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In the 1970s, clinicians repeatedly 
documented cases of transfusion-​associated 
hepatitis, which frequently took a chronic, 
progressive course and could be attributed 
neither to the hepatitis A virus (HAV), the 
hepatitis B virus (HBV) nor to any other 
known cause. This phenomenon was called 
non-​A, non-​B hepatitis (NANBH). It took 
approximately 20 years until the hepatitis C 
virus (HCV) was finally identified as the 
aetiological agent causing NANBH. As 
early as 1986, that is, 3 years before the 
discovery of the virus, interferon-​α (IFNα) 
was used as the first antiviral agent, with 
regimens lasting up to 72 weeks. However, 
tolerability was low and efficacy quite 
limited; cure rates were less than 20% for 
these first regimens. Still today, chronic 
HCV infection remains a global health 
burden and a major cause of liver cirrhosis, 
hepatocellular carcinoma (HCC) and liver 
transplantation worldwide1,2. However, 
tremendous advances have been made, and 
HCV infection became the first curable, 
chronic viral infection in humans. Iatrogenic 
transmission (such as blood transfusion), 
which used to be the main route of infection, 
was dramatically reduced owing to effective 
hygienic measures and, in particular, by 

this process. As a consequence, the Nobel 
Prize in Physiology or Medicine in 2020 was 
jointly awarded to Harvey J. Alter, Michael 
Houghton and Charles M. Rice. These three 
prominent scientists stand for the whole 
scientific community, making the HCV 
story a masterpiece of translational research. 
In this Perspective, we discuss major 
breakthroughs in HCV research over the past 
50 years that transformed a life-​threatening 
disease into an easy to cure disease7 (Fig. 1).

Discovering HCV
An unknown, transmissible agent. Post-​
transfusion hepatitis used to be a frequent 
phenomenon in the middle of the twentieth 
century. Shortly after the identification of 
HBV (1965) and HAV (1973), it became 
evident that many of these hepatitis cases 
were attributable to neither of these two 
nor any other known infectious agent8–11. 
Feinstone and colleagues11 were among 
the first to show this phenomenon in a 
well-​defined cohort of patients with post-​
transfusion hepatitis. Serological assays were 
used to exclude HAV, HBV, cytomegalovirus 
and Epstein–Barr virus infection. However, 
the authors already suspected the presence 
of a so far unknown infectious trigger. Other 
groups published similar findings at that 
time9. The newly identified disease was 
later named NANBH and was found to be 
responsible for up to 90% of post-​transfusion 
hepatitis12. The presence of a transmissible 
infectious agent was finally confirmed in 
1978. Two landmark studies by Alter et al.12 
and Tabor et al.13 with a similar design were 
published in the same edition of The Lancet. 
Both groups demonstrated that plasma 
and/or serum of patients with NANBH 
could induce clinically apparent hepatitis 
in healthy chimpanzees. Importantly, the 
onset of hepatitis was 2–10 weeks after 
the injection with infectious plasma and/or 
serum, similar to the incubation period 
assumed for human cases of NANBH. 
The relatively long incubation period 
indicated that the documented increase 
in transaminase levels was not related 
to some nonspecific immune reaction to 
the respective blood product. Moreover, the 
investigators documented concomitant 
inflammation in liver histology12,13. Further 
studies confirmed the persistence of 
hepatic inflammation for more than 1 year, 

screening blood donors and blood products 
first for HCV antibody and then for HCV 
RNA3,4. Subsequently, antiviral treatment 
was revolutionized, leading to viral 
eradication in more than 98% of all patients 
infected with HCV treated by all-​oral 
therapy, usually lasting for only 8–12 weeks 
and with no or only minor adverse effects5.

Although an HCV vaccine is not on the 
horizon yet, in 2016, the WHO proclaimed 
the ambitious goal to reduce new HCV 
infections by 90% by 2030, with the ultimate 
goal of HCV elimination6. The history of 
HCV research reads like a role model for 
successful biomedical and translational 
research, starting from a clinical observation, 
via identification of the underlying 
aetiology (a virus), the establishment of 
diagnostic tests, unravelling of the viral life 
cycle, development of specific therapeutic 
agents and finally implementation of a 
global elimination programme. HCV 
antiviral treatment was the result of joint 
efforts and close collaborations between 
scientists and physicians as well as the 
pharmaceutical and diagnostic industries. 
Basic virologists, translational researchers, 
clinician-​scientists and epidemiologists 
made important contributions in 
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suggesting a chronic course of the disease  
in a substantial number of patients14.

Soon, it became evident that disease 
transmission was not limited to blood 
transfusions but could occur via other 
blood-​derived products. A particularly 
high frequency of NANBH cases was 
documented among patients with 
haemophilia15–18 and in patients receiving 
intravenous immunoglobulins19,20. For some 
blood products, for example, fibrinogen, 
factor VIII and factor IX, infectivity could 
be proved by transmission studies in 
chimpanzees16,17,21. Additional transmission 
routes were suspected for persons who 
injected drugs (PWIDs)22,23 and those with 
end-​stage renal disease (ESRD) undergoing 
haemodialysis24.

Long-​term follow-​up of patients with 
NANBH revealed that 50–80% developed 
a chronic cause leading to progressive liver 
disease, including liver cirrhosis and HCC, 
highlighting the urgent unmet medical need 
to prevent further spread of this disease25–29. 

Some physicians suggested avoiding blood 
products from patients with increased 
alanine aminotransferase (ALT) levels, as 
Aach et al.30 observed a higher incidence 
of post-​transfusion NANBH in recipients of 
blood products from donors with elevated 
ALT levels (≥60 international units (IU)  
per millilitre) compared with those with 
normal ALT values (<29 IU/ml), 45%  
versus 6%, respectively. Importantly, 
their data also indicated that a substantial 
number of donors were infectious despite 
normal or only mildly elevated ALT levels30. 
The elimination of blood donors with 
elevated ALT levels and a change from 
commercial to voluntary blood donation 
markedly reduced post-​transfusion 
hepatitis.

Identifying the virus. Over the years, 
researchers provided increasing physic-
ochemical evidence that the infectious 
agent that triggered NANBH was a small, 
enveloped viral agent, for example, by 

demonstrating that it induced specific 
changes in hepatocytes, was not held back 
by an 80 nm-​sized membrane filter, but 
could be inactivated by chloroform31,32. The 
major breakthrough was achieved and pub-
lished in 1989 when Choo and colleagues 
from Michael Houghton’s group at Chiron 
(USA) discovered the HCV33. They assumed 
that the reason for the failure of previous 
attempts was a very low viral concentration. 
Thus, they created a complementary DNA 
(cDNA) library using randomly created 
primers, reverse transcriptase and plasma 
from an infected chimpanzee shown to 
have a particularly high titre of the pre-
sumed infectious agent. The cDNA was 
inserted into a viral cloning vector, phage 
λgt11, expressed in Escherichia coli capable 
of inducing the production of the cDNA-​
encoded polypeptides. Approximately 
1 million clones were screened for viral 
proteins using serum from a patient with 
chronic NANBH until the cDNA clone 5-1-1 
was finally identified. Southern blot analysis 
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excluded human or chimpanzee origin of 
the genomic fragment. Reactivity with the 
polypeptide synthesized from cDNA clone 
5-1-1 was confirmed with sera from seven 
additional patients with NANBH. Further 
experiments provided the final proof that 
the discovered infectious agent was indeed  
a RNA virus, which was later termed HCV33.

Development of anti-​HCV assays
With the clinical burden becoming 
increasingly evident, a worldwide search 
was initiated for ways to identify infected 
individuals and blood products. As 
discussed earlier, indirect tests (for example, 
relying on ALT serum levels or the detection 
of antibodies to the HBV core antigen 
(anti-​HBc)) had limited efficacy as they 
failed to detect patients without clinically 
apparent hepatitis or HBV co-​infection, 
respectively3,30,34. Thus, a specific diagnostic 
test was urgently needed. Over the years, 
several groups claimed to have discovered 
the NANBH agent by applying technologies 
of that time, such as immunofluorescence, 
immunoelectrophoresis, radio- and 
enzyme-​immunoassays and electron 
microscopy, without success. Harvey 
Alter at the NIH (USA) established a 
well-​defined panel of sera from patients 
with NANBH that transmitted the disease 
to chimpanzees (‘Alter panel’). The panel 
also included control sera from obviously 
healthy individuals with normal ALT values, 
no previous history of hepatitis and no 
serological markers of HBV infection33,35,36.

The ultimate game-​changer was the 
discovery of HCV. With the HCV cDNA 
clone in their hands, Michael Houghton 
and colleagues at Chiron rapidly developed 
an assay to detect HCV antibodies. The 
respective manuscript by Kuo et al.36 was 
published in 1989 in the same edition of 
Science as the paper by Choo et al.33 that 
reported the discovery of the virus. Kuo 
and colleagues36 created a fusion protein 
(also known as C100-3) consisting of 
the HCV polypeptide and the human 
superoxide dismutase, which was then 
coated on microtitre plates and was capable 
of capturing circulating HCV antibodies. 
In a second step, an additional radioactive 
antibody identified the captured HCV 
antibodies. The newly developed assay was 
successfully validated in a blind fashion in 
the Alter panel, yielding positive results 
in six of seven sera from patients with 
NANBH, whereas all control sera from 
healthy individuals tested negative. Notably, 
the negative result was obtained in a patient 
assumed to be in the very acute phase of 
infection36.

