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Abstract

In this chapter we will review both the rationale and experimental design for using Heterogeneous 

Stock (HS) populations for fine-mapping of complex traits in mice and rats. We define an HS as an 

outbred population derived from an intercross between two or more inbred strains. HS have been 

used to perform genome-wide association studies (GWAS) for multiple behavioral, physiological, 

and gene expression traits. GWAS using HS require four key steps, which we review: selection 

of an appropriate HS population, phenotyping, genotyping, and statistical analysis. We provide 

advice on the selection of an HS, comment on key issues related to phenotyping, discuss 

genotyping methods relevant to these populations, and describe statistical genetic analyses that 

are applicable to genetic analyses that use HS.
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1 Introduction

In the past 10 years, heterogeneous stock (HS) rodents have been used for fine-mapping 

and identification of underlying causal genes and genetic variants of multiple complex traits. 

HS are highly recombinant rodent populations that are created from two or more (most 

commonly eight) inbred founder strains. Examples of HS populations include advanced 

intercross lines (AIL), HS mice and rats, HS-CC, and the diversity outbred (DO) mouse. 

The original purpose of the early HS populations was to serve as a source of genetic 

diversity for selection studies, whereas more recently created HS (HS-CC and DO) were 

intended primarily for genome-wide association studies (GWAS). In each case, a collection 

of inbred strains were chosen to capture high levels of genetic diversity. Breeding schemes 

for these populations require that many families are maintained in each generation and 

that familial relationships among breeding pairs are minimized. With each generation of 

outbreeding, the distance between recombination events is reduced, allowing for genetic 

mapping to increasingly smaller intervals. The individuals within an HS represent a random 

mosaic of haplotypes of the inbred founder strains, with each animal being genetically 

and phenotypically distinct. Thus, HS more closely resemble the variation found in 

natural populations (including humans) when compared to “reference populations” such 

as recombinant inbred (RI; [1]), collaborative cross (CC; [2]), and other inbred panels. New 

mutations within HS populations are generally assumed to be negligible, although future 

work is needed to test this assumption.
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There are several advantages to using HS populations for genetic mapping relative to 

traditional mapping strategies such as an F2 intercross or backcross. The first is that 

they allow mapping of complex traits to small regions, addressing a critical weakness of 

traditional mapping strategies [3-5], and decreasing the number of candidate genes within 

each interval. A second advantage is that the founders of all extant HS have been fully 

sequenced and these data are available in public databases, making it possible to identify 

informative markers, potentially causal coding variants and more complex repetitive or 

structural differences. Ancestral haplotype information can also be used to inform which 

founder allele (s) contribute to the phenotypic trait (see [6, 7]). Third, the use of HS models 

for genetic mapping minimizes the chance that mapped alleles will be highly dependent on 

a specific genetic background/genetic context (see [8]), because loci are identified on a mix 

of genetic backgrounds. Finally, due to the genetic diversity within HS populations, there 

is often a high degree of phenotypic variability, ranging from physiological to behavioral 

traits, allowing genetic mapping of many different traits in the same cohort. Advantages and 

disadvantages of HS rats relative to other mapping strategies have been previously discussed 

[3-5].

For genetic mapping studies in HS populations, four key steps are necessary: selection of 

an appropriate HS population, phenotyping, genotyping, and statistical analysis. All four are 

discussed in more detail below.

2 Selection of an Appropriate HS Population

Below we review available rat and mouse HS populations that can be used for genetic 

studies. In deciding whether to use HS rats or mice, the main consideration should be the 

phenotype to be studied. Rats are better suited for certain behavioral phenotypes that do 

not work well in the mouse [9]. Rats are also larger and thus may be more amenable to 

phenotypes involving surgery. Mice are less expensive to maintain and benefit from the 

availability of a greater diversity of genetic tools and resources. Because genetic mapping 

is dependent on the heritability of the trait, it is important to establish heritability of 

a phenotype before beginning a large GWAS. This can sometimes be accomplished by 

measuring differences among the inbred founder strains; however for HS rats, the original 

founder strains are no longer available; therefore, heritability must be established using the 

most closely related inbred strains or by pedigree or marker-based relatedness (e.g. [10]).

2.1 HS Mice

The oldest HS mouse population, which is now extinct (personal communication, Dr. Jerry 

Stitzel 6-30-18), was the Boulder HS which was created in UC Berkeley but thereafter 

maintained at the Institute for Behavioral Genetics in Boulder, CO (aka HS/IBG; [11]). 

