static limit,114 such that
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α ω
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We compare the two approximations for silver (ϵr = 4.6, ωP,0
= 9.0, γ0 = 0.07, Γ0 = 1.2, Ω0 = 4.9, Δϵ0 = 1.10113) nanospheres
by plotting the extinction cross sections, summing absorption
and scattering contributions115
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As we can see in Figure 4, the divergence between the quasi-
static and MLWA approximations grows with the size of the
nanoparticle, such that radiative damping should not be
ignored for larger nanoparticles. Retardation also produces a
size-dependent shift in the surface plasmon resonance
frequency, known as dynamic depolarization.
NN Approximation vs Long-Range Calculation. In this

section, we discuss how including the full, long-range nature of
the dipolar interactions may affect the topology of the system.
Considering a system with n particles per unit cell, the bands

of the coupled dipole system are the solutions for each k-point
of the equation

A Gdet( ( ) ( )) 0ω ω− = (30)

where A(ω) is a block diagonal matrix whose n blocks are
( )1α ω⃡− for each particle, where ( )α ω⃡ is a 3 × 3 electric

polarizability tensor. The interaction matrix G(ω) elements are
3 × 3 blocks given by
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where i and j are particle indices, nm∑′ excludes the central cell
(n, m) = (0, 0), rn,m is a lattice vector from the central cell (0,
0) to the (n, m) unit cell, di,j is a vector from particle i to j
within a unit cell, and ϕn,m is the Bloch phase related to the
central cell. Recalling the dyadic Green’s function (from eq 19)
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we assume the quasi-static regime, and use the QS dyadic
Green’s function (repeated from eq 21) such that kR ≪ 1
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When all the nanoparticles are identical and isotropic, i.e,
A(ω) = α−1(ω)I, eq 30 simplifies to a system of 3N equations
(considering all polarizations and only electric modes)

1
( )

( ) 0
i

i iα ω
λ ω− =

(34)

where λi is the ith eigenvalue of G. In tight-binding models,
when the Hamiltonian is sublattice-symmetric, the bands are
symmetric around zero energy (as described for the original
1D SSH model in Section 3). However, eq 34 implies that
even when the Green’s dyadic is chiral, such that λi(ω) are
symmetric around zero, the frequency bands may not exactly
respect that symmetry around ωsp. This depends on the profile
of the polarizability.
However, in general, as long as A(ω) is a multiple of the

identity, the first term in eq 30 produces a trivial shift on the

Figure 4. Extinction cross sections for silver nanospheres: We
compare the extinctions for nanospheres of different radius (a = 8 nm
and a = 20 nm) and with background permittivity ϵB = 2.25. Blue and
orange dashed lines represent quasi-static extinction cross sections for
a = 8 nm and a = 20 nm, while green and purple solid lines represent
modified long-wavelength approximation (MLWA) extinction cross
sections for a = 8 nm and a = 20 nm, respectively. As we see, the
divergence between quasi-static and MLWA approximations grows
with the size of nanoparticles.
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eigenvalues, so the eigenvectors and topology of the system
remain invariant.33 If A(ω) is not a multiple of the identity,
e.g., there are particles of several materials or anisotropic NPs,
eq 34 does not apply, but it is still possible to factorize eq 30 in
3N equations (thus making it easier to find multiple bands
numerically)

( ) 0i iλ ω∼ = (35)

where iλ∼ is the ith eigenvalue of A(ω) − G(ω). In this case,
A(ω) may break symmetries respected by G(ω), so it must be
considered to study the topology of the system.
The same equations can be used to obtain spectra and

eigenstates of finite systems. Imagine we have a 2D array with
N particles (see Figure 5). In this case, the 3 × N × N
interaction matrix G(ω) elements are given by
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As an example of short-range versus long-range calculations,
we study a 2D square extension of the previously mentioned
SSH model, known as SSH2D.99,116,117 This system has four
particles per unit cell (see Figure 5) and presents 0D (corner)
and 1D (edge) topological states. As out-of-plane and in-plane
modes are decoupled, here we restrict to transversal (z)
modes. We consider silver nanospheres with a = 8 nm and
lattice parameters d = 10a = 80 nm, and β = 1.4, so the system
is in the nontrivial topological phase (β > 1).
We plot the bands (Figure 6), the spectra (Figure 7), and