The availability of a diagnostic test 
brought the opportunity to address 
several important, but so far unanswered, 
questions in NANBH. It was now possible 
to better estimate the proportion of 
post-​transfusion hepatitis that was really 
attributable to HCV, which, interestingly, 
varied between 15% and 80% among 
different international cohorts in the first 
dedicated study36. However, a suboptimal 
sensitivity needed to be considered when 
interpreting these early results. Moreover, 
it was possible to investigate better HCV 
epidemiology confirming a particularly 
high prevalence among PWIDs, in 
patients with haemophilia, those requiring 
haemodialysis37,38, and those with liver 
cirrhosis and/or HCC39,40. Additionally, 
notable regional differences became apparent 
when investigating anti-​HCV prevalence in 
the overall population41. Finally, the likely 
most important achievement was the ability 
to test blood products, preventing the 
further iatrogenic spread of the virus. Even 
with the first versions of the anti-​HCV assay, 
the vast majority of NANBH-​transmitting 
donors were detected in the first pilot 
studies, underlining the vast potential for 
future prevention of viral transmission3,42. 
Very quickly, commercial enzyme-​linked 
immunosorbent assays became available for 
broad anti-​HCV screening. In a landmark 
study from Japan, systematic screening 
of blood donors reduced the incidence 
of post-​transfusion NANBH from 5% to 
2%43. In patients who received more than 
ten blood transfusions, the incidence 
was reduced from 16% to 3%43. Shortly 
after the introduction of the first tests, 

additional development of anti-​HCV assays 
led to markedly improved sensitivity. The 
next-​generation assays demonstrated that 
a far higher proportion of NANBHs were 
caused by HCV than had been assumed 
after the initial studies using first-​generation 
anti-​HCV assays44. Consequent screening 
of all blood donors almost eliminated the 
risk of viral transmission through blood and 
blood products in high-​income countries 
by testing for anti-​HCV antibodies alone45 
(Fig. 2). Additional safety was later provided 
by the introduction of PCR-​based tests 
to identify HCV RNA and, therefore, the 
virus itself, also enabling the detection of 
patients in the very early phase of acute HCV 
infection when HCV antibodies have not yet 
developed4,46. However, given the costs and 
limited availability of such screening tools 
in countries with low and middle-income 
economies, health-​care-​associated 
transmission remains an important source  
of new HCV infections on a global scale47.

Interferon antiviral treatment
IFNα monotherapy. The first attempts 
of antiviral treatment for NANBH were 
made in 1986, which was, notably, 3 years 
before the discovery of HCV. Recombinant 
IFNα (also known as IFN alfa) had 
become available in the 1980s in cancer 
treatment before promising results were 
published towards HBV infection48,49. 
Suspecting an unknown viral pathogen 
as the underlying cause of NANBH, 
Hoofnagle and colleagues50 decided to try 
recombinant IFNα for this so far poorly 
understood disease50. In their pilot study, 
they treated ten patients with NANBH, 

R
ec

ip
ie

nt
s 

in
fe

ct
ed

 (%
)

25

15

10

5

0
20001980

Year of transfusion

1965

20

19851970 19951975 1990

All volunteer donors

HBsAg test

AIDS high-risk exclusions Anti-HIV test

Anti-HCV test

Improved HCV test

ALT/HBsAg test
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with recombinant IFNα2b, for up to 
12 months. The investigators documented 
a substantial decrease in the levels of serum 
transaminases50. This finding indicated 
the start of the IFN era in HCV therapy. 
On the basis of these findings, larger 
randomized studies were initiated, which 
confirmed the effect of IFNα in a large 
population of patients infected with HCV 
and paved the way towards the establishment 
of IFNα monotherapy as the standard of care 
for some time, although efficacy seemed to 
be limited to less than 40%51,52.

However, for the further development of 
HCV therapies, it was essential to establish 
virological end points. In the early 1990s, 
a couple of studies demonstrated that the 
decreased serum transaminase levels during 
IFNα treatment were directly paralleled by a 
decrease in HCV RNA level or detection53,54. 
Similarly, it was shown that a relapse of 
transaminases after treatment cessation was 
accompanied by reappearance of HCV RNA 
in serum55. Given these results and the broad 
availability of robust assays, HCV RNA 
was further used as a primary biomarker to 
determine treatment response. A sustained 
virological response (SVR) 24 weeks after 
the end of treatment was regarded as 
equivalent to a cure (Table 1), as it was shown 
that virological relapse after this time point 
was extremely rare56,57. Moreover, HCV 
RNA clearance was linked to consistent 
improvements in liver histology58.

In 2001, roughly 10 years after IFNα 
was established for chronic HCV infection, 

Jaeckel and collaborators59 demonstrated 
with their first German Acute HCV study 
that treating 44 patients in the early, acute 
phase of infection leads to a substantial 
increase in SVR rates to 98%. Although IFN 
had been suggested before in acute HCV 
infection60, it was the data of this landmark 
study that established IFN as a first-​line 
option in many centres.

Introduction of ribavirin. The next major 
step forwards in treating chronic HCV 
infection was the introduction of the second 
(non-​HCV-​specific) antiviral compound, 
the nucleoside analogue ribavirin (RBV). 
In 1991, Reichard et al.61 published the 
results of their pilot study evaluating 
RBV monotherapy in ten patients with 
HCV infection, which indicated limited 
efficacy. Median ALT values decreased 
during treatment but rapidly relapsed after 
treatment cessation61. Moreover, Di Bisceglie 
et al.62 reported that RBV achieved only a 
minor decrease in HCV RNA serum levels. 
However, in contrast to RBV monotherapy, 
its addition to IFN led to an impressive 
increase in SVR63,64. A small pilot study 
investigating this combination was published 
by Brillanti and colleagues64 in 1994. SVR 
was achieved in 40% of patients (n = 10) 
treated with IFN–RBV but in none of those 
(n = 10) receiving IFNα monotherapy. 
Additional large multicentre studies 
confirmed the superior efficacy of dual 
therapy, making it the new standard of care 
in 1998 (refs65–67).

Pegylated interferons. The use of long-​
acting pegylated (Peg) IFNs represented 
the next tremendous milestone in HCV 
therapy. These modified Peg-​IFNs showed 
a favourable, prolonged pharmacokinetic 
profile with two important outcomes. 
First, the dosing schedule could be simplified 
to once per week, promising improved 
treatment adherence, which had been shown 
to be crucial for treatment success68. Second, 
antiviral efficacy was higher. Unmodified 
conventional recombinant IFN had a half-​
life of 3–8 h and became undetectable in 
serum within 24 h (refs69,70). Thus, the 
commonly applied regimen of three times 
per week seemed insufficient when aiming 
for a permanent antiviral effect. Indeed, 
an increase in HCV RNA levels could be 
detected before the next IFN injection 
with this approach, a phenomenon that 
was not seen with Peg-​IFN. Two different 
types of Peg-​IFN, Peg-​IFNα2a (40 kDa Peg 
chain) and Peg-​IFNα2b (12 kDa Peg chain) 
were finally approved by the FDA and the 
European Medicines Agency (EMA). 
The first landmark study was published in 
2001 (refs71,72). It was a large, randomized, 
multicentre, global trial that involved more 
than 1,530 patients with HCV infection, 
with a head-​to-​head comparison of dual 
therapy with IFNα2b plus RBV (1,000–
1,200 mg daily) (n = 505 patients) and Peg-​
IFNα2b (4 weeks of 1.5 μg/kg and 44 weeks 
of 0.5 μg/kg) plus RBV (1,000–1,200 mg 
daily) (n = 514 patients). In a third group 
(n = 511 patients), a higher Peg-​IFNα2b 
(1.5 μg/kg per week) but lower RBV dose 
(800 mg daily) was used. Notably, this third 
group achieved the highest SVR rates (54%), 
whereas there was no difference between 
the other two treatment arms. Similar 
data were published 1 year later for Peg-​
IFNα2a by Fried and colleagues73. Although 
safety was quite similar between Peg-​IFN 
and IFN in the two studies, the slightly 
higher efficacy and the more convenient 
weekly dosing schedule established Peg-​
IFN–RBV as the new standard of care71,73. 
The approval was followed by an intensive 
debate about whether one Peg-​IFN should 
be preferred over the other. Some smaller 
studies suggested superior efficacy of 
Peg-​IFNα2a74,75. However, the multicentre 
IDEAL study, which involved more than 
3,000 patients with HCV infection, indicated 
that the two Peg-​IFNs could be used 
interchangeably76. An overview of some 
of the most important studies regarding 
interferon-​based treatment is listed in 
Supplementary Table 1.

