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Abstract

Objective: Kilovoltage computed tomography (kVCT) is the cornerstone of radiotherapy 

treatment planning for delineating tissues and towards dose calculation. For the former, kVCT 

provides excellent contrast and signal-to-noise ratio. For the latter, kVCT may have greater 

uncertainty in determining relative electron density (ρe) and proton stopping power ratio (SPR). 

Conversely, megavoltage CT (MVCT) may result in superior dose calculation accuracy. The 

purpose of this work was to convert kVCT HU to MVCT HU using deep learning to obtain higher 

accuracy ρe and SPR.

Approach: Tissue-mimicking phantoms were created to compare kVCT- and MVCT-determined 

ρe and SPR to physical measurements. Using 100 head-and-neck datasets, an unpaired deep 

learning model was trained to learn the relationship between kVCTs and MVCTs, creating 

synthetic MVCTs (sMVCTs). Similarity metrics were calculated between kVCTs, sMVCTs, 

and MVCTs in 20 test datasets. An anthropomorphic head phantom containing bone-mimicking 

material with known composition was scanned to provide an independent determination of ρe and 

SPR accuracy by sMVCT.

Main results: In tissue-mimicking bone, ρe errors were 2.20% versus 0.19% and SPR errors 

were 4.38% versus 0.22%, for kVCT versus MVCT, respectively. Compared to MVCT, in vivo 
mean difference (MD) values were 11 and 327 HU for kVCT and 2 and 3 HU for sMVCT in soft 

tissue and bone, respectively. ρe MD decreased from 1.3% to 0.35% in soft tissue and 2.9% to 

0.13% in bone, for kVCT and sMVCT, respectively. SPR MD decreased from 1.8% to 0.24% in 

soft tissue and 6.8% to 0.16% in bone, for kVCT and sMVCT, respectively. Relative to physical 

measurements, ρe and SPR error in anthropomorphic bone decreased from 7.50% and 7.48% for 

kVCT to <1% for both MVCT and sMVCT.

Significance: Deep learning can be used to map kVCT to sMVCT, suggesting higher accuracy 

ρe and SPR is achievable with sMVCT versus kVCT.
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1. INTRODUCTION

Kilovoltage computed tomography (kVCT) scans have been the primary imaging modality 

used in imaging-based radiation therapy treatment planning. In the treatment planning stage 

of radiation therapy, kVCT scans serve two main purposes: 1) for contouring of normal and 

diseased tissues and 2) for calculation of relative electron densities and/or stopping power 

ratios required for dose calculation. For the former purpose, kVCT scans possess favorable 

characteristics in terms of soft and bony tissue contrast relative to noise and imaging dose. 

The favorable contrast in soft and bony tissue observed in kVCT scans is due to the 

dominance of the photoelectric effect at low x-ray energy and to its higher-order dependence 

on atomic number (Z). This greater dependence on atomic number, however, causes a 

degenerate relationship between kVCT Hounsfield Unit (HU) and electron density. This 

degeneracy prevents accurate determinations of relative electron density (ρe) and stopping 

power ratio (SPR), which is predominantly dependent on electron density.

While not strictly linear, the relationships between CT HU and both ρe and SPR are often 

modeled as piecewise linear functions with two or more linear regions (for example, lower 

density in lung and soft tissue, and higher density in bone). As there’s an explicit atomic 

number dependence in this relationship, it is known that for a given HU there may be 

multiple possible solutions for electron density1–3. In other words, as these three types of 

tissues exhibit different physical/mass densities, any solution to explicitly resolve relative 

electron density from CT HU necessitates an understanding of the atomic composition of the 

material or at least some knowledge of the magnitude of its effect on the CT HU. With only 

a standard single kVCT scan, there is not enough additional information to correct for this 

atomic number dependence. While a lesser concern for x-ray/photon-based dose calculation 

where there is a smaller dosimetric impact of these uncertainties, even small inaccuracies in 

the translation of CT HU to SPR can result in over- or under-dosing of the target volume 

and nearby organs at risk 2,4. In clinical practice, these uncertainties are typically accounted 

for by adding an additional margin of 2.5–3.5% to each proton beam’s range5,6. In efforts 

to address this issue, many groups have proposed solutions involving the incorporation of 

additional information provided by CT scans of differing energy, known as dual energy CT 

(DECT). This method considers that multiple CT scans, each taken at a different energy, will 

have differential responses/intensities due to different atomic numbers and density values, 

which can be used to solve for the effective atomic number and electron density. Results 

from prior studies7–11 have shown great promise for high accuracy determination of both 

quantities. However, practical limitations of DECT include the necessity for two separate 

scans (on single-source scanners), beam hardening artifacts, and greater nominal noise12–14 

relative to single energy kVCT scanners.

At higher photon energies (for example, megavoltage (MV) photon energy), the predominant 

mechanism of photon interaction is Compton scattering, which is directly dependent on 
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the electron density of the medium rather than its atomic number. Therefore, HU in 

MVCT images are directly dependent on electron density, with MVCT having demonstrated 

sufficient accuracy for photon dose calculation15,16. In bony tissue, for example, errors 

in estimating physical and relative electron density have been reduced from 3.6% and 

2.6%, respectively, using kVCT to <1% using MVCT17. Furthermore, in contrast to 

DECT (and lower energy x-ray methods in general), images acquired at a higher energy 

spectrum are naturally less susceptible to beam hardening and photon starvation effects. 

With these advantages in terms of electron density linearity and resistance to beam 

hardening effects18–22, MVCT imaging would seem to be more favorable than lower energy 

kVCT techniques for dose calculation. Yet disadvantages such as lower image contrast, 

greater noise (due to increased Compton scatter interactions relative to photoelectric 

interactions)23, and reduced availability (due to the potentially cost prohibitive higher 

energy x-ray accelerator requirements of an MV fan beam CT scanner), have limited 

clinical implementation of MVCT scans into the radiation oncology clinic to the special 

case of on-treatment adaptation. Interest in overcoming these limitations has resulted in 

the development of technologies such as intermediate energy orthovoltage CT (OCT) 

imaging24 although, to date, no clinical system is available. In the case of proton therapy, 

proton CT provides a direct map of SPR25,26, however, its primary limitations are the 

high proton energy required to image a patient27 and low resolution due to multiple 

coulomb scattering28. In terms of dose calculation accuracy, a methodology to create a more 

accurate relationship between kVCT HU and relative electron density (in the case of photon 

radiotherapy) or SPR (in the case of proton therapy), while mitigating these mentioned 

disadvantages would be ideal.

