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Abstract DNA double-strand break (DSB) repair by homologous recombination is confined to the 
S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase 
and non-cycling quiescent (G0) cells where DSBs are predominately repaired by non-homologous 
end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end 
resection at DSBs in G0 murine and human cells. A whole genome CRISPR/Cas9 screen revealed 
the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection 
in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the 
KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. 
In contrast, a requirement for DNA-PK in promoting DNA end resection in proliferating cells at the 
G1 or G2 phase of the cell cycle was not observed. Our findings establish that DNA-PK uniquely 
promotes DNA end resection in G0, but not in G1 or G2 phase cells, which has important implications 
for DNA DSB repair in quiescent cells.

Editor's evaluation
This manuscript will be of relevance to scientists interested in cell cycle, DNA repair, and genome 
stability reporting the unexpected discovery that the DNA-dependent protein kinase (DNA-PK) 
is required for DSB resection in G0 cells, whereas it is known and confirmed here that it inhibits 
resection in G1 and G2 cells. This finding has important implications for the clinical application of 
DNA-PK-targeted inhibitors. The data are of high quality and derive from two independent cell lines, 
genetic requirements were mostly established by gene knockouts, and the latest genome-wide 
sequencing techniques were applied to measure resection tracts. The key claims of the manuscript 
are supported by the data presented by the authors.

Introduction
DNA double-strand breaks (DSBs) are particularly deleterious lesions which, if left unrepaired, can 
lead to cell death, or if repaired aberrantly, can lead to oncogenic chromosomal translocations and 
deletions (Jackson and Bartek, 2009). Eukaryotic cells utilize two main mechanisms of DSB repair: 
non-homologous end joining (NHEJ), where the broken DNA ends are ligated together with minimal 
processing of the DNA termini; and homologous recombination (HR), which uses a homologous 
sequence, usually on a sister chromatid, as a template for accurate DNA repair. Because HR relies on 
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a homologous template for accurate repair, HR is mostly restricted to S and G2 phases of the cell cycle 
when sister chromatids exist. On the other hand, cells can employ NHEJ in any phase of the cell cycle 
and it is the only option in quiescent (G0) cells and G1 phase cells (Scully et al., 2019).

Extensive DNA end resection of the broken DNA ends, which generates long tracts of 3’ ssDNA 
overhangs at DSBs, is a critical step in committing the cell to use HR to repair DSBs. DNA end resec-
tion is initiated by nucleases MRE11 and CtIP, and subsequently extended by nucleases including 
EXO1 and DNA2/BLM (Paull and Gellert, 1998; Trujillo et al., 1998; Sartori et al., 2007; Gravel 
et al., 2008; Mimitou and Symington, 2008; Zhu et al., 2008; Bunting et al., 2010). The 3’ ssDNA 
overhangs are quickly bound by the single-stranded binding protein trimer replication protein A (RPA) 
to stabilize and protect the ssDNA, and later in repair RPA is replaced by the RAD51 recombinase 
protein that leads to the homology search to find a homologous template to achieve accurate HR 
repair (Sugiyama and Kowalczykowski, 2002; San Filippo et al., 2008; Wright et al., 2018). NHEJ 
is initiated by the KU70/KU80 heterodimer binding to broken DNA ends (Zahid et al., 2021). KU70/
KU80 recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) which together form 
a complex called DNA-PK (Gottlieb and Jackson, 1993; Hammarsten and Chu, 1998). Once the 
DNA-PK complex is formed, the KU heterodimer translocates inwards along the DNA and DNA-PKcs 
remains at the DNA ends, undergoing activation via conformational changes mediated by autophos-
phorylation of the ABCDE cluster (Yaneva et al., 1997; Chen et al., 2021b). Recent cryo-EM struc-
tures of DNA-PK also implicate dimerization of DNA-PK as important in recruiting downstream NHEJ 
factors by bringing broken DNA ends together (Chaplin et al., 2021; Zha et al., 2021). In addition to 
autophosphorylation, DNA-PKcs phosphorylates members of the NHEJ machinery, including the KU 
heterodimer, XRCC4, XLF, and Artemis (Bartlett and Lees-Miller, 2018).

