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Abstract

Black box machine learning models are currently being used for high stakes decision-making 

throughout society, causing problems throughout healthcare, criminal justice, and in other 

domains. People have hoped that creating methods for explaining these black box models will 

alleviate some of these problems, but trying to explain black box models, rather than creating 

models that are interpretable in the first place, is likely to perpetuate bad practices and can 

potentially cause catastrophic harm to society. There is a way forward – it is to design models that 

are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes 

and using inherently interpretable models, outlines several key reasons why explainable black 

boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine 

learning, and provides several example applications where interpretable models could potentially 

replace black box models in criminal justice, healthcare, and computer vision.

1 Introduction

There has been an increasing trend in healthcare and criminal justice to leverage machine 

learning (ML) for high-stakes prediction applications that deeply impact human lives. Many 

of the ML models are black boxes that do not explain their predictions in a way that humans 

can understand. The lack of transparency and accountability of predictive models can have 

(and has already had) severe consequences; there have been cases of people incorrectly 

denied parole [1], poor bail decisions leading to the release of dangerous criminals, ML-

based pollution models stating that highly polluted air was safe to breathe [2], and generally 

poor use of limited valuable resources in criminal justice, medicine, energy reliability, 

finance, and in other domains [3].

Rather than trying to create models that are inherently interpretable, there has been a recent 

explosion of work on “Explainable ML,” where a second (posthoc) model is created to 

explain the first black box model. This is problematic. Explanations are often not reliable, 

and can be misleading, as we discuss below. If we instead use models that are inherently 

interpretable, they provide their own explanations, which are faithful to what the model 

actually computes.
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In what follows, we discuss the problems with Explainable ML, followed by the challenges 

in Interpretable ML. This document is mainly relevant to high-stakes decision making and 

troubleshooting models, which are the main two reasons one might require an interpretable 

or explainable model. Interpretability is a domain-specific notion [4, 5, 6, 7], so there 

cannot be an all-purpose definition. Usually, however, an interpretable machine learning 

model is constrained in model form so that it is either useful to someone, or obeys 

structural knowledge of the domain, such as monotonicity [e.g., 8], causality, structural 

(generative) constraints, additivity [9], or physical constraints that come from domain 

knowledge. Interpretable models could use case-based reasoning for complex domains. 

Often for structured data, sparsity is a useful measure of interpretability, since humans 

can handle at most 7±2 cognitive entities at once [10, 11]. Sparse models allow a view 

of how variables interact jointly rather than individually. We will discuss several forms of 

interpretable machine learning models for different applications below, but there can never 

be a single definition; e.g., in some domains, sparsity is useful, and in others is it not. There 

is a spectrum between fully transparent models (where we understand how all the variables 

are jointly related to each other) and models that are lightly constrained in model form (such 

as models that are forced to increase as one of the variables increases, or models that, all else 

being equal, prefer variables that domain experts have identified as important, see [12]).

A preliminary version of this manuscript appeared at a workshop, entitled “Please Stop 

Explaining Black Box Machine Learning Models for High Stakes Decisions” [13].

2 Key Issues with Explainable ML

A black box model could be either (i) a function that is too complicated for any human to 

comprehend, or (ii) a function that is proprietary (see Appendix A). Deep learning models, 

for instance, tend to be black boxes of the first kind because they are highly recursive. As 

the term is presently used in its most common form, an explanation is a separate model 

that is supposed to replicate most of the behavior of a black box (e.g., “the black box 

says that people who have been delinquent on current credit are more likely to default on 

a new loan”). Note that the term “explanation” here refers to an understanding of how 

a model works, as opposed to an explanation of how the world works. The terminology 

“explanation” will be discussed later; it is misleading.

I am concerned that the field of interpretability/explainability/comprehensibility/

transparency in machine learning has strayed away from the needs of real problems. This 

field dates back to the early 90’s at least [see 4, 14], and there are a huge number of 

papers on interpretable ML in various fields (that often do not have the word “interpretable” 

or “explainable” in the title, as the recent papers do). Recent work on explainability of 

black boxes – rather than interpretability of models – contains and perpetuates critical 

misconceptions that have generally gone unnoticed, but that can have a lasting negative 

impact on the widespread use of machine learning models in society. Let us spend some 

time discussing this before discussing possible solutions.
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(i) It is a myth that there is necessarily a trade-off between accuracy and interpretability.

There is a widespread belief that more complex models are more accurate, meaning that 

a complicated black box is necessary for top predictive performance. However, this is 

often not true, particularly when the data are structured, with a good representation in 

terms of naturally meaningful features. When considering problems that have structured 

data with meaningful features, there is often no significant difference in performance 

between more complex classifiers (deep neural networks, boosted decision trees, random 

forests) and much simpler classifiers (logistic regression, decision lists) after preprocessing. 

(Appendix B discusses this further.) In data science problems, where structured data with 

meaningful features are constructed as part of the data science process, there tends to be 

little difference between algorithms, assuming that the data scientist follows a standard 

process for knowledge discovery [such as KDD, CRISP-DM, or BigData, see 15, 16, 17].

Even for applications such as computer vision, where deep learning has major performance 

gains, and where interpretability is much more difficult to define, some forms of 

interpretability can be imbued directly into the models without losing accuracy. This will 

be discussed more later in the Challenges section. Uninterpretable algorithms can still be 

useful in high-stakes decisions as part of the knowledge discovery process, for instance, to 

obtain baseline levels of performance, but they are not generally the final goal of knowledge 

discovery.

Figure 1, taken from the DARPA Explainable Artificial Intelligence program’s Broad 

Agency Announcement [18], exemplifies a blind belief in the myth of the accuracy-

interpretability trade-off. This not a “real” figure, in that it was not generated by any data. 

The axes have no quantification (there is no specific meaning to the horizontal or vertical 

axes). The image appears to illustrate an experiment with a static dataset, where several 

machine learning algorithms are applied to the same dataset. However, this kind of smooth 

accuracy/interpretability/explainability trade-off is atypical in data science applications with 

meaningful features. Even if one were to quantify the interpretability/explainability axis 

and aim to show that such a trade-off did exist, it is not clear what algorithms would be 

applied to produce this figure. (Would one actually claim it is fair to compare the 1984 

decision tree algorithm CART to a 2018 deep learning model and conclude that interpretable 

models are not as accurate?) One can always create an artificial trade-off between accuracy 

and interpretability/explainability by removing parts of a more complex model to reduce 

accuracy, but this is not representative of the analysis one would perform on a real problem. 