In recent years, new image processing techniques have been developed to translate 

the characteristics of one scan to mimic the characteristics of another. In particular, 

machine learning techniques involving convolutional neural networks (CNNs) have grown 

in prominence and popularity. Involving radiation oncology volumetric scans for dose 

calculation, two main use cases have emerged: conversion of MR data to kVCT HU 

data29–31 for MRI-only radiotherapy planning and improving the image quality of cone-

beam CT (CBCT) images from kVCT data32–34. Generally, these deep learning techniques 

have found that achievable errors may be low (as low as 20–50 HU mean absolute error) 

with results improving with incremental developments in machine learning technology. In 

both discussed use cases, the imaging dataset that is being translated towards is fan beam 

kVCT HU. As there does not exist a one-to-one relationship between single scan kVCT 

HU and relative electron density or SPR, it is expected that translation of imaging data 

to synthesize kVCT HU will include any of the inherent relative electron density or SPR 

uncertainties in this process. As kVCTs exhibit more contrast and less noise than MVCTs, 

we hypothesized that it was possible to accurately translate (through deep machine learning) 

trends in HU values from kVCT to MVCT. In doing so, we anticipated that synthetic 

MVCT (sMVCT) images would naturally exhibit higher accuracy mapping of relative 

electron density and stopping power ratio, thus promising improvements for dose calculation 

accuracy. In this work, we report on the first known application of deep machine learning to 

reduce uncertainty in the relationship between kVCT HU and ρe and SPR through learning 

of MVCT HU data.
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After creation of the CycleGAN machine learning model, the clinical workflow proposed 

through this work requires only subsequent kVCT data for the conversion to sMVCT data, 

potentially alleviating the need for an MVCT scanner. In this workflow, we propose that 

the original kVCT images, with the high contrast and low noise intrinsic to kV imaging, be 

leveraged for localization and contouring of normal and diseased tissues while the sMVCT 

generated from the machine learning model be used for dose calculation, as shown in Figure 

1.

2. MATERIALS AND METHODS

In this manuscript, we present an approach to convert kVCT HU data to sMVCT HU data 

and, in doing so, produce more accurate maps of ρe and SPR. A tissue-mimicking phantom 

was created to compare physical measurements of ρe and SPR with those determined 

from kV and MV CT imaging, thus demonstrating the increased accuracy of ρe and SPR 

provided by our method. A CycleGAN deep learning model was employed to learn the 

relationship between kVCT HU and MVCT HU from in vivo patient scans and to create 

sMVCT datasets. Patient kVCT and sMVCT data were compared with MVCT data as 

the reference. Separately, an anthropomorphic head phantom containing synthetic bone of 

known material composition and density (and therefore known ρe and SPR values) was 

tested with CycleGAN model to assess the accuracy of ρe and SPR values calculated from 

the kVCT, MVCT, and sMVCT versus physical measurements.

2.A. CT imaging and HU-to-ρe and HU-to-SPR calibration curves

In this study, a Siemens Somatom CT scanner (Somatom; Siemens, Munich) was used to 

create kVCT images of phantoms and patients. Scans were acquired at 120kVp using a 

helical acquisition at an approximate resolution of 1×1×3mm3 in the axial plane (512×512 

matrix). MVCT imaging (3.5MV) of phantoms and patients were completed on an Accuray 

TomoTherapy system (TomoHD; Sunnyvale, CA) using the “coarse” pitch mode with 

reconstructed slices of 1×1×3mm3 in the axial plane (512×512 matrix). For the purposes 

of generating CT calibration curves, a CIRS (180 mm diameter) tissue characterization 

phantom (Model 062; CIRS, Norfolk, VA) containing nine tissue-surrogate plugs was 

scanned with both imaging modalities. This diameter phantom was chosen to better mimic 

scatter and beam hardening effects for the head and neck region studied. Electron density, 

ρe, was calculated for each type of tissue surrogate material using vendor provided batch 

number specific elemental compositions and mass density. HU-to-ρe calibration curves from 

the CIRS tissue surrogate phantom are shown in Figure 2a and were used in subsequent 

HU-to-ρe conversions.

HU-to-SPR calibration curves were created according to the stoichiometric method 

described by Schneider et al35. To this end, scanner-specific coefficients Kph, Kcoh, and 

KKN characterizing the photoelectric effect, coherent scattering, and incoherent scattering 

cross-sections, respectively, were computed using a linear regression fit and used to 

calculate theoretical HU values for 64 human tissues provided in the literature36,37 using 

elemental mean ionization (Im) values optimized for use with the Bragg additivity rule38. 

Three separate plots of HU versus SPR were generated for reference tissues classified as 
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organ-like, fat-like, and bone-like, with the final stoichiometric curve constructed from 

separate fits with nodes at HU values of −200, −120, −20, +35, +100, and +140 as 

previously described3. All SPR calculations were performed using a fixed proton energy 

of 115MeV to minimize consequences of energy variability in practice2. In total, two types 

of stoichiometric CT calibrations were performed: one for the kVCT scanner used in this 

study (120kVp, 1mm slice thickness) and the other for the MVCT scanner used in this 

study (3.5MV, 1mm slice thickness). Details regarding stoichiometric calibrations for kV 

and MV energies is described in the literature by De Marzi et al39. Of note, they compared 

the traditional Jackson and Hawke’s40 formalism (generally used at diagnostic energies 

and disregards contributions of pair production) to the Midgley41 formalism (encompassing 

the total attenuation coefficient spanning energies 6keV to 125MeV) to demonstrate that 

these methods show good agreement with one another. In other words, the conventional 

stoichiometric method (which uses the Jackson and Hawke’s formalism) can be accurately 

applied to a higher energy (e.g. maximum 3.5MeV) spectrum. HU-to-SPR calibration curves 

are shown in Figure 2b and were used in subsequent HU-to-SPR conversions. HU-vs-ρe 

and HU-vs-SPR calibration curves for both energies were generated twice: one used for the 

phantom data and one used for the in vivo data, which was acquired retrospectively two 

years prior. Curves were generated using CT data of the CIRS phantom acquired within 6 

months of image acquisition.

For both ρe and SPR calibration curves, it is noted that there are trends in non-linearity 

for kVCT between soft tissue, liquid water, and bone materials. On the other hand, MVCT 

calibration curves are linear with ρe and SPR, with minimal differences in linearity across 

soft tissue, liquid water, and bone tissues. This trend is in line with the finding by Das et al42 

where they found that as kVp increases, the relationship between HU and relative electron 

density becomes more linear.

2.B. Tissue mimicking phantom

An in-house tissue mimicking phantom with known mass density and elemental composition 

was created to replicate properties of skin, muscle, adipose and spongiosa bone based on 

each tissue’s molecular composition provided in the literature36,43. Details on how this 

phantom was developed and fabricated have been previously published by our group44. 

Briefly, tissues were created using homogeneous mixtures of distilled water, protein 

(gelatin), fat (coconut oil), and/or bone (hydroxyapatite powder). Elemental composition of 

each tissue-mimicking material was determined via carbon, hydrogen, nitrogen, and oxygen 

(CHNO) combustion analysis at a specialized microanalytic facility. For each tissue type, 

elemental composition measured by CHNO combustion analysis and mass density measured 

using a high precision scale (Practum313–1S, Sartorius Biotech, Germany) were used to 

calculate “measured” values of ρe (Equation 1) and SPR (Equation 2: the Bethe-Bloch 

equation and Equation 3: the Bragg Additivity Rule) for each tissue type.