The HS/IBG was created by intercrossing eight inbred strains: A, AKR, BALB/c, C3H/2, 

C57BL, DBA/2, Is/Bi, RIII (note that the exact strain/vendor designations are unknown). A 

second HS population, called the Northport HS (aka HS/NPT; [12]), which is alive in the 

laboratory of Dr. Robert Hitzemann as of July 1, 2018, was created using six of the same 

inbred strains: A/J, AKR/NCrl, BALB/cAnNCrl, C3H/HeNCrl, C57BL6/NCrl, DBA/2J, 

but replaced Is/Bi and RIII with CBA/J, and LP/J. Both the HS/IBG and HS/NPT were 
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originally created to provide a genetically diverse population for selection studies, but were 

later used for genetic fine-mapping. The HS/NPT was one of the earlier stocks used for 

genetic fine-mapping, with the goal of narrowing previously identified loci discovered using 

an F2 cross [12, 13]. Using HS for genome-wide analysis, in which discovery of genetic 

loci and fine-mapping for multiple phenotypic traits were done in the same cohort, occured 

several years later [14]. HS mice have since been used to map multiple traits including fear 

behavior [15], ethanol consumption [16], and arthritis [17].

An advanced intercross line (AIL) is an HS that is composed of only two inbred strains 

[18]. At least two AIL have been created using C57BL/6J and DBA/2J [19, 20], but the only 

currently extant AIL was created by crossing the LG/J and SM/J inbred strains and has been 

used for numerous mapping studies (e.g., [19, 21-34]).

More recently, several HS mouse populations that were specifically intended for genetic 

fine-mapping have been developed. The HS-CC was created by intercrossing eight inbred 

strains: A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and 

WSB/EiJ [35]. Those strains were selected because they were the same eight strains used 

to make the collaborative cross (CC; for further discussion of the CC see [36]). Another 

HS termed the HS4, which is now extinct, was similarly created by intercrossing only four 

inbred strains: C57BL/6J, DBA/2J, BALB/cJ, and LP/J [35]. Using the partially inbred 

founders of the CC, another HS was created at Jackson Labs and is termed the diversity 

outbred (DO; [37]). The DO are currently being maintained using 175 breeding pairs [7], 

a much larger number than used for other HS [38], which should significantly reduce 

inbreeding. The DO have been used for a wide variety of GWAS and related projects (e.g., 

[7, 39-44]). Both the HS-CC and DO are made up of the same eight inbred strains. That said, 

the HS-CC were started frm the original inbred strains whereas the DO were started from 

the partially inbred CC lines. For more information about the similarities and differences 

between the HS-CC and the DO, see [45].

2.2 HS Rats

The N/NIH HS is the only rat HS population that we are aware of; it was first established at 

the National Institute of Health (NIH) in 1984 [46] and was derived from the following eight 

inbred progenitor (founder) strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, 

WKY/N, and WN/N. The HS rat colony was maintained using a rotational breeding strategy 

and 60 breeder pairs by Dr. Carl Hansen at NIH until 2003. From 2003 to 2006, the 

colony was transferred to the laboratory of Dr. Eva Redei at Northwestern University and 

the number of breeder pairs decreased to 25. In 2006, the HS colony was transferred to 

two locations: Dr. Solberg Woods at the Medical College of Wisconsin and Dr. Alberto 

Fernando Teruel at the Autonomous University of Barcelona in Spain. At that time, the 

colony had been through 55 generations of breeding (50 at the NIH and 5 at Northwestern 

University). At MCW the number of breeding pairs was increased to 46 and the colony 

was maintained using a rotational breeding strategy [1, 23]. The HS animals at the 

Medical College of Wisconsin were named NMcwi:HS (Rat Genome Database identification 

number: 2314009). In 2013, after 15 generations of breeding at MCW (70 total), the colony 

was expanded to include 64 breeder pairs per generation and have been maintained in this 
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way since that time. At that time a new breeding strategy that uses kinship coefficients 

was employed (https://github.com/pcarbo/breedail). As of early 2018, the colony had been 

through 81 generations of breeding. This HS rat colony is currently a national resource 

funded through a NIDA Center of Excellence for genome-wide association studies (GWAS) 

in outbred rats (P50DA037844) which seeks to identify genetic loci underlying drug abuse 

behaviors (see www.ratgenes.org). Dr. Solberg Woods’ laboratory currently ships rats to 

several investigators throughout the United States, on a cost-recovery basis (enquiries to: 

lsolberg@wakehealth.edu). As of this writing, the HS colony is being maintained at both 

the Medical College of Wisconsin (MCW) and Wake Forest School of Medicine (WFSM); 

however, the MCW colony will be phased out by the end of 2019.