It is also not clear why the comparison should be performed on a static dataset, because 

any formal process for defining knowledge from data [15, 16, 17] would require an iterative 

process, where one refines the data processing after interpreting the results. Generally, in 

the practice of data science, the small difference in performance between machine learning 

algorithms can be overwhelmed by the ability to interpret results and process the data better 

at the next iteration [19]. In those cases, the accuracy/interpretability tradeoff is reversed – 

more interpretability leads to better overall accuracy, not worse.

Efforts working within a knowledge discovery process led me to work in interpretable 

machine learning [20]. Specifically, I participated in a large-scale effort to predict electrical 

grid failures across New York City. The data were messy, including free text documents 
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(trouble tickets), accounting data about electrical cables from as far back as the 1890’s, 

inspections data from a brand new manhole inspections program; even the structured data 

were not easily integrated into a database, and there were confounding issues and other 

problems. Algorithms on a static dataset were at most 1% different in performance, but the 

ability to interpret and reprocess the data led to significant improvements in performance, 

including correcting problems with the dataset, and revealing false assumptions about the 

data generation process. The most accurate predictors we found were sparse models with 

meaningful features that were constructed through the iterative process.

The belief that there is always a trade-off between accuracy and interpretability has led 

many researchers to forgo the attempt to produce an interpretable model. This problem 

is compounded by the fact that researchers are now trained in deep learning, but not in 

interpretable machine learning. Worse, toolkits of machine learning algorithms offer little in 

the way of useful interfaces for interpretable machine learning methods.

To our knowledge, all recent review and commentary articles on this topic imply (implicitly 

or explicitly) that the trade-off between interpretability and accuracy generally occurs. It 

could be possible that there are application domains where a complete black box is required 

for a high stakes decision. As of yet, I have not encountered such an application, despite 

having worked on numerous applications in healthcare and criminal justice [e.g., 21], energy 

reliability [e.g., 20], and financial risk assessment [e.g., 22].

(ii) Explainable ML methods provide explanations that are not faithful to what the original 
model computes.

Explanations must be wrong. They cannot have perfect fidelity with respect to the original 

model. If the explanation was completely faithful to what the original model computes, the 

explanation would equal the original model, and one would not need the original model in 

the first place, only the explanation. (In other words, this is a case where the original model 

would be interpretable.) This leads to the danger that any explanation method for a black 

box model can be an inaccurate representation of the original model in parts of the feature 

space. [See also for instance, 23, among others.]

An inaccurate (low-fidelity) explanation model limits trust in the explanation, and by 

extension, trust in the black box that it is trying to explain. An explainable model that 

has a 90% agreement with the original model indeed explains the original model most of 

the time. However, an explanation model that is correct 90% of the time is wrong 10% of 

the time. If a tenth of the explanations are incorrect, one cannot trust the explanations, and 

thus one cannot trust the original black box. If we cannot know for certain whether our 

explanation is correct, we cannot know whether to trust either the explanation or the original 

model.

A more important misconception about explanations stems from the terminology 

“explanation,” which is often used in a misleading way, because explanation models do not 

always attempt to mimic the calculations made by the original model. Even an explanation 

model that performs almost identically to a black box model might use completely different 

features, and is thus not faithful to the computation of the black box. Consider a black box 
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model for criminal recidivism prediction, where the goal is to predict whether someone 

will be arrested within a certain time after being released from jail/prison. Most recidivism 

prediction models depend explicitly on age and criminal history, but do not explicitly depend 

on race. Since criminal history and age are correlated with race in all of our datasets, a 

fairly accurate explanation model could construct a rule such as “This person is predicted to 

be arrested because they are black.” This might be an accurate explanation model since it 

correctly mimics the predictions of the original model, but it would not be faithful to what 

the original model computes. This is possibly the main flaw identified by criminologists 

[24] in the ProPublica analysis [25, 26] that accused the proprietary COMPAS recidivism 

model of being racially biased. COMPAS (Correctional Offender Management Profiling for 

Alternative Sanctions) is a proprietary model that is used widely in the U.S. Justice system 

for parole and bail decisions. ProPublica created a linear explanation model for COMPAS 

that depended on race, and then accused the black box COMPAS model of depending on 

race, conditioned on age and criminal history. In fact, COMPAS seems to be nonlinear, and 

it is entirely possible that COMPAS does not depend on race (beyond its correlations with 

age and criminal history) [27]. ProPublica’s linear model was not truly an “explanation” 

for COMPAS, and they should not have concluded that their explanation model uses the 

same important features as the black box it was approximating. (There will be a lot more 

discussion about COMPAS later in this document.)

An easy fix to this problem is to change terminology. Let us stop calling approximations 

to black box model predictions explanations. For a model that does not use race explicitly, 

an automated explanation “This model predicts you will be arrested because you are black” 

is not an explanation of what the model is actually doing, and would be confusing to a 

judge, lawyer or defendant. Recidivism prediction will be discussed more later, as it is a 

key application where interpretable machine learning is necessary. In any case, it can be 

much easier to detect and debate possible bias or unfairness with an interpretable model than 

with a black box. Similarly, it could be easier to detect and avoid data privacy issues with 

interpretable models than black boxes. Just as in the recidivism example above, many of 

the methods that claim to produce explanations instead compute useful summary statistics 
of predictions made by the original model. Rather than producing explanations that are 

faithful to the original model, they show trends in how predictions are related to the features. 

Calling these “summaries of predictions,” “summary statistics,” or “trends” rather than 

“explanations” would be less misleading.

(iii) Explanations often do not make sense, or do not provide enough detail to understand 
what the black box is doing.

Even if both models are correct (the original black box is correct in its prediction and 

the explanation model is correct in its approximation of the black box’s prediction), it 

is possible that the explanation leaves out so much information that it makes no sense. 

I will give an example from image processing, for a low-stakes decision (not a high-

stakes decision where explanations are needed, but where explanation methods are often 

demonstrated). Saliency maps are often considered to be explanatory. Saliency maps can 

be useful to determine what part of the image is being omitted by the classifier, but this 

leaves out all information about how relevant information is being used. Knowing where 
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the network is looking within the image does not tell the user what it is doing with that 

part of the image, as illustrated in Figure 2. In fact, the saliency maps for multiple classes 

could be essentially the same; in that case, the explanation for why the image might contain 

a Siberian husky would be the same as the explanation for why the image might contain a 

transverse flute.

An unfortunate trend in recent work is to show explanations only for the observation’s 

correct label when demonstrating the method (e.g., Figure 2 would not appear). 

Demonstrating a method using explanations only for the correct class is misleading. This 

practice can instill a false sense of confidence in the explanation method and in the black 

box. Consider, for instance, a case where the explanations for multiple (or all) of the classes 

are identical. This situation would happen often when saliency maps are the explanations, 

because they tend to highlight edges, and thus provide similar explanations for each class. 