Peg-​IFN–RBV remained the standard 
of care for a decade (2001–2011). During 

Table 1 | Definitions for treatment response in interferon-​based response-​guided therapies

Term Abbreviation Definition

Sustained virological response SVR Undetectable HCV RNA 12–24 weeks  
after the end of therapy

Rapid virological response RVR Undetectable HCV RNA at week 4 of therapy

Early virological response EVR HCV RNA decline ≥2 log10 at week 12

Complete early virological 
response

cEVR Undetectable HCV RNA at week 12

Partial early virological response pEVR HCV RNA decline ≥2 log10 at week 12

Relapse RL HCV RNA negative at the end of treatment 
and recurrence of HCV RNA during the 
follow-​up of 24 weeks

Partial response PR HCV RNA decline ≥2 log10 at week 12 but 
positive at week 24 during Peg-​IFN–RBV 
therapy

Null response NULL HCV RNA decline <2 log10 at week 12 during 
Peg-​IFN–RBV therapy

Response at weeks 4 and 12 of pegylated interferon-​α (Peg-​IFN)-​based regimens was used to determine 
the optimal treatment duration. Patients with a fast decline who achieved a rapid virological response 
(RVR) were eligible for short-​term regimens without impairing sustained virological response (SVR) rates. 
By contrast, a poor response until week 12 of treatment identified patients in whom the chance of SVR was 
minimal and, therefore, treatment should be stopped early. Response-​guided therapy minimized adverse 
events of Peg-​IFN–ribavirin (RBV) therapy. Moreover, in those patients who failed antiviral treatment 
response during treatment, it was essential to estimate SVR chances for subsequent treatment attempts. 
HCV, hepatitis C virus.
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this time period, the safety and efficacy 
of the regimen were improved, such as by 
developing individualized approaches for 
optimal dosing and treatment duration. 
Various response predictors were identified, 
such as the presence of cirrhosis, HCV 
genotype and baseline HCV RNA serum 
level77. However, the most important 
advantage might have been the introduction 
of response-​guided therapy, making HCV 
therapy an early role model for personalized 
medicine. In a retrospective analysis of 1,383 
patients, Fried and colleagues78 demonstrated 
that achieving undetectable HCV RNA 
at week 4 on treatment, a so-​called rapid 
virological response (RVR) (Table 1), was 
the most important predictor for achieving 
SVR78. RVR allowed abbreviation of 
antiviral treatment to 12–16 weeks without 
a significant decrease in SVR rates, for 
example, patients infected with HCV 
genotype 2 or 3 (ref.79). By contrast, a slower 
virological response indicated the need for 
longer treatment duration, for example,  
up to 72 weeks for genotype 1 (ref.80) (Box 1).

Close to the end of the Peg-​IFN–RBV era, 
genome-​wide association studies revealed a 
very strong association of single-​nucleotide 
polymorphisms (SNPs) in the IL28B (also 
known as IFNL3) gene with treatment 
response to IFN-​based regimens in patients 
with chronic HCV infection. Moreover, 
IL28B SNPs were strongly linked to sponta-
neous clearance of acute HCV infection81–83. 
Treatment with IFNα induced the pro-
duction of IFNλ (type III IFN) in infected 
hepatocytes, which led to the upregulation of 
IFN-​stimulated genes, which modulate anti-
viral efficacy. The identified SNP upstream 
of the IFNG promoter widely determined 
IFNλ response to IFNα and/or HCV 
infection84,85. Notably, markedly different 
geographical distributions of IL28B geno-
types were documented, which can partly 
explain the different SVR rates that had pre-
viously been described, for example, between 
people of European ancestry, East and/or 
South Asian and Black individuals86,87. The 
discovery of the relevance of IL28B SNPs was 
a major breakthrough for the understanding 
of genetic differences in the host response to 
HCV and potentially also other viral infec-
tions. Personalized treatment approaches 
were suggested. However, the clinical effect 
in HCV care remained overall limited given 
the advent of novel HCV drugs.

The HCV replication cycle
While clinicians developed IFN-​based 
therapies, basic virologists around the world 
intensively worked on unravelling the HCV 
replication cycle to identify therapeutic 

targets for specific, direct-​acting antiviral 
agents (DAAs). After the discovery of HCV, 
the complete viral genome was identified and 
analysed in detail. HCV was characterized 
as a positive-​stranded RNA virus encoding 
approximately 9,400 nucleotides88–90. 
Comparisons between clones from different 
patients revealed a high genetic diversity 
with differences of up to 33% of nucleotides 
between individual clones. This finding 
led to the classification into different HCV 
genotypes91. The entire HCV RNA strand 
contained only a single open reading frame 
(ORF) encoding a polyprotein of around 
3,000 amino acids88–90 (Fig. 3). Thus, it became 
evident that proteases would be necessary 
for the replication process and were possible 
therapeutic targets.

Moreover, comparison of the genomic 
sequence with that of other known viruses 
revealed a close link between HCV and 
flaviviruses92. These observations allowed 
some sophisticated estimations about HCV 
biology, including the general genetic order 
and clues on the organization and function 
of individual parts of the polyprotein93. 
It was speculated that the HCV polyprotein 
contains a certain number of structural 
proteins at the beginning of the ORF, 
followed by approximately five nonstructural 
(NS) proteins94. However, at that time, 
a major hurdle for further studies was the 
inability to culture HCV. Thus, protein 
expression studies that used cDNA clones 
were the most feasible tool to gain more 
insights into HCV replication93. Thereby, 
Hijikata and colleagues94 were one of the first 
groups to characterize specific parts of the 

HCV polyprotein better. They focused on 
the precursor part presumed to contain the 
structural proteins. Using a cDNA construct 
encoding the 980 N-​terminal residues 
of the HCV ORF, they demonstrated that 
the precursor part of the polyprotein was 
cleaved into four major products.

Moreover, it was revealed that two of 
these four proteins were glycoproteins, 
entitled gp35 (later known as envelope 
glycoprotein 1) and gp70 (later named 
envelope glycoprotein 2)94. Two years later, 
in 1993, the Charles Rice group widely 
characterized the remaining part of the 
polyprotein, identifying the nonstructural 
cleavage products NS2, NS3, NS4A, 
NS4B, NS5A and NS5B95. In the following 
years, the structure and function of all of 
these individual cleavage products were 
investigated in more detail. Within the same 
edition of the Journal of Virology in 1993, 
three different research groups published 
insights on NS3, confirming that it encodes 
a viral protease and demonstrating that it 
is required to cleave the link between NS3 
and NS4 (refs95–97). Shortly after that, it was 
discovered that NS4A inhabits a co-​function 
in this process98–101, followed by the 
confirmation that NS5B works as the viral 
polymerase93,102. Additional major advances 
in the understanding of HCV biology 
included insights into viral entry, revealing 
the role of CD81 (ref.103), claudin 1 (ref.104), 
occludin105, scavenger receptor class B type 1  
(ref.106) and the low-​density lipoprotein 
receptor107 (Fig. 4).

However, the most essential milestone 
for the later development of the DAAs 

Box 1 | Limitations of triple therapy with first-​generation protease inhibitors

Boceprevir and telaprevir, as first-​generation direct-​acting antiviral agents (DAAs), had some seri-
ous limitations that were addressed by succeeding generations of DAAs. Antiviral efficacy was  
still highly dependent on response to pegylated interferon-​α (Peg-​IFN). Thus, in previous null 
responders, sustained virological response rate did not exceed 30–40%120,127. Moreover, the dosing 
schedule was inconvenient. Daily boceprevir dosage is four pills every 8 h, which adds up to more 
than 16 pills per day for hepatitis C virus (HCV) treatment if ribavirin is also considered. Two tablets  
were required every 8 h when using telaprevir accompanied by an intake of at least 20 g of fat  
to ensure adequate absorption of the drug. The telaprevir dosing schedule was later modified to 
three tablets twice daily, which had proved to have a similar efficacy267. Both protease inhibitors 
were substrates and inhibitors of P-​glycoprotein and cytochrome P450 3A4 (CYP3A4), which leads 
to drug–drug interactions (DDIs)230,268. Indeed, clinically significant DDIs with one of the protease 
inhibitors and the outpatient medication needed to be considered in almost half of the treated 
patients with HCV infection230. Severe interactions were, for example, reported during coadminis-
tration with statins and calcineurin inhibitors269,270. Most importantly, there were serious adverse 
effects. Boceprevir was frequently associated with dysgeusia, which can have a substantial effect 
on the quality of life for the entire treatment duration125. During telaprevir treatment, half of  
the patients developed a skin rash, which was sometimes severe and even led to treatment 
discontinuation126. Moreover, both protease inhibitors were frequently linked to the development 
of anaemia. In more than 10% of treated individuals, blood transfusions became necessary128,129. 
Focusing on patients with advanced liver disease, overall safety and sustained virological response 
rates were quite disappointing in the first real-​world studies131,132. Infections were identified as a 
frequent and severe problem, which was most likely attributable to Peg-​IFN46,131.
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might have been the creation of a working 
in vitro HCV replication model. A major 
step towards this model was the work by 
Kolykhalov et al.108 in 1997, who used cDNA 
clones (genotype 1a) to produce HCV RNA 
transcripts. Direct intrahepatic injection 
of these RNA transcripts into the liver in 
chimpanzees led to viral hepatitis associated 
with circulating HCV RNA in serum and 
increased ALT levels. At the same time, 
similar findings were published by Yanagi 
et al.109. These data demonstrated that the 
respective cDNA sequence contained all 
information required for viral replication. 
Finally, in 1999 and after years of intensive 
research, the first robust in vitro HCV 
replicon model based on a genotype 1b 
clone transfected into a hepatoma cell line 
was established, which revolutionized drug 
development and further understanding 
of HCV biology110. Shortly afterwards, 
other replicon systems were developed 
that enabled amplification of other HCV 
genotypes111. Although all of these cell 
culture systems were able to produce 
subgenomic replicons, they failed to produce 
infectious viral particles. This limitation was 
finally overcome by the establishment of a 
replicon model based on a genotype 2 clone 
and demonstrated that the produced viral 
particles could infect a human hepatoma cell 
line112. From then on, candidate substances 
could be directly tested in vitro for their 
antiviral activity.