The critical bifurcation point in the choice to use HR or NHEJ to repair DSBs is the processing 
of broken DNA ends to form single-stranded 3’ DNA overhangs, which blocks NHEJ and commits 
the cell to HR (Symington and Gautier, 2011). Therefore, DNA end resection is tightly regulated 
to prevent aberrant DNA end resection in G0 and G1 phase cells, where NHEJ is the major DSB 
repair pathway. Several factors have been identified as critical DNA end protection factors that limit 
resection of DNA DSBs including 53BP1, RIF1, and the Shieldin complex. The proposed mechanism 
of action of 53BP1 and its downstream effectors include acting as a physical barrier to protect DNA 
ends from nucleases and promoting DNA polymerase α activity to quickly fill in any resected ends 
(Bunting et al., 2010; Dev et al., 2018; Mirman et al., 2018; Noordermeer et al., 2018; Setiaputra 
and Durocher, 2019; Paiano et al., 2021). Additionally, KU70/KU80 has also been shown in budding 
yeast Saccharomyces cerevisiae to inhibit DNA end resection in G1 and G2 phases of the cell cycle, 
and in S phase in mammalian cells (Lee et al., 1998; Barlow et al., 2008; Clerici et al., 2008; Shao 
et al., 2012).

While nuclease activity is largely limited in G0/G1 phase cells to prevent aberrant DNA end resec-
tion, evidence exists suggesting that nuclease-mediated DNA end processing occurs at some DSBs 
in G0/G1. For example, Artemis is required to open hairpin-sealed DNA ends generated during V(D)
J recombination in lymphocytes (Menon and Povirk, 2016). Additionally, DNA end resection has 
been observed in G1 phase after DNA damage at complex DNA lesions (Averbeck et  al., 2014; 
Biehs et al., 2017), suggesting that DNA end resection is not completely inhibited in the absence 
of sister chromatids. Moreover, though CtIP phosphorylation by CDKs in G2 is required for its activity 
during HR, CtIP also functions in G1 at DSBs after phosphorylation by PLK3 (Barton et al., 2014). To 
investigate what additional factors may regulate DNA end resection in cells lacking sister chromatids, 
we performed a genome-wide CRISPR/Cas9 screen for genes whose inactivation either increases or 
decreases RPA bound to chromatin after irradiation (IR) in G0-arrested murine cells. We discovered, 
unexpectedly, that KU70, KU80, and DNA-PKcs promote extensive DNA end resection in G0 cells, but 
not in G1 or G2 phases of the cell cycle.

Results
RPA associates with IR-induced DNA DSBs in G0 cells
Murine pre-B cells transformed with Abelson murine leukemia virus (termed abl pre-B cells hereafter) 
continuously proliferate in vitro and can be efficiently arrested in G0, also referred to as the quies-
cent state, upon treatment with the abl kinase inhibitor imatinib (Figure 1—figure supplement 1A). 