These explanations could be identical even if the model is always wrong. Then, showing 

only the explanations for the image’s correct class misleads the user into thinking that the 

explanation is useful, and that the black box is useful, even if neither one of them are.

Saliency maps are only one example of explanations that are so incomplete that they might 

not convey why the black box predicted what it did. Similar arguments can be made with 

other kinds of explanation methods. Poor explanations can make it very hard to troubleshoot 

a black box.

(iv) Black box models are often not compatible with situations where information outside 
the database needs to be combined with a risk assessment.

In high stakes decisions, there are often considerations outside the database that need to 

be combined with a risk calculation. For instance, what if the circumstances of the crime 

are much worse than a generic assigned charge? There are often circumstances whose 

knowledge could either increase or decrease someone’s risk. But if the model is a black box, 

it is very difficult to manually calibrate how much this additional information should raise or 

lower the estimated risk. This issue arises constantly; for instance, the proprietary COMPAS 

model used in the U.S. Justice System for recidivism risk prediction does not depend on 

the seriousness of the current crime [27, 29]. Instead, the judge is instructed to somehow 

manually combine current crime with COMPAS. Actually, it is possible that many judges 

do not know this fact. If the model were transparent, the judge could see directly that the 

seriousness of the current crime is not being considered in the risk assessment.

(v) Black box models with explanations can lead to an overly complicated decision 
pathway that is ripe for human error.

Typographical errors seem to be common in computing COMPAS, and these typographical 

errors sometimes determine bail decision outcomes [1, 27]. This exemplifies an important 

drawback of using overly complicated black box models for recidivism prediction – they 

may be incorrectly calculated in practice. The computation of COMPAS requires 130+ 

factors. If typographical errors by humans entering these data into a survey occur at a rate of 

1%, then more than 1 out of every 2 surveys on average will have at least one typographical 

error. The multitude of typographical errors has been argued to be a type of procedural 
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unfairness, whereby two individuals who are identical might be randomly given different 

parole or bail decisions. These types of errors have the potential to reduce the in-practice 

accuracy of these complicated models.

On the separate topic of model troubleshooting, an overly complicated black box model 

may be flawed but we do not know it, because it is difficult to troubleshoot. Having an 

(incomplete) explanation of it may not help, and now we must troubleshoot two models 

rather than one (the black box model and the explanation model).

In the next section, we completely switch gears. We will discuss reasons why so many 

people appear to advocate for black box models with separate explanation models, rather 

than inherently interpretable models – even for high-stakes decisions.

3 Key Issues with Interpretable ML

There are many cases where black boxes with explanations are preferred over interpretable 

models, even for high-stakes decisions. However, for most applications, I am hopeful that 

there are ways around some of these problems, whether they are computational problems, or 

problems with training of researchers and availability of code. The first problem, however, 

is currently a major obstacle that I see no way of avoiding other than through policy, as 

discussed in the next section.

(i) Corporations can make profits from the intellectual property afforded to a black box.

Companies that charge for individual predictions could find their profits obliterated if an 

interpretable model were used instead.

Consider the COMPAS proprietary recidivism risk prediction tool discussed above that is in 

widespread use in the U.S. Justice System for predicting the probability that someone will 

be arrested after their release [29].

The COMPAS model is equally accurate for recidivism prediction as the very simple three 

rule interpretable machine learning model involving only age and number of past crimes 

shown in Figure 3 below. However, there is no clear business model that would suggest 

profiting from the simple transparent model. The simple model in Figure 3 was created from 

an algorithm called Certifiably Optimal Rule Lists (CORELS) that looks for if-then patterns 

in data. Even though the model in Figure 3 looks like a rule of thumb that a human may 

have designed without data, it is instead a full-blown machine learning model. A qualitative 

comparison of the COMPAS and CORELS models is in Table 1. Standard machine learning 

tools and interpretable machine learning tools seem to be approximately equally accurate 

for predicting recidivism, even if we define recidivism in many different ways, for many 

different crime types [30, 31]. This evidence, however, has not changed the momentum of 

the justice system towards proprietary models. As of this writing, California has recently 

eliminated its cash bail system, instead enforcing that decisions be made by algorithms; it is 

unclear whether COMPAS will be the algorithm used for this, despite the fact that it is not 

known to be any more accurate than other models, such as the simple CORELS model in 

Figure 3.
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COMPAS is not a machine learning model – it was not created by any standard machine 

learning algorithm. It was designed by experts based on carefully designed surveys and 

expertise, and it does not seem to depend heavily on past criminal history [27]. Interestingly, 

if the COMPAS model were not proprietary, its documentation [29] indicates that it would 

actually be an interpretable predictive model. (It is a black box of the second type – 

proprietary – but not the first type – complicated – discussed above.) Revealing this model, 

however, would be revealing a trade secret.

Let us switch examples to consider the proprietary machine learning model by BreezoMeter, 

used by Google during the California wildfires of 2018, which predicted air quality as “good 

– ideal air quality for outdoor activities,” when air quality was dangerously bad according to 

multiple other models [2], and people reported their cars covered in ash. The Environmental 

Protection Agency’s free, vigorously-tested air quality index would have provided a reliable 

result [33]. How could BreezoMeter’s machine learning method be so badly wrong and put 

so many in danger? We will never find out, but BreezoMeter, who has probably made a 

profit from making these predictions, may not have developed this new technology if its 

models were forced to be transparent.

In medicine, there is a trend towards blind acceptance of black box models, which will 

open the door for companies to sell more models to hospitals. For instance, radiology and 

in-hospital patient monitoring are areas of medicine that stand to gain tremendously by 

automation; humans cannot process data fast enough or rapidly enough to compete with 

machines. However, in trusting these automated systems, we must also trust the full database 

on which they were trained, the processing of the data, along with the completeness of 

the database. If the database does not represent the full set of possible situations that can 

arise, then the model could be making predictions in cases that are very different from 

anything it was trained on. An example of where this can go wrong is given by Zech 

et al. [34], who noticed that their neural network was picking up on the word “portable” 

within an x-ray image, representing the type of x-ray equipment rather than the medical 

content of the image. If they had used an interpretable model, or even an explainable 

model, this issue would never have gone unnoticed. Zech et al. [34] pointed out the issue of 

confounding generally; in fact, the plague of confounding haunts a vast number of datasets, 

and particularly medical datasets. This means that proprietary models for medicine can have 

serious errors. These models can also be fragile, in that if the model is used in practice in a 

slightly different setting than how it was trained (e.g., new x-ray equipment), accuracy can 

substantially drop.