corner and edge states (Figure 8) for the different
approximations (short-range nearest, next-nearest, and all
neighbors, and long-range with and without linearization).
Topological corner states are fixed at ω = ωsp due to chiral

symmetry. In the square lattice, they come in a quartet and
carry together a topological charge of e/4 in every corner.
However, in the NN approximation and transversal polar-
ization, sublattice symmetry makes the eigenvalues of G(ω)
symmetric around 0, while C4v symmetry closes the gap
between the central bands. Thereby, corner states (CSs) are
not in a gap, but embedded in the bulk. However, as refs 117
and 118 showed, they are states with zero dissipation, and as
long as C4v and chirality are protected, they do not hybridize
with the bulk states; i.e., they are topologically bound states in
the continuum (BICs).
On the other hand, as long as upper/lower gaps are open

and big enough, the edge states (ESs) are topologically
protected. They are a product of the 1D topology of the SSH
model. The existence of ESs localized in the x and y borders is
predicted by the 2D polarization,99 P = (Px, Py), where Pj is

P
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= − ⟨ | ∂
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(37)

where the sum includes all occupied bands. When the lattice is
square and C4 symmetric, Px = Py. In the trivial phase, P = (0,

0), while in the nontrivial phase, ( )P ,1
2

1
2

= , meaning that

each site at the border (excluding corners) carries a topological
extra localization of 1

2
. ESs localized at x and y borders are

degenerate and hybridize, leading to quartets of degenerate
states localized all along the border (see Figure 7 and Figure

Figure 5. SSH2D with nanoparticles: 2D extension of the SSH model
in an array of nanospheres, where a is the radius of the nanoparticle, d
is the unit cell width, and t = βd/2 is the intracell length. Interaction
strengths can be tuned by contracting/expanding the square formed
by the positions of the four nanoparticles in the unit cell, i.e., by
changing β. This leads to two different topological regimes: a trivial
phase for β < 1 and a nontrivial phase for β > 1.

Figure 6. Calculating the SSH2D dispersion relation: SSH2D bands for silver nanospheres with radius a = 8 nm, unit cell width d = 10a = 80 nm,
intracell length t = βd/2 = 1.4 × 5a = 56 nm and background permittivity ϵB = 2.25. Solid lines represent the bands, while red dashed lines in panels
(d) and (e) represent light lines. As insets in panels (a) and (b), we show the SSH2D unit cells (green squares), where gray dots are the
nanospheres, blue links represent first intracell neighbors, red links represent first intercell neighbors, and purple links represent next nearest
neighbors. As an inset in panel (c), we plot the reciprocal unit cell and the band path ΓXMΓ (red solid line).
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8). For long-range interaction, however, these quartets are
broken (see the zoomed edge states in Figure 7) .
When next-nearest neighbors are added (see NNN unit cell

in Figure 7), sublattice symmetry is broken and bulk states can
be pushed out of ω = ωsp, so CSs can fall in the upper gap as
we see in Figure 7. These corner states are no longer
topological BICs, because they are not necessarily inside the
bulk, and when they are, they can in principle hybridize with
BSs. However, ref 119 showed that even under nonlinear
perturbations that break lattice symmetries, CSs still remain
isolated from the bulk states (BSs). We see that the states are
still very localized at CSs for all approximations, which suggests
that they are robust.
Even when the corner state frequency is protected by

chirality and NNN or all-to-all interactions break this
symmetry, we see in Figure 7 that CSs still appear at
approximately ω = ωsp for both interactions. For the breathing
honeycomb lattice,120 it was shown that even when all-to-all
interactions are included in the quasi-static regime, the chirality
is approximately preserved and corner states are still robust to
disorder.
Apart from the topological CSs, other kinds of trivial corner

states, not fixed at ω = ωsp, general corner states (GCSs) can
arise from next nearest (or further) neighbor interactions, as
shown for the breathing Kagome,14 breathing honeycomb
lattice,120 and SSH2D model.121,122 For our set of parameters,
we do not find this kind of corner state in the SSH2D lattice.
Finally, we analyze long-range calculations. One difference

between quasi-static and long-range bands is that in the former,

the number of equations always matches the number of bands
(3N). However, for the latter, around light lines it is possible to
find more than one solution per k-point for transversal modes.
This is due to a strong polariton-like splitting at the light line
(see highest frequency band in Figure 6e) caused by coupling
to free photons, and has been shown in 1D33,123 and 2D
plasmonic arrays.124