https://doi.org/10.7554/eLife.74700
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(Bredemeyer et al., 2006; Chen et al., 2021a). To investigate how DNA end resection is regulated 
in G0 cells, we used a flow cytometric approach to assay RPA bound to chromatin after detergent 
extraction of soluble RPA, as a proxy for ssDNA generated at DSBs after exposing cells to irradiation 
(IR) (Forment et al., 2012; Chen et al., 2021a). This assay was performed in murine abl pre-B cell lines 
deficient in DNA Ligase IV (Lig4-/-), to maximize our ability to detect chromatin-bound RPA at DSBs, 
given that completion of NHEJ is prevented in the absence of DNA Ligase IV. We also performed 
the analysis in Lig4-/-:Trp53bp1-/- abl pre-B cells which lack the DNA end protection protein 53BP1 
and accumulate high levels of RPA on chromatin after IR (Chen et al., 2021a). In agreement with our 
previous work, we detected a high level of chromatin-bound RPA in G0-arrested Lig4-/-:Trp53bp1-/- abl 
pre-B cells after IR, consistent with the role of 53BP1 in DNA end protection (Figure 1A). Surprisingly, 
we also observed RPA associated with chromatin after IR of G0-arrested Lig4-/- abl pre-B cells, although 
at lower levels than in Lig4-/-:Trp53bp1-/- abl pre-B cells (Figure 1A). Moreover, the increase in IR-in-
duced chromatin-bound RPA does not require DNA Ligase IV deficiency as we were able to observe 
similar results using the RPA flow cytometric assay in wild-type (WT) murine abl pre-B cells arrested in 
G0 (Figure 1—figure supplement 1B). These data indicate that extensive DNA end resection occurs 
at DSBs in G0 cells, despite the presence of the DNA end protection proteins 53BP1 and KU70/KU80.

To determine whether higher levels of chromatin-bound RPA in irradiated G0-arrested Lig4-/- abl 
pre-B cells is a result of DNA end resection, we depleted the nucleases that are required for the initi-
ation of DNA end resection during HR in cycling cells. We found that the depletion of CtIP or MRE11 
reduced the levels of RPA on chromatin in irradiated G0-arrested Lig4-/- abl pre-B cells (Figure 1B 
and Figure 1—figure supplement 1C), indicating that the RPA we observe with our flow cytometric 
assay after IR is indeed a result of DNA end resection. Next, we investigated whether this observed 
chromatin-bound RPA depended on the nuclease Artemis, which has been shown to have endo and 
exonuclease activity and is essential in opening DNA hairpins during V(D)J recombination, which 
occurs in pre-B cells (Ma et al., 2002; Ma et al., 2005). We found that Artemis depletion had no 
effect on levels of RPA on chromatin in irradiated G0-arrested wildtype abl pre-B cells, indicating that 
Artemis activity does not contribute to this process (Figure 1—figure supplement 1D).

To determine whether the DNA end resection that we observed was unique to murine abl pre-B 
cells or not, we performed the RPA flow cytometric chromatin association assay in the human breast 
epithelial cell line MCF10A. We arrested the MCF10A cells in G0 by EGF deprivation (Chen et al., 
2021a). Similarly, to Lig4-/- and WT murine abl pre-B cells in G0, we observed IR-induced chromatin-
bound RPA in G0 human MCF10A cells (Figure 1—figure supplement 1E), consistent with DNA end 
resection occurring in these cells at DSBs. RPA binding to ssDNA surrounding DSBs often form distinct 
nuclear foci that can be easily detected by immunofluorescence staining and microscopy analysis 
(Golub et al., 1998). Therefore, we performed immunofluorescence staining for RPA in EGF-deprived 
MCF10A cells. We observed discrete IR-induced RPA foci, consistent with the RPA associated with 
ssDNA accumulating at DNA damage sites (Figure 1C). Together, these results suggest that broken 
DNA ends are resected in a CtIP and MRE11-dependent manner, leading to RPA accumulation on 
ssDNA in G0 murine and human cells.