HS rats have also been used for GWAS. They were first used to fine-map a previously 

identified locus for glucose tolerance [47, 48], which led to identification of Tpcn2 as 

the likely underlying causal gene [49]. They were subsequently used to map multiple 

behavioral and physiological traits [50]. Since then they have been used for genetic mapping 

of adiposity [6] and studies show that the HS rat will be a promising model for mapping 

kidney-related traits [51], bone fragility [52], drug abuse behavior [53-55], depression-like 

behavior [10], as well as behavioral and physiological responses to stress [56-58] and 

ethanol [59-61].

2.3 Breeding Considerations

In many cases, HS mice or rats can be obtained from an existing colony for much less 

than the cost of maintaining an independent colony. When maintaining a colony, both the 

breeding methods (i.e., circular vs. random) and the number of families per generation are 

critical parameters. Rockman and Kruglyak [62] conducted a series of simulation studies 

that compare several outbred designs. They concluded that randomized breeding, using 

equal contributions from each breeder pair for the next generation (one male and one female 

from each breeder pair, no sib matings), is one of the most effective designs. Random 

breeding results in an expanded genetic map, decreased bin sizes between recombination 

breakpoints and controls genetic drift. An added advantage is that it is relatively easy to 

implement. Both inbreeding and genetic drift are also dependent on population size, with 

smaller populations more vulnerable to genetic drift [63]. In this regard, it is best to maintain 

the largest colony that is economically feasible. Rockman and Kruglyak [62] found that 

64 breeder pairs increased map expansion, decreased bin size, and controlled genetic drift 

relative to a population of only 16 breeder pairs. In general, more breeder pairs are always 

better for achieving these goals. Dr. Palmer’s lab has created software that implements a 

more sophisticated breeding scheme that uses the pedigree to minimize relatedness across all 

pairs (https://github.com/pcarbo/breedail).

3 Phenotyping

We will not discuss any particular phenotype as these are beyond the scope of this 

chapter. Phenotypic traits studied in HS mice or rats, however, should be amenable to 

high-throughput phenotyping, as large numbers of animals are needed to achieve sufficient 

statistical power (see Subheading 3.3 below). Because each HS animal is genetically and 
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phenotypically unique, it is not possible to have biological replicates when working with HS 

populations. For this reason, it is important to use phenotypes that are robust, stable, and 

replicable—heritable traits should fulfill these criteria. Due to the cost of genotyping, it is 

advantageous to phenotype multiple traits in each animal. Examples of studies with multiple 

high-throughput phenotypes include Valdar et al. [14], Baud et al. [50], and Gonzales et al. 

[25].

3.1 Tracking Animals and Covariates

Record keeping is critical to all scientific work, and is especially so for a large GWAS 

with HS. Each animal must be assigned a unique ID. At the time of weaning, all animals 

should receive some indelible identifier, typically an ear, neck tag or a transponder ID chip, 

secondary identifiers, like ear punches can also be helpful. Pertinent information that should 

be recorded includes sex, coat color (convenient for identifying the animal while alive and 

for checking genetically predicted coat color versus recorded coat color, which can identify 

sample mix-ups), date of birth, date of death, and the ID of the mother and the father. 

Phenotypic data that are collected should always refer to the individual by their unique ID; 

abbreviating this ID is sometimes tempting, but always unwise. Covariates collected at the 

time of phenotyping such as batch, experimenter, and time of day should also be carefully 

recorded; a list of possible confounding environmental covariates has been presented by 

[64]. As discussed in Subheading 5, covariates can then be regressed out in advance or 

included in the statistical model.

3.2 Data Checking

Once all phenotype data have been collected, it is important to remove erroneous data and 

to locate missing data; in practice, identifying outliers is a good first step. Once outliers are 

identified, it can be determined whether the outlier is legitimate or represents some type of 

error. Often batches of data (e.g., data collected on a given day) can be compared to data 

collected in all other batches, to determine whether batch-wide errors have occurred.

3.3 Statistical Power

The number of animals to be used depends greatly on the heritability of the trait, which 

can be estimated in advance. However, power also depends on the effect sizes of the QTLs, 

which are not knowable in advance. Power also depends on the degree of recombination 

among the HS founders, with greater recombination increasing mapping precision but also 

decreasing statistical power, thus increasing the sample size required (see [4]). Previous 

power calculations have been run in multi-founder populations and suggest that 1000–1500 

HS animals provide sufficient power for mapping QTL explaining 5% of the variance 

[65-67]. These simulations do not account for the confounding effects of relatedness (e.g., 

[22, 68]), or marker ascertainment (e.g., [69]). That said, previous studies using >1000 rats 

or mice have had high degrees of success in mapping many traits [14, 50]. Indeed, we have 

had success mapping adiposity traits with only 742 HS rats, although the QTL identified 

just reached the significance level despite explaining >5% of the variance [6]. Expression 