The examples of COMPAS, Breezometer, and black box medical diagnosis all illustrate 

a problem with the business model for machine learning. In particular, there is a conflict 

of responsibility in the use of black box models for high-stakes decisions: the companies 
that profit from these models are not necessarily responsible for the quality of individual 
predictions. A prisoner serving an excessively long sentence due to a mistake entered 

in an overly-complicated risk score could suffer for years, whereas the company that 

constructed this complicated model is unaffected. On the contrary, the fact that the model 

was complicated and proprietary allowed the company to profit from it. In that sense, the 

model’s designers are not incentivized to be careful in its design, performance, and ease 
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of use. These are some of the same types of problems affecting the credit rating agencies 

who priced mortgages in 2008; that is, these are the same problems that contributed to the 

financial crisis in the United States at that time.

One argument favoring black boxes is that keeping these models hidden prevents them from 

being gamed or reverse-engineered. It is not clear that this argument generally makes sense. 

In fact, the reason a system may be gamed is because it most likely was not designed 

properly in the first place, leading to a form of Goodhart’s law if it were revealed. Quoting 

from Chang et al. [35] about product rating systems: “If the ratings are accurate measures 

of quality, then making the ratings more transparent could have a uniformly positive impact: 

it would help companies to make better rated products, it would help consumers to have 

these higher quality products, and it would encourage rating companies to receive feedback 

as to whether their rating systems fairly represent quality.” Thus, transparency could help 

improve the quality of the system, whereby attempting to game it would genuinely align 

with the overall goal of improvement. For instance, improving one’s credit score should 

actually correspond to an improvement in creditworthiness.

Another argument favoring black boxes is the belief that “counterfactual explanations” of 

black boxes are sufficient. A counterfactual explanation describes a minimal change to the 

input that would result in the opposite prediction. For instance, a possible counterfactual 

explanation might be “your loan application was denied, but if you had $1000 less debt, 

you would have qualified for the loan.” This type of explanation can suffer from key issue 

(iv) discussed above, about combining information outside the database with the black box. 

In particular, the “minimal” change to the input might be different for different individuals. 

Appendix C discusses in more depth why counterfactual explanations generally do not 

suffice for high stakes decisions of black boxes.

(ii) Interpretable models can entail significant effort to construct, in terms of both 
computation and domain expertise.

As discussed above, interpretability usually translates in practice to a set of application-

specific constraints on the model. Solving constrained problems is generally harder than 

solving unconstrained problems. Domain expertise is needed to construct the definition of 

interpretability for the domain, and the features for machine learning. For data that are 

unconfounded, complete, and clean, it is much easier to use a black box machine learning 

method than to troubleshoot and solve computationally hard problems. However, for high-

stakes decisions, analyst time and computational time are less expensive than the cost of 

having a flawed or overly complicated model. That is, it is worthwhile to devote extra effort 

and cost into constructing a high-quality model. But even so, many organizations do not 

have analysts who have the training or expertise to construct interpretable models at all.

Some companies have started to provide interpretable ML solutions using proprietary 

software. While this is a step in the right direction, it is not clear that the proprietary 

software is better than publicly available software. For instance, claims made by some 

companies about performance of their proprietary algorithms are not impressive (e.g., 

Interpretable AI, whose decision tree performance using mixed integer programming 
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software in 2017 is reported to be often beaten by or comparable to the 1984 Classification 

and Regression Tree algorithm, CART).

As discussed earlier, interpretability constraints (like sparsity) lead to optimization problems 

that have been proven to be computationally hard in the worst case. The theoretical hardness 

of these problems does not mean we cannot solve them, though in real cases, these 

optimization problems are often difficult to solve. Major improvements have been made 

in the last decade, and some are discussed later in the Challenges section. Explanation 

methods, on the other hand, are usually based on derivatives, which lead to easier gradient-

based optimization.

(iii) Black box models seem to uncover “hidden patterns.”

The fact that many scientists have difficulty constructing interpretable models may be 

fueling the belief that black boxes have the ability to uncover subtle hidden patterns in the 

data that the user was not previously aware of. A transparent model may be able to uncover 

these same patterns. If the pattern in the data was important enough that a black box model 

could leverage it to obtain better predictions, an interpretable model might also locate the 

same pattern and use it. Again, this depends on the machine learning researcher’s ability to 

create accurate-yet-interpretable models. The researcher needs to create a model that has the 

capability of uncovering the types of patterns that the user would find interpretable, but also 

the model needs to be flexible enough to fit the data accurately. This, and the optimization 

challenges discussed above, are where the difficulty lies with constructing interpretable 

models.

4 Encouraging Responsible ML Governance

Currently the European Union’s revolutionary General Data Protection Regulation and other 

AI regulation plans govern “right to an explanation,” where only an explanation is required, 

not an interpretable model [36], in particular “The data subject shall have the right not to 

be subject to a decision based solely on automated processing, including profiling, which 

produces legal effects concerning him or her or similarly significantly affects him or her” 

(Article 22 of GDPR regulations from http://www.privacy-regulation.eu/en/22.htm). If one 

were to provide an explanation for an automated decision, it is not clear whether the 

explanation is required to be accurate, complete, or faithful to the underlying model [e.g., 

see 37]. Less-than-satisfactory explanations can easily undermine these new policies.

Let us consider a possible mandate that, for certain high-stakes decisions, no black box 
should be deployed when there exists an interpretable model with the same level of 
performance. If such a mandate were deployed, organizations that produce and sell black 

box models could then be held accountable if an equally accurate transparent model exists. 

It could be considered a form of false advertising to sell a black box model if there is an 

equally-accurate interpretable model. The onus would then fall on organizations to produce 

black box models only when no transparent model exists for the same task.

This possible mandate could produce a change in the business model for machine learning. 

Opacity is viewed as essential in protecting intellectual property, but it is at odds with 
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the requirements of many domains that involve public health or welfare. However, the 

combination of opacity and explainability is not the only way to incentivize machine 

learning experts to invest in creating such systems. Compensation for developing an 

interpretable model could be provided in a lump sum, and the model could be released 

to the public. The creator of the model would not be able to profit from licensing the model 

over a period of time, but the fact that the models are useful for public good applications 

would make these problems appeal to academics and charitable foundations.

This proposal will not solve all problems, but it could at least rule out companies selling 

recidivism prediction models, possibly credit scoring models, and other kinds of models 

where we can construct accurate-yet-interpretable alternatives. If applied too broadly, it 

could reduce industrial participation in cases where machine learning might benefit society.

Consider a second proposal, which is weaker than the one provided above, but which might 

have a similar effect. Let us consider the possibility that organizations that introduce black 

box models would be mandated to report the accuracy of interpretable modeling methods. 

In that case, one could more easily determine whether the accuracy/interpretability trade-off 

claimed by the organization is worthwhile. This also forces the organization to try using 

interpretable modeling methods. It also encourages the organization to use these methods 

carefully, otherwise risking the possibility of criticism.