DNA end resection and RPA loading occurs at site-specific DSBs in G0 
cells
As irradiation induces DNA base lesions and single-stranded DNA breaks in addition to DSBs, it could 
potentially complicate our analysis of DNA end processing at regions surrounding DSBs. Therefore, 
we investigated DSBs at specific locations in the mouse genome upon induction of the AsiSI endo-
nuclease. We performed RPA chromatin immunoprecipitation sequencing (RPA ChIP-seq) after induc-
tion of AsiSI DSBs in G0-arrested Lig4-/- murine abl pre-B cells. We detected RPA binding adjacent to 
AsiSI DSBs, consistent with ssDNA generated by resection around DNA DSBs (Paiano et al., 2021; 
Figure 1D and Figure 1—figure supplement 1F). Moreover, the association of RPA with chromatin 
was strand specific around the DSBs, consistent with the 5’–3’ nature of DNA end resection which 
generates 3’ ssDNA overhangs (Paiano et al., 2021; Figure 1D). To determine the extent of DNA end 
processing in G0 cells, we performed END-seq (Canela et al., 2016; Wong et al., 2021) to directly 
measure DNA end resection at nucleotide resolution at AsiSI-induced DSBs, the majority of which 
are within 2  kb of the transcriptional start site of transcriptionally active genes (Figure  1—figure 
supplement 2). Using END-seq, we detected extensive DNA end resection in G0-arrested Lig4-/- abl 

https://doi.org/10.7554/eLife.74700
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Figure 1. RPA is loaded onto ssDNA after DSBs in G0 mammalian cells. (A) Flow cytometric analysis of chromatin-bound RPA in G0-arrested Lig4-/-

 and Lig4-/-:Trp53bp1-/- abl pre-B cells before and 3 hr after 20 Gray IR. Representative of three independent experiments. (B) Flow cytometric analysis 
of chromatin-bound RPA before and 2 hr after 15 Gy IR in G0-arrested Lig4-/- abl pre-B cells (left), Lig4-/- cells depleted of MRE11 (middle), and Lig4-

/- cells depleted of CtIP (right). Representative of three independent experiments. (C) Representative images and quantification of IR-induced RPA 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.74700
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pre-B cells at 4 and 8 hr after AsiSI DSB induction (Figure 1E). Together, these data indicate that in 
G0-arrested cells, DNA ends are resected at DSBs induced by IR or site-specific endonucleases, gener-
ating ssDNA that is bound by RPA.

A CRISPR/Cas9 screen identifies the DNA-PK complex as promoting 
DNA end resection in G0 cells
To identify factors that influence DNA end resection in G0 cells, we performed a genome-wide CRISPR/
Cas9 screen in G0-arrested Lig4-/- murine abl pre-B cells 2 hr after irradiation to identify factors that 
either promote or impair DNA end resection (Figure 2A). We isolated the 10% of cells with the lowest 
RPA (low RPA) and the 10% cells with the highest RPA (high RPA) staining intensity using our RPA flow 
cytometric assay followed by flow assisted cell sorting. We then amplified the guide RNAs (gRNAs) 
in these populations of cells and determined their frequencies using high-throughput sequencing. 
gRNAs enriched in the low RPA staining population correspond to genes encoding proteins that 
normally promote DNA end resection, while gRNAs enriched in the high RPA population correspond 
to genes encoding proteins that normally impair resection. In this screen, we identified several gRNAs 
enriched in the low RPA staining population to Rbbp8 which encodes the nuclease CtIP, and Nbn, 
which encodes the NBN subunit of the MRE11-RAD50-NBN (MRN) complex, consistent with their 
established roles in promoting DNA end resection (Figure 2B). Unexpectedly, we also found gRNAs 
targeting Xrcc6 (the gene encoding KU70), Xrcc5 (the gene encoding KU80), and Prkdc (the gene 
encoding DNA-PKcs) highly enriched in our low RPA population (Figure 2B). This suggested that 
DNA-PK may promote DNA end resection in G0 cells, contrary to the established role of these factors 
in preventing DNA end resection in other phases of the cell cycle.