ρe =
ρm ∑i

wiZi
Ai m

∑i
wiZi
Ai

ρH2O
H2O

(1)
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SPR = ρe
ln 2 mec2β2/Im 1 − β2 − β2

ln 2 mec2β2/IH20 1 − β2 − β2 (2)

ln Im = ∑i
wiZi
Ai

ln Ii ∑i
wiZi
AI

(3)

In Equations 1–3, for each element i composing material m, w is the fraction by weight, Z is 

the atomic number, A is the atomic mass, I is the mean ionization potential, ρe is the electron 

density of the medium relative to water, ρ is the mass density, me is electron mass, c is the 

speed of light, and β is the proton velocity relative to c. All calculations were performed 

using a fixed proton energy of 115MeV as previously described.

2.C. Human imaging data, pre-processing, and machine learning

The kVCT and MVCT images of 120 head and neck (H&N) cancer patients treated on 

an Accuray TomoHD system were retrospectively recruited into this study. This study and 

its experimental protocols were approved by the University of California, San Francisco 

Institutional Review Board (IRB) (#14-15452). All methods were carried out in accordance 

with relevant guidelines and regulations. Informed consent was waived by the IRB due to 

the retrospective, de-identified nature of the study. One hundred patient scans were used for 

training and validation while 20 patient scans were used for testing. Each patient received 

a kVCT simulation scan approximately two weeks prior to treatment (and their first MVCT 

scan). A simulation scan is a scan in which a patient is positioned in the treatment position 

to “simulate” the treatment anatomic position. This CT simulation scan is then used for 

all subsequent delineation of patient anatomy (normal and diseased tissues) as well as 

calculation of radiation treatment plans and dose distributions. Following treatment planning 

and during their treatments, each patient was imaged daily by MVCT on the TomoHD 

immediately prior to treatment. The MVCT scan closest in time to their kVCT simulation 

scan was included in this study to minimize differences in patient anatomy through potential 

changes in weight gain or loss and tumor growth or shrinkage. Each kVCT scan volume was 

co-registered to the space of their respective MVCT scan volume in MIM (MIM Software 

Inc, v 6.8.3 Cleveland, OH) using the automated 3D rigid registration algorithm to produce 

a match across the entire scan volume. These kVCT images were then resampled and 

saved while maintaining a 512×512 matrix. As the deep machine learning algorithm chosen 

(CycleGAN) would naturally learn from unpaired images, rigid registration was preferred 

to minimize the introduction of additional registration and intensity errors. Following 

registration, the kVCT field of view (FOV) was, in general, reduced to match the smaller 

FOV of MVCT scans. This FOV reduction was to mitigate “hallucinations” whereby 

unintended features such as FOV differences are learned in the process. Both kVCT and 

MVCT dataset image intensities were then renormalized to [−1, 1]. During final conversion 

and analysis, data were rescaled back to HU and then converted to relative electron density 

and stopping power ratio using the CT calibration data shown in Figure 2. Objects outside 

the body were ignored by the algorithm through the creation of a body mask that was 

applied to all images prior to model training.
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While efforts were made to best match MVCT and kVCT images, minor changes in patient 

positioning and anatomy were observed. To mitigate the learning of these subtle changes, 

an unpaired cycle-consistent generative adversarial network (CycleGAN) machine learning 

strategy45 was preferred versus other paired pixel-to-pixel machine learning algorithms. 

The CycleGAN machine learning model consists of a pair of parallel opposed generative 

adversarial networks (GANs) to learn the relationship from image A to image B and from 

image B to image A. These two GANs work in opposition to each other to generate and 

detect increasingly more accurate synthetic images. The role of the generator is to generate 

data that as closely as possible matches the real data while the discriminator’s role is to 

accurately distinguish between real and synthetic data produced by the generator. In general, 

the roles of the generator and discriminator are in competition with each other as the 

generator learns to produce increasingly realistic images that the discriminator learns to 

distinguish as synthetic for the purpose of model improvement. The learning of both GANs 

are coupled with a cyclic loss which penalizes the degree to which the composed forward 

and backward transformation varied from the identity function. If G:A→B is the generator 

producing MVCT images from kVCT images and F:B→A is the generator producing kVCT 

images from MVCT images, then the cyclic loss can be written as

Lcyc = 1
N ∑i = 1

N F G xi − xi 1 + G F yi − yi 1 (4)

where ‖ · ‖1 is the L1 norm of a vector, xi is an kVCT training example, and yi is a MVCT 

training example.

We implemented a version of the CycleGAN deep learning algorithm using PyTorch45. 

A U-Net architecture with a 2×2 bottleneck was used for the generators and a four-layer 

PatchGAN discriminator with a patch output of 30×30 with an effective receptive field 

of 142×142 for a total of 900 patches. This type of discriminator is shallower than 

modern classifier CNNs but learns faster and captures local style characteristics better than 

conventional discriminator CNNs46. Approximately 3940 2D CT images were used for 

training, composed of 100 datasets containing approximately 40 CT slices per patient. Our 

model was trained using the Adam optimizer with a learning rate of 0.00025, β1 of 0.5, and 

ϵ of 1.0 × 10−8. Training was run for 210 epochs as it was found, during validation, that 

going past this point negligibly improved generator expressivity while adding to adversarial 

noise and potential overtraining. Our methodology is analogous to prior CycleGAN machine 

learning studies of CT and on-board treatment machine CT imaging47,48. The U-Net 

architecture used for both is visualized in Figure 3.

2.D. Post-processing and evaluation

Within the twenty test patient datasets, additional processing and analysis was completed 

to assess the changes that occurred through the deep learning synthetic MVCT (sMVCT) 

creation process. Tissue segmentation was implemented to compare relative electron density 

and stopping power ratio accuracy for soft tissue and bony tissue at standard HU thresholds. 

A total of three tissue masks were created from the kVCT data: a body mask, a bony tissue 

mask, and a soft tissue mask. The body mask was created by truncating all HU values 

less than −400 and then segmenting the different connected regions. The largest of these 
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connected regions was defined to be the body region. The body region was refined to a 

mask through a binary fill operation which preserved any cavities (including nasal and sinus 

cavities) as well as the lungs of the body. All voxels inside the body mask with HU values 

greater than 150 HU were included in the bony tissue mask. The set subtraction between 

body mask and bony tissue mask produced the soft tissue mask.

In this manuscript, mean error metrics were calculated to assess differences between the 

imaging datasets at the voxel level. Letting N denote the total number of voxels shared 

between source image X and target image Y while Xi and Yi denote the intensity values 

of the ith voxel at the source and target images, mean difference (MD) and mean absolute 

difference (MAD) can be expressed as

MD = 1
N ∑i = 1

N Y i − Xi (5)

MAD = 1
N ∑i = 1

N Y i − Xi (6)

Data from all twenty test patients are included in the sums of (5) and (6) and only voxels 

within the body were included. Signal-to-noise-ratio (SNR), peak signal-to-noise ratio 

(PSNR), root mean square difference (RMSD), and a structural similarity index measure 

(SSIM) were also calculated and defined as

SNR = 1
K ∑k = 1

K μX
(k)

σ(k) (7)

PSNR = 1
K ∑k = 1

K 20log10
Imax

MSE(k) , where

MSD = 1
Nk

∑i = 1
Nk Y l

(k) − Xl
(k) 2 and Imax = 212 − 1

(8)

RMSD = 1
Nk

∑i = 1
Nk Y i

(k) − Xi
(k) 2

(9)

SSIM = 2μxμy + c1 2σxy + c2
μx2 + μy2 + c1 σx2 + σy2 + c2

(10)

where μX
(k) is the mean of source X at slice k and μY

(k) is the mirror case for another source Y 

such that the noise on slice k is given by the variable, σ(k), σxy is the covariance of x and y, 

c1 = (k1Imax)2, c2 = (k2Imax)2, k1 = 0.01, and k2 = 0.03.