As mentioned earlier, I have not yet found a high-stakes application where a fully black box 

model is necessary, despite having worked on many applications. As long as we continue to 

allow for a broad definition of interpretability that is adapted to the domain, we should be 

able to improve decision making for serious tasks of societal importance. However, in order 

for people to design interpretable models, the technology must exist to do so. As discussed 

earlier, there is a formidable computational hurdle in designing interpretable models, even 

for standard structured data with already-meaningful features.

5 Algorithmic Challenges in Interpretable ML

What if every black box machine learning model could be replaced with one that was 

equally accurate but also interpretable? If we could do this, we would identify flaws in our 

models and data that we could not see before. Perhaps we could prevent some of the poor 

decisions in criminal justice and medicine that are caused by problems with using black box 

models. We could also eliminate the need for explanations that are misleading and often 

wrong.

Since interpretability is domain-specific, a large toolbox of possible techniques can come 

in handy. Below we expand on three of the challenges for interpretable machine learning 

that appear often. All three cases have something in common: people have been providing 

interpretable predictive models for these problems for decades, and the human-designed 

models look just like the type of model we want to create with machine learning. I also 

discuss some of our current work on these well-known problems.

Each of these challenges is a representative from a major class of models: modeling that uses 

logical conditions (Challenge 1), linear modeling (Challenge 2), and case-based reasoning 
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(Challenge 3). By no means is this set of challenges close to encompassing the large number 

of domain-specific challenges that exist in creating interpretable models.

Challenge #1: Constructing optimal logical models

A logical model consists of statements involving “or,” “and,” “if-then,” etc. The CORELS 

model in Figure 3 is a logical model, called a rule list. Decision trees are logical models, as 

well as conjunctions of disjunctions (“or’s” of “and’s” – for instance, IF condition A is true 

OR conditions B AND C are true, THEN predict yes, otherwise predict no).

Logical models have been crafted by hand as expert systems as far back as the 1970’s. 

Since then, there have been many heuristics for creating logical models; for instance, one 

might add logical conditions one by one (greedily), and then prune conditions away that 

are not helpful (again, greedily). These heuristic methods tend to be inaccurate and/or 

uninterpretable because they do not choose a globally best choice (or approximately best 

choice) for the logical conditions, and are not designed to be optimally sparse. They 

might use 200 logical conditions when the same accuracy could be obtained with 5 logical 

conditions. [C4.5 and CART 38, 39, decision trees suffer from these problems, as well 

as a vast number of models from the associative classification literature]. An issue with 

algorithms that do not aim for optimal (or near-optimal) solutions to optimization problems 

is that it becomes difficult to tell whether poor performance is due to the choice of algorithm 

or the combination of the choice of model class and constraints. (Did the algorithm perform 

poorly because it did not optimize its objective, or because we chose constraints that do 

not allow enough flexibility in the model to fit the data well?) The question of computing 

optimal logical models has existed since at least the mid 1990’s [40].

We would like models that look like they are created by hand, but they need to be accurate, 

full-blown machine learning models. To this end, let us consider the following optimization 

problem, which asks us to find a model that minimizes a combination of the fraction of 

misclassified training points and the size of the model. Training observations are indexed 

from i = 1,.., n, and ℱ is a family of logical models such as decision trees. The optimization 

problem is:

min
f ∈ ℱ

1
n i 1

n
1[training observation i is misclassified by f] + λ × size(f) . (1)

Here, the size of the model can be measured by the number of logical conditions in the 

model, such as the number of leaves in a decision tree. The parameter λ is the classification 

error one would sacrifice in order to have one fewer term in the model; if λ is 0.01, it 

means we would sacrifice 1% training accuracy in order to reduce the size of the model by 

one. Another way to say this is that the model would contain an additional term only if this 

additional term reduced the error by at least 1%.

The optimization problem in (1) is generally known to be computationally hard. Versions of 

this optimization problem are some of the fundamental problems of artificial intelligence. 

The challenge is whether we can solve (or approximately solve) problems like this in 

practical ways, by leveraging new theoretical techniques and advances in hardware.
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The model in Figure 3 is a machine learning model that comes from the CORELS algorithm 

[32]. CORELS solves a special case of (1), for the special choice of ℱ as the set of rule 

lists, and where the size of the model is measured by the number of rules in the list. Figure 

3 has three “if-then” rules so its size is 3. In order to minimize (1), CORELS needs to avoid 

enumerating all possible models, because this would take an extremely long time (perhaps 

until the end of the universe on a modern laptop for a fairly small dataset). The technology 

underlying the CORELS algorithm was able to solve the optimization problem to optimality 

in under a minute for the Broward County, FL, dataset discussed above. CORELS’ backbone 

is: (i) a set of theorems allowing massive reductions in the search space of rule lists, (ii) 

a custom fast bit-vector library that allows fast exploration of the search space, so that 

CORELS does not need to enumerate all rule lists, and (iii) specialized data structures that 

keep track of intermediate computations and symmetries. This set of ingredients proved to 

be a powerful cocktail for handling these tough computational problems.

The example of CORELS enforces two points discussed above, which are, first, that 

interpretable models sometimes entail hard computational problems, and second, that these 

computational problems can be solved by leveraging a combination of theoretical and 

systems-level techniques. CORELS creates one type of logical model; however, there are 

many more. Formally, the first challenge is to create algorithms that solve logical modeling 
problems in a reasonable amount of time, for practical datasets.

We have been extending CORELS to more complex problems, such as Falling Rule Lists 

[41, 42], and optimal binary-split decision trees, but there is much work to be done on other 

types of logical models, with various kinds of constraints.

Note that it is possible to construct interpretable logical models for which the global model 

is large, and yet each explanation is small. This is discussed in Appendix D.

Challenge #2: Construct optimal sparse scoring systems

Scoring systems have been designed by hand since at least the Burgess criminological 

model of 1928 [43]. The Burgess model was designed to predict whether a criminal would 

violate bail, where individuals received points for being a “ne’er do well” or a “recent 

immigrant” that increased their predicted probability of parole violation. (Of course, this 

model was not created using machine learning, which had not been invented yet.) A scoring 

system is a sparse linear model with integer coefficients – the coefficients are the point 

scores. An example of a scoring system for criminal recidivism is shown in Figure 4, which 

predicts whether someone will be arrested within 3 years of release. Scoring systems are 

used pervasively throughout medicine; there are hundreds of scoring systems developed by 

physicians. Again, the challenge is whether scoring systems – which look like they could 

have been produced by a human in the absence of data – can be produced by a machine 

learning algorithm, and be as accurate as any other model from any other machine learning 

algorithm.