To validate the screen and determine if DNA-PK is required for DNA end resection, we generated 
Lig4-/-:Prkdc-/- abl pre-B cells that do not express DNA-PKcs by CRISPR/Cas9-mediated gene inactiva-
tion (Figure 2—figure supplement 1A). G0-arrested Lig4-/-:Prkdc-/- abl pre-B cells had lower levels of 
chromatin-bound RPA after IR compared to Lig4-/- abl pre-B cells (Figure 2C). DNA-PKcs and Ataxia-
telangiectasia mutated (ATM) are two major serine/threonine kinases that are activated in response to 
DNA DSBs and share some overlapping functions due to similar substrate specificity (Blackford and 
Jackson, 2017). Because DNA-PKcs but not ATM was identified in our screen, we wanted to deter-
mine if the pro-resection activity in G0-arrested cells is unique to DNA-PKcs or also shared by ATM. 
We treated G0-arrested Lig4-/- abl pre-B cells with the ATM inhibitor KU55933 or the DNA-PK inhibitor 
NU7441 before IR and performed flow cytometric analysis of IR-induced chromatin-bound RPA. In 
contrast to the consistent reduction in the levels of chromatin-bound RPA observed in G0-arrested 
Lig4-/- abl pre-B cells treated with DNA-PK inhibitor, ATM inhibition did not have a detectable effect on 
the levels of IR-induced binding of RPA in G0-arrested Lig4-/- abl pre-B cells (Figure 2D and Figure 2—
figure supplement 1B). Additionally, DNA-PK inhibition in wild type abl pre-B cells arrested in G0 
showed a modest effect in reducing levels of chromatin-bound RPA (Figure 2—figure supplement 
1C). The role of DNA-PK in promoting DNA end resection in G0 is not limited to murine abl pre-B cells 
as we also observed a reduced number of IR-induced RPA foci in G0-arrested human MCF10A cells 
upon inhibition of DNA-PK (Figure 2—figure supplement 1D). These results indicate that DNA-PKcs 
activity, but not ATM, uniquely promotes resection and RPA binding to damaged chromatin after IR 
in G0 cells.

foci from three independent experiments in G0-arrested MCF10A cells before and 3 hr after 10 Gray IR. n=365 cells in -IR and n=433 cells in +IR. Red 
bars indicate average number of RPA foci in - IR = 0.96 and average number of RPA foci in +IR = 9.4 (****p<0.0001, unpaired t test). (D) RPA ChIP-seq 
tracks at AsiSI DSBs on chromosome 2, 5, and 4 at 4 hr (top) and 8 hr (bottom) after AsiSI endonuclease induction in G0-arrested Lig4-/- abl pre-B cells. 
(E) Representative END-Seq tracks showing resection at AsiSI DSBs at chromosome 2, 5, and 4 at 4 hr (top) and 8 hr (bottom) after AsiSI induction in G0-
arrested Lig4-/- abl pre-B cells. END-seq data is representative from two independent experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. RPA is loaded onto ssDNA after DSBs in G0 mammalian cells.

Figure supplement 1—source data 1. Original western blots for Figure 1.

Figure supplement 2. The vast majority of AsiSI sites that are cleaved in G0 cells are in close proximity to the transcription start site of actively 
transcribed genes.

Figure 1 continued

https://doi.org/10.7554/eLife.74700
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Figure 2. A genome-wide gRNA screen identifies DNA-PK as a factor that promotes DNA end resection in G0. (A) Schematic of a genome-wide 
gRNA screen for factors promoting (bottom 10%/RPA low) or inhibiting (top 10%/RPA high) chromatin-bound RPA loading 2 hr after 20 Gray IR in G0-
arrested Lig4-/- abl pre-B cells. (B) Fold enrichment of selected gRNAs in low RPA and high RPA populations. Fold enrichment was calculated as the 
ratio of normalized read number of gRNAs in the low RPA population and that in the high RPA population and vice versa (n=1). (C) Flow cytometric 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.74700
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To directly observe if DNA-PKcs influenced DNA end resection at DSBs, we performed nucleotide 
resolution END-seq on G0-arrested Lig4-/- murine abl pre-B cells with and without DNA-PK inhibitor 
treatment before the induction of AsiSI DSBs. Consistent with our RPA flow cytometric assay results, 
DNA-PK inhibitor-treated G0-arrested Lig4-/- abl pre-B cells showed greatly reduced END-Seq signals 
distal to DSBs, consistent with limited DNA end processing when DNA-PK is inactivated (Figure 2E 
and Figure 2—figure supplement 1E). These results demonstrate that DNA-PK activity promotes 
DNA end resection of DSBs in G0 mammalian cells.