2.E. Anthropomorphic head phantom

To independently verify the accuracy of bone relative electron density and SPR of kVCT, 

MVCT, and synthetic MVCT images produced by the developed CycleGAN model, relative 
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electron density and SPR were analyzed in an anthropomorphic head phantom (RS-108, 

Radiologic Support Devices Inc., Long Beach, CA) containing bone-mimicking material. 

The phantom material was analyzed using both CHNO combustion analysis and energy 

dispersive x-ray spectroscopy. Because the model was trained on in vivo human data, 

phantom materials in this study were selected based on their similarity to values of in vivo 
tissues provided in the literature36,43,49. Elemental composition, physical density, relative 

electron density (calculated from Equation 1), and stopping power ratio (calculated from 

Equations 2 and 3) were compared between phantom tissues and literature in vivo human 

tissues to ensure the phantom was a reasonable surrogate. Of the phantom materials, bone 

closely matched composition, density, and SPR values from the literature (as shown in 

Table 1) and was selected for analysis in this study. Other materials meant to generically 

mimic tissues in this head phantom did not mimic the typical mass density or elemental 

compositions found in human tissues49 and were not further investigated.

kVCT and MVCT images were acquired of the head phantom using the same protocols as 

described for the in vivo data. The kVCT data was run through the CycleGAN model to 

generate a synthetic MVCT scan. HU values (mean and standard deviation) for cortical bone 

were extracted and mapped to corresponding ρe and SPR values using the CT calibration 

curves shown in Figure 2. Values of ρe and SPR estimated from kVCT, MVCT, and sMVCT 

were compared to the physical measurements tabulated in Table 1.

3. RESULTS

3.A. Tissue mimicking phantom: physical measurements of ρe and SPR versus kVCT and 
MVCT

Results of relative electron density and stopping power ratio for the four tissue-mimicking 

phantoms that were measured and calculated through kV and MV CT calibration curves 

are shown in Table 2. Percent differences between kV and MV imaging and physical 

measurements (% diff) are also shown. Relative electron density values computed using 

MVCT were within 0.29%, 0.19%, 0.84%, and −0.19% versus those computed using 

kVCT of −2.10%, −2.61%, −0.84%, and 2.20% for skin, muscle, adipose, and spongiosa, 

respectively. In the case of stopping power ratio, both kVCT and MVCT provided accuracy 

to within 1% for skin and muscle tissues. In the case of adipose, physical measurements of 

SPR differed by 2.58% for kVCT and 1.70% for MVCT. In the case of bone, SPR values 

computed with MVCT were within 0.22% of physical measurements while kVCT deviated 

by more than 4%.

3.B. In vivo trends in HU, ρe, and SPR

CycleGAN machine learning of kVCT images to MVCT images was used to learn the 

relationship between kVCT HU and MVCT HU in a dataset containing images of the 

head and neck. Figure 4 shows exemplar images for kVCT HU, sMVCT HU, MVCT 

HU, and difference heatmaps of kVCT HU and sMVCT HU compared to MVCT HU for 

four different subject scans from the test group. In the difference heatmaps (two rightmost 

columns), there exhibits some trends in value differences between different tissue types. 

As expected from the tissue mimicking phantom results, bony tissues exhibit the largest 
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difference between kVCT and MVCT, with kVCT images exhibiting higher HU values than 

those exhibited by corresponding MVCT images. Overall, there appears to be learning of 

some characteristics of MVCT images beyond its tissue-independent relationship to electron 

density. sMVCT images exhibit increased noise compared with equivalent kVCT images, an 

unintended consequence of the learning process.

Quantitatively, we see a similar trend between kVCT/sMVCT HU and MVCT HU values 

as was seen in qualitative results shown in Figure 4. A summary of similarity metrics 

between kVCT HU, sMVCT HU and MVCT HU are presented in Table 3. Following 

CycleGAN learning, sMVCT HU values were markedly more similar to MVCT HU values 

than kVCT values. In particular, mean difference (MD) and root mean square difference 

(RMSD) HU values improved for both soft tissue and bone with the largest improvement 

in bone. Mean absolute difference (MAD) HU values did not numerically show this same 

improvement with only bone MAD HU between sMVCT and MVCT showing a large 

decrease. A potential reason for MAD values not improving may be due to the large amount 

of noise inherent in MVCT and sMVCT scans. To estimate the contribution of noise on 

MAD, the voxel MVCT HU data of a center ROI within a uniform water container was 

measured and the data fit to a Gaussian distribution (R2 = 0.96) with standard deviation of 

55 HU. Assuming a Gaussian distribution for the soft tissue/water CT noise, the MAD due 

to only CT noise would then be equivalent to the mean of a half-normal distribution,σ 2/ π. 

For an MVCT HU Gaussian noise distribution of 55 HU (1σ), the lowest achievable MAD 

would then be 44 HU assuming only noise. While the kVCT scans do not possess significant 

noise (< 10HU for 1σ), sMVCT scans will attempt to mimic both the contrast and noise 

profile of MVCT scans. To estimate the noise properties of these synthetic scans, SNR 

values for kVCT and sMVCT divided by the respective MVCT SNR values were calculated 

and tabulated in Table 3. Generally, kVCT SNR values were roughly an order of magnitude 

higher than MVCT SNR values. sMVCT SNR values were similar (albeit slightly lower) to 

MVCT SNR values. Thus, the lowest achievable MAE for two scans with MVCT like noise 

(in soft tissue/water) rises to 62 HU assuming uncorrelated noise between the scans. This 

estimate illustrates that in both cases, noise would be a dominant contributor to MAE values 

with a noisier sMVCT (relative to kVCT) potentially overshadowing improvements.

A heatmap plot (Figure 5) of HU, ρe, and SPR values at each voxel in a given kVCT or 

sMVCT scan were plotted against corresponding values at the same voxel in the equivalent 

MVCT image. In this type of plot, comparing two identical images would produce HU 

values along a 45° diagonal line. In reality, differences in patient positioning and anatomy 

between the two scans along with intrinsic voxel level specific noise creates a spread 

away from this line even if there were no inherent systematic differences in HU values. 

Furthermore, because HU values between kVCT and MVCT images differ due to the 

fundamental differences in physics interactions at kV versus MV energy, a large deviation 

from the 45° diagonal line is expected, particularly in bone where the largest HU differences 

exist.