As with the infinite long-range sums in the real space, the
calculations for the finite lattice converge slowly with size. This
implies that results from finite and periodic infinite lattices may
differ,125 and bulk-boundary correspondence is not so
straightforward as with short-range interactions. In our case,
we see even when the change in the bands between short-range
and long-range is drastic near the light lines, the spectrum and
states of the finite system are not very perturbed by adding
long-range terms apart from the depolarization shift in
frequency (including the CSs). Very large finite lattices may
be needed to reach the infinite limit.125

In conclusion, this evidences the importance of using
realistic and appropriate models to study topology. Different
approximations lead to different topological properties, so only
when we are in the quasi-static regime kR ≪ 1 can we restrict
to short-range interactions.

Methods to Aid with Long-Range Interaction. Bearing
in mind the relevance of properly addressing long-range
interaction in topological photonic systems, we now describe a
convenient method to tackle such complex calculations for
planar arrays. The optical properties of periodic arrays can be
described by the so-called lattice depolarization Green

Figure 7. Spectrum for a 12 × 12 SSH2D lattice of silver nanospheres: Nanoparticle radius a = 8 nm, unit cell width d = 10a = 80 nm, intracell
length t = βd/2 = 1.4 × 5a = 56 nm, and background permittivity ϵB = 2.25, where blue, purple, and orange dots represent, respectively, bulk, edge,
and corner states. As insets in panels (a) and (e), we show a zoom of the edge states for nearest neighbors and long-range approximations.

Figure 8. Lowest frequency edge and corner states for a SSH2D 12 × 12 lattice of silver nanospheres: plot of |pz|2, where pz is the out-of-plane
component of the dipole. The lattice parameters are nanoparticle radius a = 8 nm, unit cell width d = 10a = 80 nm, intracell length t = βd/2 = 1.4 ×
5a = 56 nm, and background permittivity ϵB = 2.25. Panels (a1) to (e1) correspond to the lowest-frequency edge states (see Figure 7) for the
different approximations and panels (a2) to (e2) correspond to quadrupole corner states.
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function, b⃡ , which accounts for the electromagnetic field
scattered by the entire array over all the particles.126,127 For
one particle per unit cell, it can be written as

r eG( )b
nm

n m,
i n m,∑⃡ ≡ ′ ⃡ − ϕ

(38)

where n and m are indices that encode the unit cell. r rG( )⃡ − ′
is the dyadic Green’s function (see eq 32) of a dipolar source
at r propagated to r′
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where g(r, r′) is the scalar Greens’s function; ϕn,m is the Bloch
phase related to the central unit cell (placed at (n, m) = (0,
0)), and the sum runs over all unit cells except for the central
one, where we set r 0(0, 0, 0)00 = ≡ . This formalism can be
straightforwardly generalized for more than one particle per
unit cell.

The evaluation of b⃡ can be done in real space, but the
convergence is in general very slow. Although there are
mathematical techniques to improve the convergence,128 it is
more convenient to transform the sum from real to reciprocal
space. In this regard, the techniques employed for the Ewald
summation can be useful. However, it is not possible to
separate the contributions into a short-range term (its sum
quickly converges in real space) and a long-range term to
calculate (complex) resonant modes, as the sum cannot be
evaluated in real space at complex frequencies (Green’s
functions diverge for r → ∞). In fact, the complex resonant
frequencies of the lattice can only be found in reciprocal space,
which in turn yields fruitful physical insights. Therefore, the
entire sum should be evaluated in reciprocal space with the aid
of the Weyl expansion of a spherical source (scalar Green’s
function, r rg( )˜− ),
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where q k Q Qx y
2 2 2= − − , and the Poisson sum of

exponential functions reads
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Since short-range terms are also transformed into reciprocal
space, the convergence of the sum can be slow, with terms that
go as ecn/n or as derivatives of this term with respect to c. In
order to improve the convergence, the next equation is useful
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In a practical sense, b⃡ is calculated as a limit, such that
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where the term (n, m) = (0, 0) is also included in the sum. The
divergence of this sum is canceled out by the divergence of the
Green’s function at r = 0. In addition, since a 2D array of
particles can be seen as a 1D array of chains of particles, the
lattice depolarization Green’s function can be written as
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where b Ch
⃡ − is the “depolarization” dyadic of a chain of

particles, b D
l

1
( )⃡ − is the “depolarization” dyadic of a 1D array of

cylinders, and P is related to the lattice constants and to the
geometry of the lattice.127

Equations 44 and 45 allow for a fast calculation of the effect
of the field scattered by all the dipoles, avoiding the problems
associated with slow convergence in real space. This makes it
possible to obtain the band structures of particle arrays and any
related topological property.