There are several ways to formulate the problem of producing a scoring system [see, e.g., 

46, 47]. For instance, we could use a special case of (1), where the model size is the number 

of terms in the model. (Figure 4 is a machine learning model with 5 terms.) Sometimes, one 
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can round the coefficients of a logistic regression model to produce a scoring system, but 

that method does not tend to give accurate models, and does not tend to produce models that 

have particularly nice coefficients (such as 1 and −1 used in Figure 4). However, solving 

(1) or its variants is computationally hard, because the domain over which we solve the 

optimization problem is the integer lattice. (To see this, consider an axis for each of {b1, b2, 

…, bp}, where each bj can take on integer values. This is a lattice that defines the feasible 

region of the optimization problem.)

The model in Figure 4 arose from the solution to a very hard optimization problem. Let us 

discuss this optimization problem briefly. The goal is to find the coefficients bj, j = 1 … p 
for the linear predictive model f(z) = ∑jbjzj where zj is the jth covariate of a test observation 

z. In Figure 4, the bj’s are the point scores, which turned out to be 1, −1, and 0 as a result of 

optimization, where only the nonzero coefficients are displayed in the figure. In particular, 

we want to solve:

min
b1, b2, .., bp ∈ − 10, − 9, …, 9, 10

1
n i 1

n
log 1 exp

j 1

p
bjxi j + λ

j
1 bj 0 ,

where the point scores bj are constrained to be integers between −10 and 10, the training 

observations are indexed by i = 1, …, n, and p is the total number of covariates for our 

data. Here the model size is the number of non-zero coefficients, and again λ is the trade-off 

parameter. The first term is the logistic loss used in logistic regression. The problem is hard, 

specifically it is a mixed-integer-nonlinear program (MINLP) whose domain is the integer 

lattice.

Despite the hardness of this problem, new cutting plane algorithms have been able to 

solve this problem to optimality (or near-optimality) for arbitrarily large sample sizes and 

a moderate number of variables within a few minutes. The latest attempt at solving this 

problem is the RiskSLIM (Risk-Supersparse-Linear-Integer-Models) algorithm, which is a 

specialized cutting plane method that adds cutting planes only whenever the solution to a 

linear program is integer-valued, and otherwise performs branching [44].

This optimization problem is similar to what physicians attempt to solve manually, but 

without writing the optimization problem down like we did above. Because physicians 

do not use optimization tools to do this, accurate scoring systems tend to be difficult for 

physicians to create themselves from data. One of our collaborators spent months trying to 

construct a scoring system himself by adding and removing variables, rounding, and using 

other heuristics to decide which variables to add, remove, and round. RiskSLIM was useful 

for helping him with this task [48]. Formally, the second challenge is to create algorithms for 
scoring systems that are computationally efficient. Ideally we would increase the size of the 

optimal scoring system problems that current methods can practically handle by an order of 

magnitude.
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Challenge #3 Define interpretability for specific domains and create methods accordingly, 
including computer vision

Since interpretability needs to be defined in a domain-specific way, some of the most 

important technical challenges for the future are tied to specific important domains. Let us 

start with computer vision, for classification of images. There is a vast and growing body 

of research on posthoc explainability of deep neural networks, but not as much work in 

designing interpretable neural networks. My goal in this section is to demonstrate that even 

for classic domains of machine learning, where latent representations of data need to be 

constructed, there could exist interpretable models that are as accurate as black box models.

For computer vision in particular, there is not a clear definition of interpretability, and the 

sparsity-related models discussed above do not apply – sparsity in pixel space does not make 

sense. There can be many different ideas of what constitutes interpretability, even between 

different computer vision applications. However, if we can define interpretability somehow 

for our particular application, we can embed this definition into our algorithm.

Let us define what constitutes interpretability by considering how people explain to each 
other the reasoning processes behind complicated visual classification tasks. As it turns out, 

for classification of natural images, domain experts often direct our attention to different 

parts of the image and explain why these parts of the image were important in their 

reasoning process. The question is whether we can construct network architectures for deep 

learning that can also do this. The network must then make decisions by reasoning about 

parts of the image so that the explanations are real, and not posthoc.

In a recent attempt to do this, Chen, Li, and colleagues have been building architectures 

that append a special prototype layer to the end of the network [49, 55]. During training, 

the prototype layer finds parts of training images that act as prototypes for each class. For 

instance, for bird classification, the prototype layer might pick out a prototypical head of a 

blue jay, prototypical feathers of a blue jay, etc. The network also learns a similarity metric 

between parts of images. Thus, during testing, when a new test image needs to be evaluated, 

the network finds parts of the test image that are similar to the prototypes it learned during 

training, as shown in Figure 5. The final class prediction of the network is based on the 

weighted sum of similarities to the prototypes; this is the sum of evidence throughout the 

image for a particular class. The explanations given by the network are the prototypes (and 

the weighted similarities to them). These explanations are the actual computations of the 

model, and these are not posthoc explanations. The network is called “This look like that” 

because its reasoning process considers whether “this” part of the image looks like “that” 

prototype.

Training this prototype network is not as easy as training an ordinary neural network; the 

tricks that have been developed for regular deep learning have not yet been developed for 

the prototype network. However, so far these prototype networks have been trained to be 

approximately as accurate as the original black box deep neural networks they were derived 

from, before the prototype layer was added.
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Discussion on Interpretability for Specific Domains

Let us finish this short discussion on challenges to interpretability for specific domains by 

mentioning that there are vast numbers of papers that have imbued interpretability in their 

methodology. Interpretability is not mentioned in the title of these papers, and often not 

in the body of the text. This is why it is almost impossible to create a review article on 

interpretability in machine learning or statistics without missing the overwhelming majority 

of it.

It is not clear why review articles for interpretability and explainability make sense to create. 

We do not normally have reviews of performance/accuracy measures, despite the fact that 

there are many of them – accuracy, area under the ROC curve, partial AUC, sensitivity, 

specificity, discounted cumulative gain, F-score, G-means, and many other domain-specific 

measures. Interpretability/explainability is just as domain-specific as accuracy performance, 

so it is not clear why reviews of interpretability make any more sense than reviews of 

accuracy/performance. I have yet to find even a single recent review that recognized the 

chasm between interpretability and explainability.

Let us discuss very briefly some of examples of work on interpretability that would 

not have been covered by recent review articles, and yet are valuable contributions 

to interpretability in their respective domains. Gallagher et al. [56] analyze brain-

wide electrical spatiotemporal dynamics to understand depression vulnerability and find 

interpretable patterns in a low dimensional space. Dimension reduction to interpretable 

dimensions is an important theme in interpretable machine learning. Problems residing in 

applied statistics are often interpretable because they embed the physics of the domain; 

e.g., Wang et al. [57] create models for recovery curves for prostatectomy patients whose 

signal and uncertainty obey specific constraints in order to be realistic. Constraints on the 

uncertainty of the predictions make these models interpretable.