As predicted, the relationship between kVCT HU and MVCT HU (as in Figure 5a) is 

non-linear with what appears to be at least 3 distinct regions with differing slopes: 1) low 

density tissues, 2) soft tissues, and 3) bony tissues. For the bony region, the deviation away 
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from the reference line is about 19° (shown as a solid red line in the figure). Qualitatively, 

the relationship between kVCT HU and MVCT HU resembles that of the kVCT calibration 

curve from Figure 2a. In Figure 5d, sMVCT HU value are plotted against MVCT HU values 

and appear to agree closely with one another, as indicated by the coincidence between red 

and blue lines, demonstrating that kVCT HU can be mapped to a corresponding sMVCT 

HU map that agrees well with MVCT HU. In the bony region, the deviation away from the 

reference line is minimal (< 1°) relative to the 19° deviation seen for kVCT images and is 

shown as a solid red line in the figure. The overall trend in the data is consistent with there 

being an atomic number (Z) dependent effect, as in vivo tissues with higher Z will exhibit a 

higher HU on kVCT and a lower HU on MVCT.

HU values from each kVCT or MVCT scan were converted to ρe with the HU-to-relative 

electron density calibration curve depicted in Figure 2a. Heatmap plots of ρe (figure 5, 

middle column) at each voxel in a given kVCT or sMVCT scan were plotted against 

corresponding ρe values at the same voxel in the analogous MVCT scan (equivalent slice). 

In Figure 5b (middle, top), we see noticeable differences between ρe values of kVCT versus 

MVCT. Specifically, ρe(kVCT) values differ from ρe(MVCT) the most for higher density 

bone with this deviation appearing to increase with increasing relative electron density 

values. Quantitatively, soft tissues with ρe between 0.95 and 1.05 exhibited an average 

deviation of < 0.01. For higher density tissues, there appears to be a large jump in the 

average deviation away from the 45° reference line. In the bony region, the red fit line 

in Figure 5b shows a 7° deviation away from the 45° reference line as ρe increases. MD 

values (tabulated in Table 1) between ρe(kVCT) and ρe(MVCT) were −0.013 (1.3%) for soft 

tissues and 0.044 (2.9%) for bone. MAD values (tabulated in Table 1) between ρe(kVCT) 

and ρe(MVCT) were 0.060 for soft tissues and 0.096 for bone. RMSD values (tabulated in 

Table 1) between ρe(kVCT) and ρe(MVCT) were 0.16 and 0.35 for soft tissue and bone, 

respectively. In Figure 5e, ρe (sMVCT) values were plotted against ρe (MVCT) values, 

representing the ability of the developed CycleGAN machine learning model to accurately 

convert kVCT scans to synthetic MVCT scans. As expected, there is uniform and marked 

improvement in the alignment of ρe (sMVCT) values with ρe (MVCT) values. As a whole, 

the heatmap appears to better align with the 45° reference line than in Figure 5b. In the bony 

region, the red fit line in Figure 5b shows a < 1° deviation away from the 45° reference 

line. Quantitatively, average deviations of ρe were all < 0.01. MD values (tabulated in Table 

3) between ρe(sMVCT) and ρe(MVCT) were considerably lower at −0.0035 (0.35%) for 

soft tissues and 0.0020 (0.13%) for bone. MAD values (tabulated in Table 3) between 

ρe(sMVCT) and ρe (MVCT) were 0.044 for soft tissues and 0.095 for bone. RMSD values 

(tabulated in Table 3) between ρe(sMVCT) and ρe(MVCT) improved, relative to ρe(kVCT), 

to 0.10 and 0.13 for soft tissue and bone, respectively.

HU values from each kVCT or MVCT scan were converted to SPR with the HU-to-SPR 

calibration curve depicted in Figure 2b. Heatmap plots of SPR (Figure 5, right column) at 

each voxel in a given kVCT or sMVCT scan were plotted against corresponding SPR values 

at the same voxel in the analogous MVCT scan (equivalent slice). In Figure 5c (right, top), 

we see noticeable differences between SPR values of kVCT versus MVCT. Specifically, 

SPR (kVCT) values differ from SPR (MVCT) the most for higher density bone with this 

deviation appearing to increase with increasing SPR values. Quantitatively, soft tissues with 
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SPR between 0.95 and 1.05 exhibited an average deviation of < 0.01. Similar to the trends 

seen for ρe, for higher density tissues there appears to be a large jump in the average 

deviation away from the 45° reference line. In the bony region, the red fit line in Figure 

5b shows a >5° deviation away from the 45° reference line as SPR increases. MD values 

(tabulated in Table 3) between SPR (kVCT) and SPR (MVCT) were 0.018 (1.8%) for soft 

tissues and 0.103 (6.8%) for bone. MAD values (tabulated in Table 3) between SPR (kVCT) 

and SPR (MVCT) were 0.063 for soft tissues and 0.129 for bone. RMSD values (tabulated 

in Table 3) between SPR (kVCT) and SPR (MVCT) were 0.11 and 0.16 for soft tissue and 

bone, respectively. In Figure 5f, SPR (sMVCT) values were plotted against SPR (MVCT) 

values, representing the ability of the developed CycleGAN machine learning model to 

accurately convert kVCT scans to synthetic MVCT scans. As expected, there is uniform and 

marked improvement in the alignment of SPR (sMVCT) values with SPR (MVCT) values. 

The heatmap, as a whole, appears to better align with the 45° reference line than in Figure 

5c. In the bony region, the red fit line in Figure 5b shows a < 1° deviation away from the 

45° reference line. Quantitatively, average deviations of SPR were all < 0.01. MD values 

(tabulated in Table 3) between SPR (sMVCT) and SPR (MVCT) were considerably lower 

at 0.0024 (0.24%) for soft tissues and 0.0024 (0.16%) for bone. MAD values (tabulated in 

Table 3) between SPR (sMVCT) and SPR (MVCT) were 0.062 for soft tissues and 0.106 for 

bone. RMSD values (tabulated in Table 3) between SPR (sMVCT) and SPR (MVCT) were 

0.11 and 0.16 for soft tissue and bone, respectively.

3.C. Anthropomorphic head phantom

Figure 6 shows exemplar images for kVCT HU, sMVCT HU, MVCT HU, and difference 

heatmaps of kVCT HU and sMVCT HU compared to MVCT HU for axial planes at the 

level of the jaw and skull for the anthropomorphic head phantom. Qualitatively, trends seen 

in the head phantom were similar to in vivo data, where the largest differences were seen 

between kVCT and MVCT in bony tissues. As expected, kVCT images exhibited higher 

HU values than those by corresponding MVCT images. On the other hand, sMVCT images 

appeared qualitatively more similar to MVCT images, particularly in bony tissues, as shown 

in the 5th and 6th columns of Figure 6.

Quantitative results of relative electron density and stopping power ratio calculated from 

physical measurements and estimated through kV and MV CT calibration curves for bone 

material in the anthropomorphic head phantom are shown in Table 4. Percent differences 

between kV and MV imaging and physical measurements (% diff) are also shown. 