QTL (eQTL) mapping generally requires far fewer animals because eQTL explain a greater 

percentage of the variance.
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4 Genotyping

A critical consideration for any quantitative trait locus (QTL) mapping study is the 

genotyping platform. The number of genetic markers needed is a function of the 

recombination in the HS population; in general, more generations of breeding will require 

more markers. Prior studies have used anywhere between a few thousand to a few million 

markers. If marker density is not sufficient, QTLs may not be detected. For example, 

in a study conducted a decade ago, we used a single nucleotide polymorphism (SNP) 

genotyping microarray that contained ~4,500 informative markers to study a 34th generation 

AIL [22]; subsequent reanalysis with a denser set of markers showed that some apparently 

true loci were not discovered due to inadequate coverage (https://www.biorxiv.org/content/

10.1101/387613v2). Similarly, in one of our recent HS rat studies, we used a 10,000 

SNP array, containing 8218 informative markers in the HS rat population [6]. Although 

successful for genetic mapping, we found that this relatively low number led to uncertainty 

when we tried to impute founder haplotypes (see Subheading 5 below).

Many recent mouse studies have used the Mouse Universal Genotyping Array (MUGA) 

which contains about 8000 SNPs [7], the MegaMUGA which contains about 78,000 SNPs 

and the more recent GigaMUGA, which contains about 143,000 SNPs; these arrays are 

available from Neogen (http://genomics.neogen.com/en/mouse-universal-genotyping-array). 

Previous studies in the HS rat have used an 800K array [50]; however this array is no longer 

commercially available.

Microarrays are typically designed with a particular population in mind, which means 

they may not provide satisfactory coverage for other populations. For example, the above 

mentioned MUGA arrays, despite their name, were predominantly designed for the DO 

mouse and may be less informative in other populations (e.g., see [70, 71]). Designing 

a new array incurs a significant cost. As the price of next generation sequencing has 

decreased, strategies have been developed to obtain genotypes via sequencing rather than 

from microarrays. The two most prominent sequencing-based strategies are genotyping-by-

sequencing and low-coverage whole-genome sequencing.

For low-coverage whole-genome sequencing, the entire genome of each rat or mouse 

is sequenced at very low coverage (~0.2X). An imputation algorithm is then used to 

call genotypes. Davies et al. [72] recently developed a genotype imputation algorithm, 

Sequencing to Imputation Through Constructing Haplotypes (STITCH), that is tailored to 

low-coverage sequence data for which no reference haplotypes are available. This method 

has recently been applied to commercially available outbred mice [70].In the case of HS, for 

which reference haplotypes are available, conventional imputation software such as Beagle 

[73] may perform equally well [72].

Genotype-by-sequencing (GBS), which was originally developed for use in plants, has been 

adapted for use in both mice and rats [25, 71, 74]. In this method, the DNA is cut using 

one or more restriction enzymes, ligated to bar-coded adapters, pooled, and sequenced. 

As the cost of sequencing continues to decrease, these methods may supplant the use of 
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microarrays; however, it is important to note that the bioinformatic analysis required for 

these sequencing-based methods is more burdensome than for microarrays.

Genotype data can be used to perform several important quality checks. Markers on the X 

chromosome should be homozygous (actually hemizygous) in males, the presence of too 

many heterozygous genotypes in a male, or too few in a female, suggests that the sex was 

recorded incorrectly or that samples were inadvertently switched. Such errors should be 

corrected or the affected samples should be excluded. When sequencing data are available 

it is also possible to compute the fraction of reads that map to the X chromosome; females 

are expected to have twice as many such reads. As with genotype information, deviations 

from this expectation indicate some sort of error. Genotype information can also be used to 

determine whether the genotypes are consistent with the recorded pedigree; this can be done 

in many ways, including by performing “Mendelization checks” or by comparing identical 

by descent statistics to kinship as calculated from the pedigree. Finally, the genotype at 

known coat color alleles can be compared to the recorded coat color; deviations from 

expectation may indicate genotyping error at that locus, errors in the recording of coat color, 

or sample mix-ups.

5 Statistical Analysis

Once phenotype and genotype data have been quality checked, the data are statistically 

analyzed. Association analyses can be conducted on SNP genotypes or on ancestral 

haplotypes, as described below.