4. NONLINEAR TOPOLOGICAL NANOPHOTONICS
We now briefly discuss the combination of topological
photonic structures with nonlinear effects. The bulk of the
progress so far in this area has been with high-index dielectric
nanostructures, which possess strong optical nonlinearities
enhanced by Mie-type resonances.11,103

Third-order harmonic generation has been demonstrated at
the edge states of a topologically nontrivial zigzag array of
dielectric nanoparticles34 (Figure 9a). The interaction between
the Mie resonances of dielectric nanoparticles and the
topological localization of the electric field at the edges results
in the amplification of the signal.
In topologically nontrivial 2D metasurfaces, comprising

arrays of dielectric pillars, the nanoscale localization of light in
corner states has been revealed via a nonlinear imaging
technique129 (Figure 9b). Nonlinear optical interactions in
topological nanostructures provide unique opportunities to
perform direct high-contrast visualizations of optical topo-
logical states.
Various photonic structures have be shown to exhibit lasing

from topologically protected edge modes (Figure 9c). At the
nanoscale, success has been made with arrays of dielectric
nanoparticles,37,80 and lasing has also been predicted with
topological insulator nanostructures,23 discussed in more detail
in Section 5.
Since nonlinear problems are generally complicated to solve,

platforms where the full set of Maxwell’s equations can be well
approximated by simpler coupled-mode or tight-binding lattice
models are usually preferred for studying nonlinear topological
photonics. Some of the methods given in Section 3 may go
some way to addressing difficulties in computation in specific
systems and shed light on new physics. In particular, the study
of self-interaction effects would allow us to better understand
many-body quantum topological phases of light. A major goal
would be to reproduce the Bose-Hubbard model with photons
(Figure 9d), which requires strong single-photon non-
linearities. This would allow for progress in the study of
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topological order (i.e., the study of systems whose topological
properties stem from long-range entanglement) at the
nanoscale.

5. TOPOLOGICAL INSULATOR NANOPARTICLES
The main discussion of this Perspective has focused on using
nanostructures to manipulate light and manifest topological
properties in the frequency spectrum of the resultant system. A
separate route to topological nanophotonics is the use of
nanostructured topological materials interacting with light.
Materials such as Bi2Te3 and Bi2Se3

130−132 are examples of
electronic, 2 topological insulators, which have an insulating
(or in realistic systems, semiconducting) bulk and symmetry-
protected topological surface states, as illustrated in Figure 10a.
These surface states manifest as a linear Dirac cone in the band
structure of the material, and due to the time-reversal
symmetry protecting them, they are immune to backscattering.
When engineered as nanostructures, the length-scale of the

nanostructure becomes commensurate with the length-scale of
the surface states (in some or all dimensions), resulting in

quantum confinement of the surface states. For the case of
spherical topological insulator nanoparticles16,22,133−138

(TINPs), quantum confinement occurs in all dimensions,
and the topological surface states become fully discretized, as
given schematically in Figure 10b. The energy level spacing is
∼A/a, where A is a material-dependent constant24,139 and a is
the radius of the nanoparticle. For large a, a continuum Dirac
cone is recovered, and the spacing can be tuned with both
radius and the chosen material. For the Bi2Se3 family of
materials, A is on the order of 0.1 nm eV, and the confinement
effect occurs for nanoparticles with a ≤ 100 nm, which results
in transition frequencies in the THz regime.
This has several implications for the applications involving