These results were consistent with those seen in the tissue mimicking phantom. Relative 

electron density values of the bone computed from kVCT images deviated from physical 

measurements by 7.5%. This deviation decreased to 0.80% and 0.98% when estimated from 

MVCT and sMVCT, respectively. Stopping power ratio values of the bone computed from 

kVCT images deviated from physical measurements by 7.48%. This deviation decreased to 

0.78% and 0.96% when estimated from MVCT and sMVCT, respectively.
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4. DISCUSSION

The relationships between kVCT HU and ρe or SPR have historically been modeled 

as piecewise linear. In reality, the relationships between kVCT HU and ρe or SPR are 

more complicated due to the intrinsic non-linearity and no explicit one-to-one relationship 

between these values when imaged at kV energies. In this manuscript, we used a tissue 

mimicking phantom to demonstrate that higher accuracy mapping between HU to ρe or HU 

to SPR can be achieved when using MVCT instead of kVCT. We then used a method to 

empirically learn the relationship between kVCT HU and MVCT HU through CycleGAN 

deep learning. In doing so, we intrinsically linearize and improve the accuracy of the 

relationship between kVCT HU with ρe and kVCT HU with SPR through an MVCT 

surrogate. Finally, the cycleGAN model was independently validated in an anthropomorphic 

head phantom containing a tissue mimicking human bone material.

For in vivo data, the ρe value differences between the two scans (kVCT and MVCT) were 

spatially and organ/tissue dependent with MD values of 0.013 (1.3%) and 0.044 (2.9%) for 

soft tissue and dense bone, respectively. The ρe values for tissues with high water content 

(such as orbits and parotids) exhibited little change in ρe (< 0.01) from kVCT to sMVCT 

with ρe values being close (within 0.005) to the expected value of 1.0 in both cases. It is 

possible that because liquid water was a material used for generating CT calibration curves 

that these exact HU-to-ρe and SPR relationships may have reduced uncertainty associated 

with them. Similarly, subcutaneous fat tended to have, on average, subtle changes in ρe (< 

0.01) from kVCT to sMVCT. In contrast, a significant portion of soft tissues/organs with 

higher protein levels such as skin exhibited relatively larger negative changes in ρe of about 

−0.03 (from kVCT to sMVCT). For kVCT HU > 0, we see that there is greater uncertainty 

in the relationship between kVCT HU and ρe (as in Figure 5b) and kVCT HU and SPR 

(as in Figure 5c) with increasing non-linearity in this region in both curves. Similarity 

metrics (shown in Table 3) for MD, MAD, RMSD, SNR, PSNR, and SSIM showed overall 

improvements in agreement with MVCT compared with initial kVCT. In our work, SSIM 

and PSNR values were found to be 0.862 and 29.8, respectively. Our unpaired results are 

comparable to the work of Liang et al47 who achieved 0.85 and 30.65 for SSIM and PSNR, 

respectively, for kV cone-beam CT to kVCT image translation.

In this study, we used a tissue mimicking phantom to evaluate the accuracy in predicting 

ρe and SPR from MVCT HU conversion compared to kVCT HU conversion. For all tissue 

mimicking phantom materials examined in this work, MVCT derived ρe and SPR values 

agreed with physical measurements to within 1%, with the exception of SPR in adipose 

which differed by 1.7%. While still more accurate than kVCT-derived SPR (which differed 

by 2.58%), both kV and MV SPR errors in adipose were higher than their corresponding ρe 

errors. In the Bethe-Bloch equation there are only two parameters that are tissue specific: 

ρe and Im. In cases where ρe is accurate but SPR is inaccurate, there is the implication 

that uncertainties in Im are the cause. In our prior work using the same tissue mimicking 

phantom44, stoichiometric calibration curves were created using Im values published in 

198250. More recently, Im values optimized for use with the Bragg additivity rule were 

published by Bär et al38 and differed from previous values by ~3% in adipose tissues and 

~4.5% in bone. This work demonstrated that outdated Im values may lead to overestimation 
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of range uncertainty and should be reassessed in clinical practice. This finding is consistent 

with the work of Paganetti et al4 which reported that Im was a major contributor to the 

uncertainties in SPR determination, with uncertainty of Im values lowering the achievable 

accuracy of CT derived SPR.

In bony tissues specifically we see the largest differences in kVCT relative to MVCT. 

In the spongiosa bone phantom, errors in ρe were reduced from 2.20% to 0.19% for 

kVCT and MVCT, respectively. Errors in SPR were reduced from 4.38% to 0.22% for 

kVCT and MVCT, respectively. These findings are also in line with the bony tissue errors 

found in the anthropomorphic head phantom whereby ρe and SPR values significantly 

improved in accuracy from kVCT to sMVCT. This finding is consistent other groups who 

have investigated the uncertainty in proton therapy dose calculation due to kVCT-based 

SPR predictions, whereby they found that SPR in bone exhibited greater uncertainty than 

SPR in soft tissue2. It is also in line with our group’s finding17 that ambiguities in the 

elemental and molecular composition of bone relative to nominal tissues would lead to 

greater uncertainties in the prediction of ρe and SPR based on the conversion of kVCT HU. 

As this error/uncertainty in bone is systematic and increases with ρe and SPR, it is possible 

that the composition of the bone tissue surrogate materials may not closely mimic that of 

our subject population. As adults age, there is an age dependent bone change that results 

in increasing mineral content with decreasing protein content51 potentially accounting for 

this difference. Additional possible explanations for the large difference between kVCT and 

MVCT predicted ρe and SPR may be due to a systematic bias in the overall elemental 

composition of the bone tissue surrogate used in our study. In the work of Woodard and 

White52, they found that bone composition varies significantly across bone type. White et 
al37 further showed that even within just cortical bone, the composition varies across age. 

Within the reference material provided by tissue surrogate manufacturer, it is noted that 

the cortical bone reference is based on ICRU 4449. It is likely that the bone composition 

of tissue surrogates is compositionally different in terms of atomic composition from adult 

cancer patient head and neck bones, and possibly biased towards the composition of other 

bones in the body or for other age groups.

Uncertainties in SPR are especially important for charged particle therapies such as proton 

therapy, where the particle range uncertainty is directly proportional to the SPR uncertainty. 

For the in vivo human data, we showed that kVCT SPR on average deviated from MVCT 

SPR by 0.018 (1.8%) and 0.103 (6.8%) for soft and bony tissues, respectively, which would 

directly translate to charged particle range uncertainties of 1.8% and 6.8%. These results 

are consistent with the clinical range uncertainty budgets (typically an average over all 

tissue types of 2.5–3.5% the proton beam range) used by proton therapy groups to account 

for these kVCT-to-SPR uncertainties, In comparison, sMVCT SPR deviated from MVCT 

SPR with substantially lower MD value differences of 0.0024 (0.24%) and 0.0024 (0.16%) 

for soft and bony tissues, respectively. In the case of prostate proton therapy treatments, 

a range uncertainty margin of as much as 1cm is typical when using kVCT-based SPR 

prediction methods. Utilizing the proposed method to reduce CT-based SPR prediction 

errors from 2.5–3.5% to <0.5% could result in significant reductions in normal tissue 

irradiations and potentially allow for dose escalation of tumors. With respect to margins used 

for prostate radiotherapy, results from Bortfelt et al53 suggest that total safety margins can be 
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reduced to about 6mm when using DECT-based SPR predictions in treatment planning. With 

a mean range prediction accuracy of 0.0%±0.5% demonstrated using their DECT-based 

technique, we would expect similar margin reductions using our approach. Overall, our 

proposed methodology provides a unique perspective into areas of greater SPR uncertainty 

and potentially increased accuracy of SPR determination when using sMVCT, though a 

comprehensive validation of SPR estimation using MVCT in a diversity of biological and 

non-biological materials is required prior to clinical implementation.