Direct-​acting antiviral agents
The continuous and detailed discovery of the 
HCV life cycle paved the way towards the 
development of an entirely new generation of 

antiviral compounds to treat HCV infection, 
the so-​called DAAs. In contrast to the rather 
nonspecific treatment with IFN and RBV, 
DAAs interfere directly and specifically 
with certain viral proteins required for 
HCV replication. The first DAAs that were 
developed belonged to the class of protease 
inhibitors (PIs), which prevent the splicing 
of the HCV polyprotein between NS3 and 
NS4A by the respective HCV NS3 or NS4A 
protease. In 2003 the PI BILN 2061 became 
the first compound to demonstrate antiviral 
efficacy in HCV-​infected patients113,114. 
However, safety concerns were raised owing 
to cardiotoxicity in a mouse model leading to  
termination of the clinical development  
of BILN 2061 (refs114,115) (Table 2).

It took 8 more years until, in 2011,  
the DAA era could finally begin. Two PIs, 
boceprevir116,117 and telaprevir118–120, were 
approved for antiviral HCV treatment. 
This approval certainly represents one of 
the most important milestones in HCV 
history. Although monotherapy with 
telaprevir or boceprevir led to a fast decrease 
in HCV replication, it rapidly induced 
the development of resistance-​associated 
substitutions (RASs), which resulted in a 
virological breakthrough (reappearance 
of serum HCV RNA at any time during 
treatment after a negative result or increase 
of 1 log IU/ml from nadir) in virtually all 
treated patients121,122. Thus, combination 
with Peg-​IFN–RBV was required. Approval 
of telaprevir and boceprevir was restricted 
to HCV genotype 1 infection, although a 
lower efficacy was also documented for 
other genotypes123,124. Peg-​IFN–RBV–PI 
triple therapy increased SVR rates by 

approximately 30% in treatment-​naive 
patients compared with the previous 
standard regimen of Peg-​IFN–RBV. 
Moreover, a far higher proportion of 
patients achieved an RVR with triple therapy 
and qualified for shorter therapy125–128. 
Improvement was even more pronounced 
in relapsers and previous partial responders 
to Peg-​IFN–RBV therapy. Triple therapy 
increased SVR rates by 2.4–3.7-​fold and 
3.6–7.4-​fold in previous relapsers and partial 
responders, respectively116,120 (Tables 3–5).

However, some important limitations 
of triple therapy with either boceprevir 
or telaprevir had to be considered (Box 1), 
which included poor efficacy in previous 
Peg-​IFN–RBV null responders120,127 as well 
as severe adverse effects. Safety concerns 
were raised particularly among patients with 
advanced liver disease indicated by a platelet 
count below 90–100/µl as well as an albumin 
level below the normal range46,128–132. In 
addition, the overall effectiveness of triple 
therapy in real-​world settings was reduced 
by the fact that many patients were, in 
principle, ineligible for Peg-​IFN treatment 
owing to comorbidities, for example, severe 
depression. Moreover, as better treatment 
options were already in sight, treatment 
was often deferred in those without or with 
only mild fibrosis either by the physicians 
or by the patients themselves46. Ultimately, 
physicians faced the dilemma of having a 
safe and effective treatment available for 
patients with mild disease who could wait 
for even better options, although having 
no acceptable therapeutic option for those 
with advanced disease who urgently needed 
immediate therapy.
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Fig. 3 | Organization of the HCV genome. Illustration of the hepatitis C virus (HCV) genome, which contains only a single open reading frame encoding 
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Interferon-​free therapies
Proof of concept. Given the clinically 
significant adverse effects and limitations of 
IFN-​based regimens (Supplementary Table 2), 
it became clear that IFN-​free therapies were 
essential when aiming to cure all patients 
infected with HCV. This step required 
DAAs with a higher barrier of resistance 
and/or the possibility to combine different 
types of DAA. A combination of telaprevir 
and boceprevir was no reasonable choice, 
as both PIs interfered with the same viral 
protein and showed a lack of efficacy against 
similar RASs133. Thus, a major milestone 
towards HCV cure was the development of 
NS5A inhibitors as an entirely new drug class, 
which, in contrast to polymerase inhibitors or 
PIs, was not used for any other viral infection. 
Today, NS5A inhibitors are part of every 
DAA regimen. Using the replicon technology, 

Lemm and colleagues134 were among the 
first to identify compounds that led to 
sufficient suppression of HCV replication 
through inhibition of the NS5A protein. 
Shortly after that, Gao et al.135 reported 
the promising results of a phase I study 
exploring the NS5A inhibitor BMS-790052, 
a compound later known as daclatasvir. In 
2012, Lok and colleagues136 demonstrated 
in a first proof-​of-​principle study that 
HCV cure can be achieved by an IFN-​free 
combination of an NS5A inhibitor with a PI. 
Eleven patients who were non-​responders 
to Peg-​IFN–RBV dual therapy were treated 
with the NS5A inhibitor daclatasvir and the 
PI asunaprevir for 24 weeks. Both patients 
infected with genotype 1b and two of nine 
patients infected with genotype 1a were 
cured with this regimen. The efficacy in 
genotype 1b infection was later confirmed 

in larger settings, for example, the global 
HALLMARK-​DUAL phase III study that 
documented SVR rates of 80–90%137. Notably, 
this regimen achieved final approval only 
in a limited number of countries and was 
particularly used in Japan and Korea, where 
HCV genotype 1b is by far the most prevalent 
genotype137–139.

Sofosbuvir. The first time that IFN-​free 
therapy became widely available was 
through the approval of the nucleotide 
analogue sofosbuvir, an NS5B polymerase 
inhibitor that was approved in December 
2013 in the USA and January 2014 in 
Europe. From that time on, HCV therapy 
became a rapidly changing field. The key 
advantage of sofosbuvir was its particularly 
high barrier of resistance140. Moreover, the 
clinically relevant RASs, such as the 282T 
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Table 2 | Selected landmark treatment studies regarding first-​generation protease inhibitor therapy

Study Study design Treatment Key results Major contribution

HCV RESPOND-2 
Bacon et al. 2011 
(ref.116)

Randomized, multicentre, 
double-​blind, placebo- 
controlled trial

n = 403 treatment-​experienced 
patients with chronic HCV GT1 
infection — relapsers and partial 
responders — no null responders 
were included

Three treatment arms:

A: Peg-​IFN–RBV for  
48 weeks + placebo  
(weeks 4–48)

A SVR rate: 21% Established triple therapy 
with Peg-​IFN–RBV–boceprevir 
as the standard of care for 
treatment-​experienced 
patients with GT1 infection

Demonstrated that 36 weeks 
of treatment are sufficient in 
patients with undetectable 
HCV RNA at week 8

B: Peg-​IFN–RBV for 
36–48 weeks (depending 
on HCV RNA result at 
week 8 detectable or 
undetectable) + boceprevir 
(weeks 4–36)

B SVR rate: 59%; in those 
with undetectable HCV 
RNA at week 8: 86%

C: Peg-​IFN–RBV for  
48 weeks + boceprevir 
(weeks 4–48)

C SVR rate: 66%; in those 
with undetectable HCV 
RNA at week 8: 88%

Substantially higher 
rates of anaemia in 
patients treated with 
boceprevir (41–46% 
versus 21%)

SPRINT-2 Poordad 
et al. 2011 (ref.117)

Randomized, multicentre, 
double-​blind, 
placebo-​controlled trial

n = 1,097 treatment-​naive 
patients with chronic HCV GT1 
infection

Three treatment arms:

A: Peg-​IFN–RBV for  
48 weeks + placebo  
(weeks 4–48)

A SVR rate: 38% Established triple therapy 
with Peg-​IFN–RBV–boceprevir 
as the standard of care for 
treatment-​naive patients with 
GT1 infection

Demonstrated that treatment 
can be shortened to 28 weeks 
in almost half of the patients 
using response-​guided 
therapy

B: Peg-​IFN + RBV for  
28–48 weeks (28 weeks  
in those with undetectable 
HCV RNA between weeks 8  
and 24; extended RVR) +  
boceprevir (weeks 4–28)