these systems. It has been shown theoretically that both TI
nanodisks140 and TINPs can be used to create THz
nanolasers,23 as shown in Figure 10c. Experimental progress
in producing TI nanostructures is continuing to improve, with
the successful manufacture of TI nanoflakes and nano-
disks,141−145 nanowires and nanoribbons,146,147 and nano-
particles.133 As we are able to engineer these systems with
greater control, these simple systems will begin to challenge
the bulkier and more costly THz laser alternatives.
The unusual combination of length-scales at play in TINPs

results in the excitations within the quantized Dirac cone of

Figure 9. Nonlinear topological nanoparticle photonics: (a) Higher-
order harmonic generation with zigzag arrays of dielectric nano-
particles. Figure adapted with permission from ref 34. Copyright 2009
Nature Publishing Group. (b) Nonlinear imaging of edge and corner
states in 2D arrays of dielectric pillars, adapted with permission from
ref 129. Copyright 2021 American Chemical Society. Lasing from the
edge states of (c) topological insulator nanoparticles23 and dielectric
nanoparticles.80 Images from refs 23 and 80 licensed under CC BY
4.0, https://creativecommons.org/licenses/by/4.0/. (d) Many-body
quantum topological phases of light exploiting nonlinear effects.

Figure 10. TINPs and hybrid systems: (a) Schematic of a topological
insulator nanoparticle (TINP), showing bulk and surface states. (b)
Discretization of Dirac cone for small nanoparticles, with energy level
separation near the Dirac point inversely proportional to particle
radius, a, and directly proportional to material-dependent constant A.
Transitions between energy levels are facilitated by the absorption or
emission of THz light. (c) Schematic of TINP in a cavity setup for
lasing. (d) Hybrid system of a quantum emitter close to the surface of
a TINP. Parts (a)−(c) taken from ref 23 and licensed under CC BY
4.0, https://creativecommons.org/licenses/by/4.0/.
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Bi2Se3 family materials having a frequency commensurate with
that of a range of the bulk phonons. The strong coupling
between excitations in the discrete Dirac cone and the Au

1

phonon mode results in a phonon-polariton mode, and the
relative sharpness of the excitation with respect to the phonon
mode results in a Fano resonance.22 This surface topological
polariton (SToP) mode manifests as a tall, narrow peak in the
absorption cross section of the TINP, and a point of zero
absorption. Both the peak position and the point of zero
absorption are sensitive to particle size and material-type of the
TINP, with potential applications in THz sensing. This
phenomenon has been demonstrated experimentally,133 and
the continuing successful manufacture of TI nanostructures
should allow for this effect to be demonstrated in
nanostructures of varying dimensions, such as disks and
short pillars. Even without full confinement of the surface
states, the metal-like surface of topological insulators allows for
the generation of surface plasmon polaritons over a very wide
frequency rangefrom the UV to THz, which could lead to
various applications in optical devices due to their low
propagation losses relative to metals such as silver and
gold.148,149

There is an increasing body of theory literature in which TI
nanoparticles and other nanostructures are being used in
hybrid systems where they may have additional applications.
TI nanostructures, and in particular TINPs, can be integrated
into hybrid systems by combining them with other quantum
systems such as semiconductor dots137 and quantum
emitters.138 Strong coupling between a TINP and a quantum
emitter has been proposed as a way to probe topological
magnetoelectric effects.150 TI nanodisks have also been
suggested as novel spin field-effect transistors.151 Quantum
emitters tuned to a specific frequency in the vicinity of a TINP
(such as illustrated in Figure 10d) will experience a greatly
increased photonic LDOS, leading to enhanced spontaneous
emission rates,152 quantum interference between spontaneous
emission channels,153 and other benefits such as potentially
enhanced energy transfer.

6. OUTLOOK
Topological photonics can be naively described as a platform
by which we can study electronic analogues of topological
phases in a clean and highly tunable system. The field is of
course so much more than this, allowing us to explore
topological physics beyond that which is easily achievable in
condensed matter systems, while complementing the landmark
work already achieved in the study of topological phases in
other disciplines of physics. Continuing our exploration of
topological photonics has naturally led us to topological
nanophotonics, where we can access new length scales and
frequency regimes. However, to treat nanophotonic systems
accurately means we must embrace their rich dynamic
properties, long-range interactions, and their potential for
nonlinearity and complexity. All of these properties may bring
with them more physical insight into topological physics and
potentially new applications.
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para a Cie ̂ncia e a Tecnologia and Instituto de Tele-
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