Imaging with kVCT can cause severe streaking artifacts in areas near bone, teeth, and/or 

metalic implants54 and, in some cases, has resulted in sever under- or overdosing of target 

due to proton range errors55. MVCT, on the other hand, has been demonstrated to reduce 

proton range uncertainty for large metallic implants through comparisons of kVCT and 

MVCT treatment plans56 and may be preferred due to its potential to increase SPR accuracy 

while reducing beam hardening artifacts caused by high-Z materials. Reducing these 

artifacts could have significant benefits for proton therapy given that dosimetric impacts 

caused by artifacts or metallic objects can cause more pronounced uncertainties54,57. In 

Figure 7, we show example images (MVCT, sMVCT, and kVCT) from a patient with dental 

implants. The sMVCT image better mimics the MVCT image in that there is a reduced 

streaking artifact in both the dental area itself and in the surrounding soft tissue. Of note, 

because dental artifacts were not found in all patient scans, it is possible that this behavior 

was observed in the training dataset but not fully learned, resulting in only partial reduction 

of beam hardening/streaking artifacts in the sMVCT images. While the machine learning 

code could be further optimized to better correct for streaking artifacts, this development is 

outside the scope of the current work.

Unlike with kVCT scans for which kVp, mAs, and reconstruction filters can be altered by 

the user, there is limited flexibility in adjusting MVCT parameters on the TomoTherapy 

system. Beam energy and intensity are fixed with the only user adjusted parameters 

being collimator width (affecting beam spectrum and, thus, reconstruction kernel), pitch, 

and reconstruction matrix. Though all three parameters remined fixed in this work, 

more comprehensive MVCT image performance characterization has been reported in the 

literature. Held et al23 found that while MVCTs were ~6x noisier than fan beam kVCT, 

they produced spatially stable image values regardless of image protocol and object size. 

Meeks et al18 characterized MVCT performance with noise, uniformity, contrast, and spatial 

resolution and reported comparable image uniformity and spatial resolution to diagnostic fan 

beam kVCT and contrast linearity with respect to material electron density. As expected, 

MVCT images demonstrated reduced contrast resolution and signal-to-noise ratio. However, 

they were still able to provide sufficient contrast to delineate bone and soft tissue structures 

and deemed adequate for image guidance and dose calculation given linearity between 

contrast and electron density. Specific to stoichiometric CT calibrations, Ainsley et al58 

found that for a given phantom size, kVCT calibration curves are largely independent 

of plug placement within the scanner field-of-view, which we expect to remain true for 

MVCT given lower impact of beam hardening artifacts. However, with kVCT, significant 

deviations have been shown to occur between different phantom sizes, necessitating multiple 

calibration curves corresponding to the size of relevant anatomy. While all subjects imaged 

in this study (in vivo and phantoms) were approximately the size of an adult head, additional 

Scholey et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies should be performed to characterize MVCT properties across multiple anatomies in 

both children and adults.

There are some additional considerations for groups considering clinical implementation of 

this method for kVCT HU-to-ρe or HU-to-SPR conversion. Currently, non-Monte Carlo 

treatment planning systems (TPS) accept CT HU as input for dose calculation with 

conversion of these HU values to ρe or SPR through calibration curves similar to those 

shown in Figure 2. This process could be further simplified if the input datasets were direct 

maps of ρe or SPR rather than HU. With our methodology, no modification would have 

been necessary in our learning process to accomplish this. During the pre-processing stage 

of machine learning, all CT images (both kV and MV) were scaled from HU to values 

between [−1, 1]. As MVCT HU values were converted to ρe or SPR using a linear scale, the 

learning process would have been identical (as they would have scaled to equivalent values 

in this [−1, 1] scale). On the post-learning end, we could have created a linear mapping 

from [−1, 1] directly to ρe or SPR values. Within the TPS, the calibration curve would 

then be a simple linear mapping. Another consideration for clinical implementation of this 

method is generalizability of a developed model across kVCT models, scanner protocols, 

and kVCT energies. In general, developed CycleGAN models converting from kVCT HU to 

sMVCT ρe and SPR would be most accurate if created for a specific center/kVCT scanner 

and for a specific imaging protocol. For centers with a machine capable of creating MVCT 

scans and kVCT scans, it would be possible to create a dataset of matched patient kVCT 

and MVCT scans. This matched dataset could be used with deep learning (as in this work) 

to learn the relationship between kVCT and sMVCT ρe and SPR. For centers without 

MVCT capabilities, implementation of this methodology may be less straightforward as the 

created deep learning model would likely be specific (and therefore most accurate) for a 

given kVCT scanner and/or energy spectrum. As our patient population only received kVCT 

scans from a specific CT scanner, we were not able to test the effect of scanner model/

energy spectrum variability. Future work in this area should include tests on generalizability 

and stability across scanner/energy spectrum of the created CycleGAN model. A similar 

approach to this work could be applied to Monte Carlo TPSs by applying the described 

techniques to mass density instead of relative electron density and/or stopping power ratio.

5. CONCLUSIONS

In this study, we used deep learning to understand the relationship between kVCT HU and 

MVCT HU and developed an approach to calculate accurate values of ρe and SPR based 

on MVCT HU. The accuracy of ρe and SPR values calculated using MVCT and kVCT 

were quantified using tissue mimicking phantoms of known material composition. The deep 

learning model was also validated using an anthropomorphic head phantom with physical 

characteristics closely resembling human bone. Synthetic MVCT scans generated by our 

method appear to closely mimic acquired MVCT scans with even some mitigation of beam 

hardening artifacts. SPR values estimated from sMVCT data produced by the deep learning 

model resulted in substantially lower mean error values for soft and bony tissues versus 

kVCT data. If sMVCT scans are used in conjunction with the originally acquired kVCT, 

they, together, allow for an appealing scenario in which the advantages of each modality can 

be fully utilized.
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Figure 1. 
The proposed clinical workflow requires a single kVCT scan, which is subsequently used 

for contouring and localization (top panel) and converted into a sMVCT using the machine 

learning model for dose calculation (bottom panel).
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Figure 2. 
HU plotted against ρe (a) and SPR (b) derived from kVCT and MVCT scans. The HU-

vs-ρe curves were derived using vendor-provided relative electron density values with 

corresponding HU values for each tissue surrogate material. Both kVCT and MVCT curves 

were interpolated from nine points, one for each tissue surrogate plug in the CIRS phantom. 