B SVR rate: 63%; 44% 
qualified for shorter 
treatment duration

C: Peg-​IFN–RBV for 
48 weeks + boceprevir  
(weeks 4–48)

C SVR rate: 66%

ILLUMINATE 
Sherman et al. 
2011 (ref.118)

Randomized, multicentre, 
double-​blind, placebo-​ 
controlled trial

n = 540 treatment-​naive patients 
with chronic HCV GT1 infection

Peg-​IFN–RBV–telaprevir  
for 12 weeks, followed  
by Peg-​IFN–RBV for  
12 weeks

Patients with undetectable 
HCV RNA between weeks 4 
and 12 (extended RVR) were 
randomized

A: stop treatment after 
24 weeks

65% had an extended 
RVR

Demonstrated that triple 
therapy including telaprevir 
can be shortened to 
24 weeks in more than half 
of treatment-​naive patients 
using response-​guided 
therapy

A SVR rate: 92%

B: Peg-​IFN–RBV for another 
24 weeks

B SVR rate: 88%

ADVANCE 
Jacobson et al. 
2011 (ref.119)

Randomized, multicentre, 
double-​blind, placebo- 
controlled trial

n = 1,088 treatment-​naive 
patients with chronic HCV GT1 
infection

Three treatment arms:

A: Peg-​IFN–RBV–telaprevir 
for 12 weeks, followed by 
Peg-​IFN + RBV for 12 weeks 
(extended RVR) or 36 weeks 
(no extended RVR)

A SVR rate: 75%; 
extended RVR: 58%

Established triple therapy 
with Peg-​IFN–RBV–telaprevir 
as the standard of care for 
treatment-​naive patients with 
GT1 infection

Demonstrated that treatment 
can be shortened to 
24 weeks in more than half of 
treatment-​naive patients

Identified anaemia and rash 
as relevant adverse events 
attributable to telaprevir 
treatment

B: Peg-​IFN–RBV for  
12 weeks + telaprevir for  
weeks 0–8 and placebo  
for weeks 8–12, Peg-​IFN–RBV for  
12 weeks (extended RVR) or  
36 weeks (no extended RVR)

B SVR rate: 69%; 
extended RVR: 57%

C: Peg-​IFN–RBV + placebo for 
12 weeks followed by Peg-​IFN–
RBV for 36 weeks

C SVR rate: 44%

Important adverse 
effects associated with 
telaprevir treatment 
were skin rash and 
anaemia
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variant, were linked to very poor viral 
fitness141. As a consequence, and in contrast 
to NS5A inhibitor- or PI-​associated RASs, 
the wild type of the virus rapidly emerged 
after the end of drug exposure133. Sofosbuvir 
therapy was usually very well tolerated with 
no or only mild adverse effects in most 
patients. It had a low potential for drug–
drug interaction and a simple once-​daily 
dosing regimen142–144. High SVR rates were 
documented in treatment-​naive patients 
after only 12 weeks of treatment with Peg-​
IFN–RBV–sofosbuvir therapy145. More 
importantly, in some patients, namely those 
with genotype 2 or 3 infections, SVR was 
also achieved without the need for Peg-​
IFN via a dual combination treatment of 
sofosbuvir and RBV142,146, which was first 
demonstrated in the ELECTRON trial146,  
a phase II study with 40 participants run in 
New Zealand that gained major attention.

Simeprevir and daclatasvir. Treatment 
options for genotype 1 and 3 infections 
were markedly improved a few months 
later by the approval of the next two DAAs, 
the second-​wave PI simeprevir and the 
NS5A inhibitor daclatasvir. Simeprevir was 

initially developed in combination with 
Peg-​IFN–RBV in large phase III studies. It 
was superior when compared with telaprevir 
with regard to an easier once-​daily dosing 
schedule and an improved safety profile, 
although there was no major difference in 
SVR rates147–149. Thus, far more attention 
was gained from data from a phase II study 
named COSMOS. In the COSMOS trial, 
patients infected with HCV genotype 1 were 
treated for 12 or 24 weeks with sofosbuvir–
simeprevir ± RBV, which achieved SVR in 
90–92% of patients (n = 168)150. On the basis 
of these phase II data, the EMA and the 
FDA approved the sofosbuvir–simeprevir 
dual combination for interferon-​ineligible 
patients in 2014. Although the optimal 
treatment duration had not yet been 
defined, this combination was widely and 
successfully used in clinical practice151. 
Afterwards, sofosbuvir–simeprevir 
was further investigated in a phase III 
programme. However, it became obvious 
that this regimen was no longer competitive 
once newer, more potent DAA combinations 
had been developed in the meantime152,153.

One could argue that the contribution of 
daclatasvir to the field might have been even 

more important. Daclatasvir was initially 
developed in combination with Peg-​IFN–
RBV, being effective also in genotype 2 and 
3 infection154–156. IFN-​free combinations 
with sofosbuvir or asunaprevir were more 
promising, as discussed earlier136. The 
approval of daclatasvir offered some valuable 
new options for certain cohorts that were, so 
far, considered to be difficult to treat, that is, 
patients infected with genotype 3 (refs157–159), 
those with decompensated cirrhosis and those 
infected with genotype 1 and with previous 
PI failure160. Given the lack of other 
effective IFN-​free options, the FDA and 
the EMA decided to approve sofosbuvir–
daclatasvir ± RBV to be given for 24 weeks  
in patients infected with genotype 3 with 
liver cirrhosis and/or previous non-​response 
to IFN.

Fixed-​dose DAA combinations. The European  
Association for the Study of the Liver (EASL) 
International Liver Congress that took place 
in London in April 2014 brought the next 
revolution in HCV therapy. A remarkable 
number of landmark HCV studies were 
presented, of which five were published in the 
New England Journal of Medicine by the end 

Study Study design Treatment Key results Major contribution

REALIZE Zeuzem 
et al. 2011 (ref.120)

Randomized, multicentre, 
double-​blind, 
placebo-​controlled trial

n = 663 treatment-​experienced 
patients with chronic HCV GT1 
infection — relapsers, partial 
responders and null responders 
included

Three treatment arms:

A: Peg-​IFN–RBV–telaprevir for 
12 weeks followed by Peg-​IFN–
RBV + placebo for 4 weeks 
followed by Peg-​IFN–RBV for 
32 weeks

SVR rates

A: overall: 59%

Relapsers: 83%

Partial responders: 59%

Null responders: 29%

Established triple therapy 
with Peg-​IFN–RBV–telaprevir 
as the standard of care for 
treatment-​experienced 
patients with GT1 infection

Demonstrated that treatment 
efficacy remains limited in 
previous null responders  
to IFNα
Identified anaemia and rash 
as relevant adverse events 
attributable to telaprevir 
treatment

B: Peg-​IFN–RBV + placebo 
for 4 weeks, followed by 
Peg-​IFN–RBV–telaprevir for 
12 weeks + telaprevir followed 
by Peg-​IFN–RBV for 32 weeks

SVR rates

B: overall: 54%

Relapsers: 88%

Partial responders: 54%

Null responders: 33%

C: Peg-​IFN–RBV + placebo  
for 16 weeks followed by 
Peg-​IFN–RBV for 32 weeks

SVR rates

C: overall: 15%

Relapsers: 24%

Partial responders: 15%

Null responders: 5%

ANRS 
CO20-​CUPIC 
study Hézode et al. 
2013 (ref.131)

Real-​world, multicentre, 
prospective, observational study

n = 497 patients with chronic 
HCV GT1 infection

All patients had cirrhosis

Safety and efficacy analysis  
at week 16 of treatment

Triple therapy according to 
the prescribing information 
at the discretion of each 
investigator

Telaprevir (n = 292)

Boceprevir (n = 205)

Incidence of serious 
adverse events: 40%

Mortality: 1.2%

Severe infections: 4.8%

Severe anaemia: 4.6%

High risk of death or 
severe complications  
in patients with albumin 
<36 g/l and platelet 
count <100,000/µl

Raised some important 
concerns regarding the 
safety of triple therapy with 
first-​generation PIs in patients 
with advanced liver disease

HCV, hepatitis C virus; IFN, interferon-​α; GT, genotype; Peg-​IFN, pegylated interferon-​α; PI, protease inhibitor; RBV, ribavirin; RVR, rapid virological response;  
SVR, sustained virological response.