The setup of the recent 2018 FICO Explainable ML Challenge exemplified the blind belief 

in the myth of the accuracy/interpretability tradeoff for a specific domain, namely credit 

scoring. Entrants were instructed to create a black box to predict credit default and explain 

the model afterwards. However, there was no performance difference between interpre table 
models and explainable models for the FICO data. A globally interpretable model [22] won 

the FICO Recognition Prize for the competition. This is a case where the organizers and 

judges had not expected an interpretable model to be able to be constructed and thus did 

not ask entrants to try to construct such a model. The model of [22] was an additive model, 

which is a known form of interpretable model [see also 9, 58, where additive models are 

used for medical data]. Additive models could be optimized using similar techniques to 

those introduced in Challenge 2 above.

A Technical Reason Why Accurate Interpretable Models Might Exist in Many Domains

Why is it that accurate interpretable models could possibly exist in so many different 

domains? Is it really possible that many aspects of nature have simple truths that are waiting 

to be discovered by machine learning? Although that would be intriguing, I will not make 

this kind of Occham’s-Razor-style argument, in favor of a technical argument about function 
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classes, and in particular, Rashomon Sets. The argument below is fleshed out more formally 

in [59]. This is related to (but different from) the notation of “flat minima,” for which a nice 

example is given by Hand [19].

Here is the Rashomon set argument: Consider that the data permit a large set of reasonably 

accurate predictive models to exist. Because this set of accurate models is large, it often 

contains at least one model that is interpretable. This model is thus both interpretable and 

accurate.

Unpacking this argument slightly, for a given data set, we define the Rashomon set as the set 

of reasonably accurate predictive models (say within a given accuracy from the best model 

accuracy of boosted decision trees). Because the data are finite, the data could admit many 

close-to-optimal models that predict differently from each other: a large Rashomon set. I 

suspect this happens often in practice because sometimes many different machine learning 

algorithms perform similarly on the same dataset, despite having different functional forms 

(e.g., random forests, neural networks, support vector machines). As long as the Rashomon 

set contains a large enough set of models with diverse predictions, it probably contains 

functions that can be approximated well by simpler functions, and so the Rashomon set can 

also contain these simpler functions. Said another way, uncertainty arising from the data 

leads to a Rashomon set, a larger Rashomon set probably contains interpretable models, thus 

interpretable accurate models often exist.

If this theory holds, we should expect to see interpretable models exist across domains. 

These interpretable models may be hard to find through optimization, but at least there is a 

reason we might expect that such models exist.

If there are many diverse yet good models, it means that algorithms may not be stable; an 

algorithm might choose one model, and a small change to that algorithm or to the dataset 

may yield a completely different (but still accurate) model. This is not necessarily a bad 

thing, in fact, the availability of diverse good models means that domain experts may have 

more flexibility in choosing a model that they find interpretable. Appendix E discusses this 

in slightly more detail.

6 Conclusion

If this commentary can shift the focus even slightly from the basic assumption underlying 

most work in Explainable ML – which is that a black box is necessary for accurate 

predictions – we will have considered this document a success.

If this document can encourage policy makers not to accept black box models without 

significant attempts at interpretable (rather than explainable) models, that would be even 

better.

If we can make people aware of the current challenges right now in interpretable machine 

learning, it will allow policy-makers the mechanism to demand that more effort should be 

made in ensuring safety and trust in our machine learning models for high-stakes decisions.
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If we do not succeed at these efforts, it is possible that black box models will continue 

to be permitted when it is not safe to use them. Since the definition of what constitutes 

a viable explanation is unclear, even strong regulations such as “right to explanation” can 

be undermined with less-than-satisfactory explanations. Further, there will continue to be 

problems combining black box model predictions with information outside the database, and 

continued miscalculations of black box model inputs. This may continue to lead to poor 

decisions throughout our criminal justice system, incorrect safety guidance for air quality 

disasters, incomprehensible loan decisions, and other widespread societal problems.
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A: On the Two Types of Black Box

Black box models of the first type are too complicated for a human to comprehend, and 

black box models of the second type are proprietary. Some models are of both types. The 

consequences of these two types of black box are different, but related. For instance, for a 

black box model that is complicated but not proprietary, we at least know what variables it 

uses. We also know the model form and could use that to attempt to analyze the different 

parts of the model. For a black box model that is proprietary but not complicated [we have 

evidence that COMPAS is such a model, 27], we may not even have access to query it in 

order to study it. If a proprietary model is too sparse, there is a risk that it could be easily 

reverse-engineered, thus there is an incentive to make proprietary models complicated in 

order to preserve their secrecy.

B: Performance Comparisons

For most problems with meaningful structured covariates, machine learning algorithms tend 

to perform similarly, with no algorithm clearly dominating the others. The variation due 

to tuning parameters of a single algorithm can often be higher than the variation between 

algorithms. This lack of single dominating algorithm for structured data is arguably why 

the field of machine learning focuses on image and speech recognition, whose data are 

represented in raw features (pixels, sound files); these are fields for which the choice of 

algorithm impacts performance. Even for complex domains such as medical records, it has 

been reported in some studies that logistic regression has identical performance to deep 

neural networks [e.g. 60].

If there is no dominating algorithm, the Rashomon Set argument discussed above would 

suggest that interpretable models might perform well.

Unfortunately the culture of publication within machine learning favors selective reporting 

of algorithms on selectively chosen datasets. Papers are often rejected if small or no 
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performance gains are reported between algorithms. This encourages omission of accurate 

baselines for comparison, as well as omission of datasets on which the method does not 

perform well, and encourages authors to poorly tune the parameters of baseline methods, or 

equivalently, place more effort into tuning the parameters of the author’s own method. This 

creates an illusion of large performance differences between algorithms, even when such 

performance differences do not truly exist.

C: Counterfactual Explanations

Some have argued that counterfactual explanations [e.g., see 37] are a way for black boxes 

to provide useful information while preserving secrecy of the global model. Counterfactual 

explanations, also called inverse classification, state a change in features that is sufficient 

(but not necessary) for the prediction to switch to another class (e.g., “If you reduced your 

debt by $5000 and increased your savings by $50% then you would have qualified for the 

loan you applied for”). This is important for recourse in certain types of decisions, meaning 

that the user could take an action to reverse a decision [61].

There are several problems with the argument that counterfactual explanations are sufficient. 