Note that in both kVCT curves, one point extends beyond 1500 HU and is not shown for 

figure clarity. The HU-vs-SPR curves were derived using a linear regression fit to theoretical 

HU values calculated for 64 human tissues provided in the literature. Both kVCT and 

MVCT curves contain six points, one for each node at HU values of −200, −120, −20, 

+35, +100, and +140. For both HU-to-ρe and HU-to-SPR curves, note the typical bilinear 

distribution for kVCT, contrasted by the linear distribution for MVCT. All calibration curves 

were generated twice: one for the phantom data and one for the in vivo data, which was 

acquired retrospectively two years prior to the phantom data.
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Figure 3. 
Schematic diagram of the U-Net generator architecture45 used in this work. This figure 

shows the image transformation pipeline from kVCT to sMVCT image.
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Figure 4. 
Exemplar images from four different subject scans of kVCT HU (1st column), sMVCT HU 

(2nd column), MVCT HU (3rd column), and HU difference heat maps for kVCT versus 

MVCT (4th column) and for sMVCT versus MVCT (5th column). The HU scale used in the 

difference maps is shown on the right.
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Figure 5. 
A heatmap plot of HU (left column), ρe (middle column), and SPR (right column) values 

at each voxel in a given CT scan plotted against HU values at the same voxel in a different 

CT scan for kVCT vs MVCT (top row) and b) sMVCT vs MVCT (bottom row). Grey scale 

values were plotted on a log scale with numbers of voxel. The dotted blue diagonal line in 

each panel represents a 45° reference line. The solid red line represents a linear fit of the 

bone data between the two image sets. In the lower righthand corner of each panel is an inset 

image of the −200 to 200 HU, 0.8 to 1.2 ρe values, and 0.8 to 1.2 SPR values expanded for 

greater clarity.

Scholey et al. Page 25

Phys Med Biol. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Exemplar images of the anthropomorphic head phantom (1st column) imaged using kVCT 

(2nd column), sMVCT HU (3rd column), MVCT HU (4th column), and HU difference heat 

maps for kVCT versus MVCT (5th column) and sMVCT versus MVCT (6th column) shown 

at axial levels of the skull (top row) and jaw (bottom row). The HU scale used in the 

difference maps is shown on the right.
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Figure 7. 
Exemplar images of a streaking/beam hardening artifact around a dental implant in (a) 

MVCT HU (1st column), (b) sMVCT HU (2nd column), and (c) kVCT HU (3rd column. 

A linear grayscale colormap was used with −1000 HU as the minimum (black) and the 

maximum HU of the kVCT image as the maximum (white) and applied to the kVCT, 

MVCT, and sMVCT images.
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Table 1:

Tabulated physical parameters for atomic composition, physical density, relative electron density, and stopping 

power ratio derived from physical measurements of the bone phantom material versus in vivo bone tissue 

composition from ICRU Report 4422 and ICRP Report 23.23

Phantom Physical Measurements Literature Values

% composition Density (g/cc) ρe SPR % composition Density (g/cc) ρe SPR

Bone

H: 6
C: 46
N: 4
O: 31
Ca: 12
Trace < 1

1.18 1.12 1.125

H: 5–9
C: 40–60
N: 2–4
O: 30–45
Ca: 8–20

1.14 – 1.2 1.12 – 1.18 1.12 – 1.18
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Table 2.

Results of ρe and SPR values calculated using the kV and MV CT calibration curves for skin, muscle, adipose, 

and spongiosa tissue mimicking phantoms.

Relative electron density Stopping power ratio (115 MeV)

Measured kVCT (% diff) MVCT (% diff) Measured kVCT (% diff) MVCT (% diff)

Skin 1.048 ± 0.002 1.026 ± 0.004 
(−2.10)

1.051 ± 0.004 (0.29) 1.049 ± 0.002 1.055 ± 0.004 (0.62) 1.052 ± 0.004 (0.29)

Muscle 1.036 ± 0.002 1.009 ± 0.004 
(−2.61)

1.038 ± 0.004 (0.19) 1.036 ± 0.002 1.038 ± 0.004 (0.13) 1.037 ± 0.004 (0.11)

Adipose 0.955 ± 0.002 0.947 ± 0.004 
(−0.84)

0.963 ± 0.005 (0.84) 0.953 ± 0.002 0.978 ± 0.004 (2.58) 0.970 ± 0.005 (1.70)

Spongiosa 1.044 ± 0.002 1.067 ± 0.002 (2.20) 1.042 ± 0.003 (−0.19) 1.044 ± 0.002 1.090 ± 0.002 (4.38) 1.042 ± 0.003 (−0.22)
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Table 3.

Similarity metrics for kVCT, and sMVCT (CycleGAN) versus MVCT.

kVCT sMVCT (CycleGAN)

MD soft tissue (HU) 11 ± 117 2 ± 104

MD bone (HU) 327 ± 269 3 ± 160

MAD soft tissue (HU) 66 ± 97 61 ± 85

MAD bone (HU) 340 +252 97 ± 123

RMSD soft tissue (HU) 118 105

RMSD bone (HU) 270 160

MD soft tissue (ρe) −0.013 ± 0.097 (1.3%) −0.0035 ± 0.098 (0.35%)

MD bone (ρe) 0.044 ± 0.148 (2.9%) 0.0020 ± 0.155 (0.13%)

MAD soft tissue (ρe) 0.060 ± 0.080 0.057 ± 0.081

MAD bone (ρe) 0.096 ± 0.124 0.095 ± 0.119

RMSD soft tissue (ρe) 0.16 0.10

RMSD bone (ρe) 0.35 0.13

MD soft tissue (SPR) 0.018 ± 0.106 (1.8%) 0.0024 ± 0.107 (0.24%)

MD bone (SPR) 0.103 ± 0.158 (6.8%) 0.0024 ± 0.166 (0.16%)

MAD soft tissue (SPR) 0.063 ± 0.086 0.062 ± 0.087

MAD bone (SPR) 0.129 ± 0.137 0.106 ± 0.128

RMSD soft tissue (SPR) 0.11 0.11

RMSD bone (SPR) 0.16 0.16

SNR vs MVCT SNR soft tissue (ratio) 9.1 0.95

SNR vs MVCT SNR bone (ratio) 11.1 0.95

SSIM 0.856 0.862

PSNR 25.8 29.8
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Table 4:

Tabulated physical parameters for atomic composition, physical density, relative electron density, and stopping 

power ratio derived from physical measurements of bone phantom versus real bone tissue composition from 

ICRU Report 4422 and ICRP Report 23.23

Relative electron density Stopping power ratio (115 MeV)

Measured kVCT (% 
diff)

MVCT (% 
diff)

sMVCT (% 
diff)

Measured kVCT (% 
diff)

MVCT (% 
diff)

sMVCT (% 
diff)

Bone 
(Head 

Phantom)

1.120 1.204 ± 0.10 
(7.50%)

1.129 ± 0.13 
(0.80%)

1.131 ± 0.20 
(0.98%)

1.125 1.207 ± 0.09 
(7.48%)

1.129 ± 0.11 
(0.78%)

1.131 ± 0.17 
(0.96%)
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