Table 2 (cont.) | Selected landmark treatment studies regarding first-generation protease inhibitor therapy
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of the meeting. Three of these publications 
considered the first fixed-​dose DAA 
combination containing the NS5A inhibitor 
ledipasvir and sofosbuvir; the remaining 
two considered the so-​called 3D regimen 
consisting of the NS5A inhibitor ombitasvir, 
the PI paritaprevir boosted by ritonavir 
and the non-​nucleoside NS5B inhibitor 
dasabuvir161–165. Both regimens were approved 
a couple of months later by the FDA and 
the EMA. SVR rates in patients infected 
with genotype 1 increased to >95%, further 
considered the new benchmark for response 
rates when evaluating antiviral regimens. 
Ledipasvir–sofosbuvir as the first fixed-​
dose combination substantially simplified 
HCV therapy; ledipasvir–sofosbuvir was 
investigated in a large phase III programme 
(ION trials), demonstrating high SVR rates 
in various cohorts following 12–24 weeks of 
treatment164,165. Moreover, the ION-3 study 
showed that in easy-​to-​treat treatment-​naive 
patients without cirrhosis, an 8-​week course 
of ledipasvir–sofosbuvir was non-​inferior to 
the 12-​week regimen163. However, there was 
a numerically higher rate of relapsers among 
male patients (8% (n = 10 of 121) versus  
2% (n = 3 of 127) for the 8- and 12-​week  
regimens, respectively) as well as among 
those with a high viral load at baseline (10% 
(n = 9 of 92) versus 1% (n = 1 of 83) for the 
8- and 12-​week regimens, respectively), and 
the EMA and the FDA decided to limit the 
shorter treatment to patients with a baseline 
viral load of <6 million IU/ml. Notably, the 
HCV RNA assay used in the ION-3 study 
was rarely used in clinical practice (Box 2). 
In female patients, no substantial difference in 
relapse rates was documented between the 
shorter and longer regimens (1% (n = 1 of 84) 
and 0% (n = 0 of 84), respectively).

The 3D regimen offered comparable 
response rates in patients infected with 
genotype 1. However, similarly to previous 
PI-​based regimens, there was a considerable 
difference in the antiviral efficacy between 
patients infected with 1a and those infected 
with 1b161,166,167. When evaluating the value 
of the 3D regimen, it has to be considered 
that it was not only IFN-​free but also 

sofosbuvir-​free. This regimen was an 
important contribution to the field. The 3D 
regimen offered a safe and effective IFN-​free 
therapy for the first time in patients with 
ESRD, a group of patients with a particularly 
high prevalence of HCV infection168. For a 
long time, sofosbuvir was not considered 
a safe treatment option in these patients 
owing to renal elimination of its inactive 
metabolite GS-331007 (refs169,170). In patients 
undergoing haemodialysis, a 20-​fold 
increase in the area under the curve of 
GS-331007 was documented171. By contrast, 
renal function has no major effect on the 
pharmacokinetics of the 3D regimen. Even 
in patients with a need for dialysis, drug 
levels, tolerability and SVR rates remained 
unaffected172,173. Evidence from real-​world 
studies and prospective trials demonstrated 
over the years that sofosbuvir might safely be 
used in patients with ESRD174–177. However, 
in the first years after approval, this fact 
remained unclear170.

Another important issue to consider 
when evaluating the role of sofosbuvir-​free 
regimens is the influence on access to 
care. With the 3D regimen, a competitor 
for the sofosbuvir-​based regimen entered 
the field, which certainly had a positive 
effect on drug costs. Competition on price 
and best regimen in the HCV field was 
further intensified with the approval of the 
next-​generation PI grazoprevir and the 
NS5A inhibitor elbasvir as a fixed-​dose 
combination. Similar to the 3D regimen, 
grazoprevir–elbasvir had particularly high 
efficacy in patients infected with genotype 1b 
and proved a safe and valuable treatment 
option for patients with ESRD178–180.

Pan-​genotypic regimens. The next wave 
of DAAs brought the advantage of pan-​
genotypic regimens. So far, the use of DAA 
regimens had been restricted to certain 
genotypes. For example, ombitasvir–
paritaprevir–ritonavir had proven efficacy 
only against genotypes 1 and 4 (ref.181). 
Dasabuvir was ineffective against genotype 4 
and was only approved for genotype 1 
infection182. Sofosbuvir had pan-​genotypic 

efficacy. However, its partner, ledipasvir, had 
relatively low efficacy against genotypes 2  
and 3 (ref.183). In summer 2016, the 
second-​generation pan-​genotypic NS5A 
inhibitor velpatasvir was approved in a 
fixed-​dose combination with sofosbuvir for 
the treatment of chronic HCV infection. 
A 12-week regimen achieved SVR in 99% 
of patients almost independently of the 
HCV genotype in a large phase III study 
of 624 patients184. In patients infected with 
genotype 3, the SVR after sofosbuvir–
velpatasvir was 98% in the non-​cirrhotic 
treatment-​naive cohort (n = 160 of 163). 
However, among treatment-​experienced 
patients with and without cirrhosis, it was 
only 93% (n = 40 of 43) and 89% (n = 33 of 37), 
respectively. Importantly, treatment failure 
in patients infected with genotype 3 and 
cirrhosis was closely linked to the presence 
of NS5A RASs, that is, the Y93H variant185. 
Post-​approval, a multicentre study from Spain 
demonstrated that adding RBV improves 
SVR rates to >95% (n = 21 of 22) among 
those patients with cirrhosis with the Y93H 
variant186. Owing to the need for RBV and/or 
baseline RAS testing, EASL recommendations 
even declared sofosbuvir–velpatasvir not to 
be the first choice in patients infected with 
genotype 3 and cirrhosis at that time, which 
led to an intense debate187,188.

Approximately 1 year later, in 2017, 
a second pan-​genotypic, fixed-​dose regimen 
was approved, that is, the combination of 
the PI glecaprevir and the NS5A inhibitor 
pibrentasvir. Similarly to sofosbuvir–
velpatasvir, glecaprevir–pibrentasvir had 
excellent tolerability and comparable cure 
rates. In patients infected with genotype 1, 2, 
4, 5 or 6, and with no cirrhosis, 8 weeks  
of glecaprevir–pibrentasvir achieved 
SVR rates of 97–100% in phase II and III 
studies (n = 943 of 952)189. In patients with 
compensated cirrhosis, only the 12-​week 
regimen was tested in the pivotal studies. In 
the phase III trial EXPEDITION-1, SVR was 
achieved in 99% (n = 145 of 146)190. Patients 
infected with genotype 3 were studied in 
separate trials with slightly different designs 
resulting in rather complicated treatment 
recommendations of 8–16 weeks depending 
on the presence of liver cirrhosis and 
previous treatment attempts191–193. Later, 
it was shown that an 8-​week regimen is 
sufficient in treatment-​naive patients with 
cirrhosis irrespective of the HCV genotype193.

Treatment of DAA failures. One of the few 
remaining challenges was the re-​treatment 
of DAA failures. So far, most of the available 
regimens have only been tested on a large 
scale in DAA-​naive patients. Some patients 

Table 3 |  Antiviral combinations recommended by the EASL in DAA-​naive patients with 
compensated liver disease in 2021

Cirrhosis status Prior treatment Glecaprevir–pibrentasvir Sofosbuvir–velpatasvir

No cirrhosis Naive 8 weeks 12 weeks

Peg-​IFN + RBV

Compensated 
cirrhosis

Naive

Peg-​IFN + RBV 12 weeks

Data from ref.5. For a simplified treatment without the need for hepatitis C virus genotype, 
resistance-​associated substitution or baseline viral load determination. DAA, direct-​acting antiviral agent; 
EASL, European Association for the Study of the Liver; Peg-​IFN, pegylated interferon-​α; RBV, ribavirin.
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with failure to Peg-​IFN–RBV and first-​
generation PI (telaprevir–boceprevir) or 
simeprevir had been included in pivotal 
studies with sofosbuvir–velpatasvir and 
sofosbuvir–ledipasvir, which achieved high 
SVR rates164,184. Sofosbuvir–daclatasvir ± RBV 
was a feasible but expensive option in 
these patients160. Glecaprevir–pibrentasvir 
was tested in PI failures and linked to 
acceptable cure if RBV was added194. 
However, things were far more complicated 
in patients who failed an NS5A-​containing 
regimen. NS5A RAS showed by far the 
most durable persistence after treatment 
cessation, remaining detectable for more 
than 5 years in most patients133,195,196. 
Some hepatologists suggested guiding 
re-treatment of DAA failures by analysing 
baseline RASs, particularly if multiple 
DAAs have been used during previous 
attempts197. However, after the withdrawal 
of simeprevir from the market, all DAA 
regimens actually contained an NS5A 
inhibitor. Using DAAs with higher barriers 
of resistance, for example, glecaprevir–
pibrentasvir, was another possible choice 
for re-​treatment198,199. The most aggressive 
and quite expensive alternative was to 
combine highly potent DAAs of all drug 
classes with RBV for re-​treatment200,201. Thus, 
all the discussed options had important 
limitations, as they were either complicated, 
‘off-​label’, expensive, only efficient against 
certain genotypes and/or only available 
for re-​treatment after certain DAA classes. 
The advent and approval of voxilaprevir as 
a fixed-​dose combination with sofosbuvir 
and velpatasvir (sofosbuvir–velpatasvir–
voxilaprevir) provided probably one of the 

very last missing pieces required in HCV 
therapy. In the phase III programme, the 
major focus of drug development was indeed 
the re-​treatment of DAA failures. One 
study, entitled POLARIS-1 included only 
patients with a previous NS5A failure. The 
POLARIS-4 study included patients with 
non-​NS5A DAA failure. Response rates were 
96% (n = 253 of 263) and 98% (n = 179 of 
182), respectively202 (Fig. 5).