For loan applications, for instance, we would want the counterfactual explanation to provide 

the lowest cost action for the user to take, according to the user’s own cost metric. [See 

35, for an example of lowest-cost counterfactual reasoning in product rankings]. In other 

words, let us say that there is more than one counterfactual explanation available (e.g., the 

first explanation is “If you reduced your debt by $5000 and increased your savings by $50% 

then you would have qualified for the loan you applied for” and the second explanation is 

“If you had gotten a job that pays $500 more per week, then you would have qualified for 

the loan”). In that case, the explanation shown to the user should be the easiest one for the 

user to actually accomplish. However, it is unclear in advance which explanation would be 

easier for the user to accomplish. In the credit example, perhaps it is easier for the user to 

save money rather than get a job or vice versa. In order to determine which explanation 

is the lowest cost for the user, we would need to elicit cost information for the user, and 

that cost information is generally very difficult to obtain; worse, the cost information could 

actually change as the user attempts to follow the policy provided by the counterfactual 

explanation (e.g., it turns out to be harder than the user thought to get a salary increase). 

For that reason it is unclear that counterfactual explanations would suffice for high stakes 

decisions. Additionally, counterfactual explanations of black boxes have many of the other 

pitfalls discussed throughout this paper.

D: Interpretable Models that Provide Smaller-Than-Global Explanations

It is possible to create a global model (perhaps a complicated one) for which explanations 

for any given individual are very sparse. In other words, even if the global model would 

take several pages of text to write, the prediction for a given individual can be very simple 

to calculate (perhaps requiring only 1–2 conditions). Let us consider the case of credit risk 

prediction. Assume we do not need to justify to the client why we would grant a loan, but we 

would need to justify why we would deny a loan.
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Let us consider a disjunctive normal form model, which is a collection of “or’s” of “and’s.” 

For instance, the model might deny a loan if “(credit history too short AND at least one 

bad past trade) OR (at least 4 bad past trades) OR (at least one recent delinquency AND 

high percentage of delinquent trades).” Even if we had hundreds of conjunctions within the 

model, only one of these needs to be shown to the client; if any conjunction is true, that 

conjunction is a defining reason why the client would be denied a loan. In other words, if 

the client had “at least one recent delinquency AND high percentage of delinquent trades,” 

then regardless of any other aspects of her credit history, she could be shown that simple 

explanation, and it would be a defining reason why her loan application would be denied.

Disjunctive normal form models are well-studied, and are called by various names, such as 

“or’s of and’s,” as well as “decision rules,” “rule sets” and “associative classifiers.” There 

has been substantial work in being able to generate such models over the past few years 

so that the models are globally interpretable, not just locally interpretable (meaning that the 

global model consists of a small number of conjunctions) [e.g., see 62, 63, 64, 65, 66].

There are many other types of models that would provide smaller-than-global explanations. 

For instance, falling rule lists [41, 42] provide shorter explanations for the decisions that are 

most important. For instance, a falling rule list for predicting patient mortality would use 

few logical conditions to categorize whether a patient is in a high-risk group, but use several 

additional logical conditions to determine which low-risk group a patient falls into.

E: Algorithm Stability

A common criticism of decision trees is that they are not stable, meaning that small changes 

in the training data lead to completely different trees, giving no guidance as to which tree 

to choose. In fact, the same problem can happen in linear models when there are highly 

correlated features. This can happen even in basic least squares, where correlations between 

features can lead to very different models having precisely the same levels of performance. 

When there are correlated features, the lack of stability happens with most algorithms that 

are not strongly regularized.

I hypothesize this instability in the learning algorithm could be a side-effect of the 

Rashomon effect mentioned earlier – that there are many different almost-equally good 

predictive models. Adding regularization to an algorithm increases stability, but also limits 

flexibility of the user to choose which element of the Rashomon set would be more 

desirable.

For applications where the models are purely predictive and not causal (e.g., in criminal 

recidivism where we use age and prior criminal history to predict future crime), there is no 

assumption that the model represents how outcomes are actually generated. The importance 

of the variables in the model does not reflect a causal relationship between the variables and 

the outcomes. Thus, without additional guidance from the domain expert, there is no way 

to proceed further to choose a single “best model” among the set of models that perform 

similarly. As discussed above, regularization can act as this additional input.
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I view the lack of algorithmic stability as an advantage rather than a disadvantage. If the lack 

of stability is indeed caused by a large Rashomon effect, it means that domain experts can 

add more constraints to the model to customize it without losing accuracy.

In other words, while many people criticize methods such as decision trees for not being 

stable, I view that as a strength of interpretability for decision trees. If there are many 

equally accurate trees, the domain expert can pick the one that is the most interpretable.

Note that not all researchers working in interpretability agree with this general sentiment 

about the advantages of instability [67].
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Figure 1: 
A fictional depiction of the “accuracy-interpretability trade-off,” taken from the DARPA 

XAI (Explainable Artificial Intelligence) Broad Agency Announcement [18].
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Figure 2: 
Saliency does not explain anything except where the network is looking. We have no idea 

why this image is labeled as either a dog or a musical instrument when considering only 

saliency. The explanations look essentially the same for both classes. Figure credit: Chaofan 

Chen and [28].
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Figure 3: 
This is a machine learning model from the Certifiably Optimal Rule Lists (CORELS) 

algorithm [32]. This model is the minimizer of a special case of Equation 1 discussed later 

in the challenges section. CORELS’ code is open source and publicly available at http://

corels.eecs.harvard.edu/, along with the data from Florida needed to produce this model.
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Figure 4: 
Scoring system for risk of recidivism from [21] [which grew out of 30, 44, 45]. This model 

was not created by a human; the selection of numbers and features come from the RiskSLIM 

machine learning algorithm.
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Figure 5: 
Image from the authors of [49], indicating that parts of the test image on the left are similar 

to prototypical parts of training examples. The test image to be classified is on the left, the 

most similar prototypes are in the middle column, and the heatmaps that show which part 

of the test image is similar to the prototype are on the right. We included copies of the test 

image on the right so that it is easier to see what part of the bird the heatmaps are referring 

to. The similarities of the prototypes to the test image are what determine the predicted 

class label of the image. Here, the image is predicted to be a clay-colored sparrow. The top 

prototype seems to be comparing the bird’s head to a prototypical head of a clay-colored 

sparrow, the second prototype considers the throat of the bird, the third looks at feathers, and 

the last seems to consider the abdomen and leg. Test image from [50]. Prototypes from [51, 

52, 53, 54]. Image constructed by Alina Barnett.
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Table 1:

Comparison of COMPAS and CORELS models. Both models have similar true and false positive rates and 

true and false negative rates on data from Broward County, Florida.

COMPAS CORELS

black box
130+ factors

might include socio-economic info
expensive (software license),

within software used in U.S. Justice System

full model is in Figure 3
only age, priors, (optional) gender

no other information
free, transparent
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