GWAS is widely used in human genetics and is a general term for many similar methods that 

seek to estimate the association between a genetic marker (typically a SNP) and a phenotype 

of interest. Rodent populations have relatively small effective population sizes, meaning that 

there will be variable degrees of relatedness among subjects (siblings, cousins, etc.), which 

must be accounted for when performing a GWAS [22, 68, 75-78]. The most commonly 

used approach to account for relatedness is to employ a linear mixed model (LMM see [6]). 

Various software packages are available for this purpose (reviewed in [78]) that can include 

covariates such as experimenter, time of day, and sex. The only LMM software packages 

specifically targeted at model organisms are QTLRel [7, 75], DOQTL [79], and R/qtl2 [80], 

all of which have been used to analyze multi-founder populations like the HS. In addition, 

GEMMA, while originally designed for use in human GWAS, has been widely used for 

both human and rodent GWAS (e.g., [71, 81]). Non-normally distributed phenotypes may 

require transformations as with other statistical tests that assume normality. Web-based tools 

are also available to allow dynamic analyses with historical or user-supplied datasets (see 
www.genenetwork.org).

An advantage of HS populations is the ability to impute founder haplotypes. Imputation 

is commonly used in human genetics to obtain genotypes at markers that are not directly 

genotyped. However because an HS has a finite number of haplotypes and because parental 

lines have been sequenced, ancestral haplotype probabilities can be used for genetic 

mapping, potentially providing information beyond that obtained using only SNP genotypes 

[66]. There are several methods for haplotype imputation, including HAPPY, originally 
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developed by Mott and colleagues [66], DOQTL, developed by Gatti and Churchill [79] 

or QTL2Geno, developed by Broman [80, 82]. All methods employ a Hidden Markov 

model to determine the probability of each possible haplotype across the genome. To date, 

a comparison of the three methods has not been published. Once genetic loci are identified, 

founder haplotype effects can be determined using tools within DOQTL [79] or using the 

Diploeffect model (see [6, 83]) or simply by comparing strain distribution patterns for the 

lead SNP and adjacent SNPs.

5.1 Significance Thresholds

In human GWAS, 5 × 10−8 is an almost universally accepted threshold for significance [84]. 

In HS rodent populations, where the degree of linkage disequilibrium is highly variable 

[4], it is more common to use empirically derived thresholds. Genome-wide significance 

thresholds can be determined using Bonferroni thresholds (which are highly conservative), 

estimated by parametric bootstrap samples from the fitted null [47, 68], or estimated using 

permutation, if and only if an LMM was used to account for relatedness [76]. There are 

also more recently proposed methods (e.g., multiTrans), and our experience suggests that 

thresholds obtained using multiTrans are very similar to those obtained using permutation 

(unpublished observation).

5.2 Confidence Intervals

To determine confidence intervals, LD intervals for the detected QTL can be defined by 

including neighboring markers that meet a set level of LD, measured with the squared 

correlation coefficient r2 as previously described [6]. An r2 threshold of 0.4 is widely used in 

human genetics.

6 Post-GWAS: How to Find Causal Genes and Variants

Genetic loci identified using HS rats or mice typically span just a few Mb or less (there 

are several examples of loci that are less than 1 Mb), depending on many factors including 

the population used, the effect size of the locus, the density of the markers, and the local 

LD structure. In rare cases these loci contain only one gene, however it is common to 

identify loci that include many genes. It is therefore important to follow up genetic mapping 

with additional strategies to identify the causal genes and/or variants. Non-synonymous 

variants within the QTL that are both highly conserved and predicted to be damaging 

by SIFT (http://sift.jcvi.org/) or Polyphen (http://genetics.bwh.harvard.edu/pph/) should be 

considered, if and only if they match the strain distribution pattern of the QTL. As 

demonstrated in our lab [6] and by others [50], this can be followed up by using protein 

modeling strategies to demonstrate a functional effect of the amino acid change. Although 

this strategy has been successful, human GWAS suggests that most causal variants are 

likely to be regulatory instead of coding. Although there are still challenges to identify the 

causal regulatory variant, RNA expression, eQTL mapping (e.g., [49, 71]), co-localization 

[85], and mediation analysis [6] can be used to identify candidate genes that underlie these 

loci. When combined, we have demonstrated that these strategies allow identification of 

multiple candidate genes underlying a single locus [6]. Merge analysis [86] has also been 
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used to narrow the number of potentially causal variants within a QTL, thus further refining 

candidate genes within a locus.

7 Conclusions

HS populations allow genetic fine-mapping of complex disease traits to relatively small 

intervals of the genome. Due to genetic and phenotypic diversity, these model systems 

are useful for mapping multiple behavioral and physiological traits. We have outlined 

the general methods used for genetic mapping using outbred rodent resources, outlining 

considerations for phenotyping, genotyping, and statistical analysis.
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