Remaining challenges
Difficult-​to-​treat cohorts. The tremendous 
improvements in DAA therapy that led to 
pan-​genotypic fixed-​dose combinations 
eliminated most of the remaining challenges 
in anti-​HCV treatment. Today, most 
patients with HCV infection can be cured 
quite easily and usually without any relevant 
adverse effects using an IFN-​free DAA 
combination. Simplified pan-​genotypic 
regimens are highly effective treatments 
even without the need to determine 
baseline viral load, RAS and the HCV 
genotype. Such approaches are sufficient 
for most patients and essential when 
aiming for global elimination (Table 3). 
However, some patients can still remain 
difficult to cure. A few patients will fail 
to respond not only to the first-​line DAA 
therapy but also to re-​treatment with 
sofosbuvir–velpatasvir–voxilaprevir202,203. 
The current EASL guideline recommends 
treating these patients with sofosbuvir–
glecaprevir–pibrentasvir–RBV for 24 weeks5. 
However, only data from small case series 
involving fewer than 25 patients are 
available to support this recommendation 
for the small but increasing population 

of sofosbuvir–velpatasvir–voxilaprevir 
failures204–208. In general, pibrentasvir is 
supposed to be the NS5A inhibitor with the 
highest barrier of resistance, making it a 
logical choice for re-​treatment209. Treatment 
can also be challenging in patients with 
decompensated liver disease. PIs (owing  
to hepatic metabolization), as well as IFN, 
are not recommended in these patients, 
which limits the treatment choices to  
RBV, sofosbuvir and NS5A inhibitors.  
The combination sofosbuvir–velpatasvir  
was investigated in the ASTRAL-4 study 
(n = 267 patients) for either 12 weeks  
± RBV or 24 weeks without RBV. The 
highest SVR rate (95%) was achieved 
in those treated with RBV210. Thus, 
current EASL recommendations favour 
sofosbuvir–velpatasvir–RBV for 12 weeks 
in decompensated patients with Child–
Pugh class B cirrhosis5. Notably, patients 
with Child–Pugh class C cirrhosis were 
not included in the ASTRAL-4 study210. 
However, patients with Child–Pugh class 
C cirrhosis (n = 117) were studied in the 
SOLAR-1 and SOLAR-2 trials investigating 
a regimen of sofosbuvir–ledipasvir–
RBV for 12 or 24 weeks. SVR rates were 
86–100% of those who completed antiviral 
treatment. Neither Child–Pugh class (B or 
C) nor treatment duration (12 or 24 weeks) 
had a substantial effect on virological 
response211,212. Although the optimal 
treatment regimen in DAA-​naive patients 
with decompensated cirrhosis might still 
need to be determined, the situation is even 
more complicated when it comes to NS5A 
failures, for which no treatment option 
remains.

Table 4 | Antiviral combinations recommended by the EASL in DAA-​naive patients with compensated liver disease in 2021 if HCV 
genotype and/or RAS is available

Genotype Cirrhosis status Prior treatment Grazoprevir–elbasvir Glecaprevir–
pibrentasvir

Sofosbuvir–
velpatasvir

Sofosbuvir–velpatasvir–
voxilaprevir

1b No cirrhosis Naive 12 weeks 8 weeks 12 weeks No

Peg-​IFN + RBV

Compensated cirrhosis Naive

Peg-​IFN + RBV 12 weeks

1a, 2, 4, 5, 6 No cirrhosis Naive Noa 8 weeks 12 weeks No

Peg-​IFN + RBV

Compensated cirrhosis Naive

Peg-​IFN + RBV 12 weeks

3 No cirrhosis Naive No 8 weeks 12 weeks No

Peg-​IFN + RBV 12–16 weeks No

Compensated cirrhosis Naive 8 weeks 12 weeksb 12 weeks

Peg-​IFN + RBV 16 weeks 12 weeks

Data from ref.5. DAA, direct-​acting antiviral agent; EASL, European Association for the Study of the Liver; Peg-​IFN, pegylated interferon-​α. a12 weeks of treatment 
possible in patients infected with hepatitis C virus (HCV) genotype 1 without nonstructural protein 5A (NS5A) resistance-​associated substitutions (RASs). bIn patients 
with the Y93H RAS, either addition of ribavirin (RBV) or an alternative regimen is recommended. EASL recommends this approach only in those with cirrhosis.
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There has also been an extensive debate 
about whether patients with decompensated 
liver disease should receive any antiviral 
treatment before transplantation. Most 
patients with decompensated cirrhosis 
are supposed to benefit from SVR. DAA 
therapy led to substantial improvements 
in portal hypertension, liver function 
and model for end-​stage liver disease 
(MELD) score, which was accompanied 
by a reduction in hepatic decompensation 
and mortality and an improvement in the 
overall quality of life212–217. A substantial 
proportion of patients might even be 
delisted after achieving SVR218,219. However, 
it has to be considered that not all patients 
will achieve a compensated stage of liver 
disease. Some data indicated that those 
with end-​stage liver disease might no 
longer benefit from treatment216,220. A large 
multicentre study from Spain, involving 
843 patients, identified a MELD score >18 as 
a potential threshold to determine a higher 
risk of adverse events and death during 
treatment221. Current EASL guidelines, 
therefore, recommend treating patients up to 
a MELD score of 18–20 pre-​transplantation5, 
which also reflects common practice in 
many centres222. To date, it still remains 
unclear until which stage patients should 
undergo antiviral treatment and when 
to decide to defer treatment to after liver 
transplantation223. In the past, patients with 
HCV infection had relatively poor survival 
after liver transplantation compared with 
those with other indications such as HBV 
infection or primary biliary cholangitis224, 
particularly among those with evidence of 
portal hypertension and/or liver fibrosis 
early after transplantation225. However, the 
scenery changed entirely with the availability 
of IFN-​free therapies. Treatment of 
transplant recipients became very easy, and 
SVR rates exceeded 95%, not different from 

the pretransplant setting226–228. Although 
drug–drug interaction between DAAs and 
immunosuppressive medication was a major 
challenge when using first-​generation PIs, 
this issue was no longer a problem with 
modern DAAs5,144,229,230. As a result, survival 
after liver transplantation among patients 
with HCV infection has markedly increased 
since 2015 (refs231,232) (Box 3).

Heading towards HCV elimination. The 
introduction of DAA therapy is linked to 
tremendous changes in HCV epidemiology 
today and in the future. In countries with 
wide access to DAA therapy, the number of 
patients with HCV infection presenting at 
liver units has been continually decreasing, 
whereas treatment uptake has markedly 
increased. Some studies have already 
reported a substantial decrease in the 
proportion of patients with HCV infection 
among those presenting with compensated 

or decompensated liver cirrhosis and/or 
at-​need of liver transplantation233. It was 
calculated that the role of HCV for liver-​
related morbidity, hospital admissions and 
mortality might be only marginal in the 
near future in such countries, for example, 
Spain234.

In the light of excellent treatment 
options and the already gained success in 
some countries, the WHO developed an 
ambitious global strategy for viral hepatitis 
with the aim of an 80% and 65% reduction 
by the year 2030 for new HCV infections 
and HCV-​associated mortality, respectively, 
with the ultimate goal of HCV elimination6. 
To achieve this goal, at least 90% of the 
individuals with HCV infection need to be 
identified, and more than 80% need to 
be treated. However, most countries failed 
to meet the required intermediate targets 
by 2020 (ref.235). In an analysis from 2020, 
only 9 of 45 high-​income countries seem 
to be on track towards the WHO HCV 
elimination goals for 2030, whereas for 
most, this elimination does not even seem 
to be achievable by 2050. This outlook 
might have further worsened owing to the 
ongoing COVID-19 pandemic235,236. So far, 
many national elimination programmes still 
need a valid screening strategy not to lose 
too many patients on their way to clinical 
care. However, it has been clear for a long 
time that without a substantial increase 
in screening and treatment uptake, the 
tremendous improvements through DAA 
therapy will translate neither into relevant 
cure rates nor in a reduction of HCV-​related 
morbidity and mortality237,238 (Fig. 6). Only 
those patients identified and treated will 
profit from the revolution of HCV therapies. 

Table 5 |  Antiviral combinations recommended by the EASL in special populations in 2021

Population Grazoprevir–
elbasvir

Glecaprevir–
pibrentasvir

Sofosbuvir–
velpatasvir

Sofosbuvir–
velpatasvir–
voxilaprevir

NS5A-​inhibitor 
experienced

No No No 12 weeks

Subtype 1l, 4r, 3b, 3g, 
6u, 6v or any other 
subtype naturally 
harbouring one or 
several NS5A RASs

No Efficacy unknown Efficacy unknown 12 weeks

Decompensated liver 
cirrhosis

No No 12 weeks + RBVa No

End-​stage renal disease Recommended Recommended Possible Possible

Data from ref.5. EASL, European Association for the Study of the Liver; NS5A, nonstructural protein 5A; 
RAS, resistance-​associated substitution; RBV, ribavirin. aIf RBV is not tolerated, 24 weeks of treatment is 
recommended.

Box 2 | Impact of HCV RNA assays on treatment decisions with DAA regimens

In most pivotal trials of direct-​acting antiviral agents (DAAs), the COBAS TaqMan assay along with 
the High Pure System (HPS/CTM) was used to detect hepatitis C virus (HCV) RNA. Consequently, 
rules applied for response-​guided therapy were based on the results generated with this assay, with 
the same effect on baseline viral load cut-​offs to determine treatment duration, for example, 
with sofosbuvir–ledipasvir. However, HPS/CTM was rarely used in clinical practice, as manual steps 
were required for RNA extraction. More commonly used assays during the early DAA era were, for 
example, the Abbot RealTime test and the Roche COBAS AmpliPrep/COBAS TaqMan. There were 
some important differences in the performance characteristics between these two assays and 
compared with the HPS/CTM271–274. The HPS/CTM tended to overestimate results at higher viral 
loads. Thus, a considerable number of patients who were selected for 8 weeks of treatment with 
sofosbuvir–ledipasvir in the real world, as a result of their baseline viral load (<6 million IU/ml), 
would have been tested above this threshold if the HPS/CTM had been used274,275. However, 
sustained virological response rates for the 8-​week regimen still seemed to be excellent in several 
large real-​world studies276–278. Moreover, the COBAS AmpliPrep/COBAS TaqMan and, in particular, 
the Abbot RealTime test were more sensitive than the HPS/CTM in low viraemia samples. However, 
during triple therapy with first-​generation protease inhibitor, higher sensitivity resulted in a higher 
proportion of patients selected for longer treatment durations as well as patients fulfilling 
stopping rules owing to residual viraemia271,273. When using interferon-​free regimens, a higher 
sensitivity might result in the detection of residual viraemia at the end of therapy, which, 
importantly, was not associated with treatment failure279.
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One of the national programmes that 
gained the highest attention was Georgia’s 
hepatitis C elimination programme, 
which was supported by one of the large 
pharmaceutical companies and private 
foundations. Until the end of 2018, only 
one-​third of the population suspected of 
having HCV infection (approximately 
n = 150,000) was identified, and fewer than 
50% started antiviral treatment despite 
being offered medication free of charge. 
The SVR rate among those linked to care 
was 98.5%. However, given the low rate of 
screening and treatment uptake, overall 
effectiveness remains poor239,240. By contrast, 
data from Egypt were more encouraging. 
The national programme aimed to screen 
all citizens 18 years of age or older (62.5 
million individuals) within 1 year. After 
only 7 months, 49.6 million people had been 
screened (79% of the target population), 
of whom more than 2.2 million tested 
anti-​HCV positive (4.6%). Most patients 
were available for HCV RNA testing and 
linked to DAA therapy if needed241. The 
success of the Egyptian HCV elimination 
programme was also related to the special 
discount provided for the DAAs by the 
pharmaceutical companies. Broad access to 
DAA therapy highly depends on drug cost. 
Thus, special discounts and/or licensing 
agreements allowing the use of generic drugs 
would be essential for global elimination, 
in particular in low-​income countries242,243. 
First reports on the successful use of generic 
DAAs in HCV infection have already 
been published244. Finally, data from the 
national programme of Iceland clearly 

demonstrated the particular importance of 
effective screening programmes and high 
treatment uptake in high-​risk populations, 
that is, PWIDs, who are still a major source 
of de novo infections and a key route to 
success245,246. It was estimated that more 
than 50% of the PWID population in 
Western Europe and North America were 
positive for HCV infection247. However, 
although treatment was, in principle, highly 
feasible and highly effective even among 
those with active drug use, access to care 
remained challenging248–251. Different 
point-​of-​care and/or specialist-​assisted 
strategies, for example, using telemedicine, 
have been proposed to overcome this 

hurdle and improve linkage to care in such 
populations252. Outreach programmes 
using rapid diagnostic tests and immediate 
initiation of antiviral treatment will be 
key to targeting this population. HCV 
screening and care can be integrated 
into opioid-​substitution therapies, as has 
already been successfully demonstrated. 
In difficult-​to-​reach cohorts, ultimately, 
long-​acting or even a one-​shot treatment 
(for example, by using antisense 
oligonucleotide253) might be required for 
HCV cure. However, it remains uncertain 
whether such treatments will be developed. 
Moreover, it is important to note that high 
re-​infection rates have been reported in 
PWID populations, which was also true 
for some men who have sex with men 
cohorts and dramatically indicate the high 
risk of further spread of HCV infections 
in these populations254,255. Removing DAA 
restrictions and unlimited treatment of 
high-​risk populations, for example, men 
who have sex with men and are positive for 
HIV, has been demonstrated to show a direct 
negative correlation with the onset of new 
acute HCV infections in this group256.

To reduce the risk of further infections, 
there is also a need for an effective strategy 
for those with acute HCV infection. 
Currently, all available DAAs are approved 
only for chronic HCV infection, leaving 
a 6-​month period for those with newly 
diagnosed HCV infection to transmit the 
disease to healthy individuals, and some 
patients will be lost to follow-​up during 
this time, as documented in the German 
HepNet Acute HCV III study257. It seems 
likely that a shorter antiviral regimen would 
be possible in acute than in chronic HCV 
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Fig. 5 | Evolution of HCV therapy. There has been a continuous increase in sustained virological 
response rates over time, starting with only 6–19% when using the first interferon-​α (IFN) mono
therapies to cure rates of >98% in the era of direct-​acting antiviral agents (DAAs)5,65,66,71,73,117,119,146,152,266. 
HCV, hepatitis C virus; Peg-​IFN, pegylated interferon-​α; PI, protease inhibitor; RBV, ribavirin.

Box 3 | Use of HCV-​positive donor organs in the DAA era

The ability to easily cure hepatitis C virus (HCV) infection after transplantation is not limited to 
liver transplant recipients. Safe and highly effective antiviral treatment has also been well docu-
mented after kidney transplantation and also after lung and heart transplantation227,280–282. The 
transformation of HCV infection into an easily curable condition initiated an intense debate about 
the possible use of HCV-​positive donor organs even in HCV-​negative recipients283–285. Some studies 
could show that such a strategy would be cost-​effective286,287. Current data suggest that patients 
willing to accept HCV-​positive organs did not need to have any notable health concerns but can 
expect a considerable benefit owing to a shorter waiting time288–291. Overall, willingness to accept 
HCV-​positive organs seems to increase among patients on the transplant waiting list292. However, 
potential benefits also depend on the individual situation and the regional shortage of donor 
organs. An interesting modelling study from the USA estimated that the willingness to accept 
HCV-​positive livers would robustly increase survival among those with a model for end-​stage liver 
disease (MELD) score above 20. However, the highest benefit was expected for those with a MELD 
score of 28 and above293. Some innovative studies successfully investigated the possibility of 
pre-​emptive antiviral therapies starting shortly after or even at the time of transfer to the operat-
ing room. Such strategies would further reduce the time of viral exposure and might lead to a  
better acceptance of HCV-​positive organs in the future231,294,295. However, there is hope that the 
number of HCV-​positive organs will substantially decrease over the next few years. Furthermore, 
HCV infection as an indication for liver transplantation has already markedly decreased in Europe 
since the availability of direct-​acting antiviral agents (DAAs)296.
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infection, which would further improve 
cost-​effectiveness258. Some small studies 
indicate that modern DAAs might work very 
well in acute HCV infection259,260. However, 
it remains uncertain whether any of these 
data will lead to approval by legal authorities. 
For patients with high-​risk behaviour, 
pre-​exposure prophylaxis needs to be 
explored in future trials, as such strategies 
have been proved to be extremely successful 
in HIV infection261.

Despite the availability of DAAs, there 
cannot be any doubt that an effective 
prophylactic HCV vaccine would be crucial 
to finally achieve global HCV elimination. 
Some promising data have been published262, 
and some large research consortia are 
focusing on HCV vaccine development. 
A prophylactic vaccine is certainly not 
imminent. Ultimately, only a universal HCV 
vaccination strategy including countries 
with low resource settings and limited access 
to care and tackling communities with 
high risks of re-​infection will lead to the 
eradication of this virus worldwide.

Conclusions
The history of HCV, starting from the 
clinical observation of NANBH as a 
disease entity via the discovery of the virus 
followed by the development of cure by 
direct antiviral agents, is a role model for 
successful basic, translational and clinical 
research. However, to achieve global HCV 
elimination, improvement in screening, 
access to antiviral treatment and reduction 
of new infections are essential. This 
improvement will include simple, fast and 
cheap point-​of-​care tests to diagnose HCV 
infection without the need for a venous 
puncture, as well as structured local and 

national screening programmes with a 
particular focus on high-​risk populations. 
Lowering of drug costs or availability of 
generics will be required to enable broad 
access to care in low- and middle-​income 
countries. Moreover, simple algorithms need 
to be developed that enable unspecialized 
physicians and even nurses to initiate and 
guide antiviral treatment. Finally, to prevent 
new HCV infections, it will be of particular 
importance to approve an effective antiviral 
treatment for acute HCV infection, establish 
a strategy for pre-​exposure prophylaxis and 
ideally develop an effective HCV vaccine.
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