FBXL12 inhibits KU70/KU80-dependent DNA end resection in G0 cells
Given that DNA-PKcs promotes DNA end resection in G0 cells (Figure  2C, D and E, Figure  2—
figure supplement 1C and D, 1E), and that Xrcc6 and Xrcc5 (genes encoding KU70 and KU80) were 
enriched in the RPA low population of cells in the CRISPR/Cas9 screen (Figure 2B), we determined 
whether KU70/KU80 may also promote resection in G0 cells. We generated Lig4-/-:Xrcc6-/- murine abl 
pre-B cells and measured DNA end resection using our RPA flow cytometric approach. Consistent with 
our observations in DNA-PK inhibitor-treated G0-arrested Lig4-/- abl pre-B cells and Lig4-/-:Prkdc-/- abl 
pre-B cells, the level of chromatin-bound RPA after IR was greatly reduced in G0-arrested Lig4-/-:Xrcc6-/- 
abl pre-B cells compared to Lig4-/- abl pre-B cells (Figure 3A and Figure 3—figure supplement 1A). 
As such, the entire DNA-PK complex is required for DNA end resection in G0 cells.

KU70/KU80 is removed from DSBs via ubiquitylation, which has been shown to be mediated by 
E3 ligases including RNF138, RNF8, RNF126, and the SCFFbxl12 complex (Postow et al., 2008; Feng 
and Chen, 2012; Postow and Funabiki, 2013; Ismail et al., 2015; Ishida et al., 2017). In agreement, 
gRNAs targeting Fbxl12, which encodes the substrate recognition subunit FBXL12 of the SCFFbxl12 
E3 ubiquitin ligase complex, were highly enriched in our screen in the high RPA staining cell popu-
lation (Figure 2B), consistent with the idea that the persistent presence of KU70/KU80 at DSBs in 
cells lacking FBXL12 would lead to extensive DNA end resection. Indeed, we observed that in G0-
arrested Lig4-/-:Fbxl12-/- murine abl pre-B cells, the level of IR-induced chromatin-bound RPA increased 
compared to Lig4-/- abl pre-B cells (Figure 3B). Given the role of FBXL12 on limiting the levels of 
KU70/KU80 at broken DNA ends, we tested whether the increased DNA end resection phenotype 
in Lig4-/-:Fbxl12-/- abl pre-B cells depended on DNA-PK activity or the presence of the KU70/KU80 
complex. Indeed, inhibition of DNA-PK with NU7441 (Figure 3C) and depletion of KU70 (Figure 3D 
and Figure 3—figure supplement 1B) in G0-arrested Lig4-/-:Fbxl12-/- abl pre-B cells prevented exces-
sive accumulation of RPA on chromatin after IR. Our results suggest that the ability of DNA-PK to 
promote DNA end resection in G0 cells is regulated through maintaining proper levels of KU70/KU80 
at DNA DSBs by the SCFFbxl12 E3 ubiquitylation complex.

DNA-PK uniquely promotes DNA end resection exclusively in G0 cells
KU70/KU80 have been shown to prevent DNA end resection in G1 and G2 phases in budding yeast 
and in S phase in mammalian cells but has not been examined in G0 cells (Lee et al., 1998; Clerici 
et al., 2008; Shao et al., 2012). Thus, we set out to determine whether DNA-PK-dependent DNA end 
resection is limited to G0 or can occur in other phases of the cell cycle. To this end, we compared the 
levels of IR-induced chromatin bound RPA in Lig4-/-, Lig4-/-:Prkdc-/- and Lig4-/-:Xrcc6-/- murine abl pre-B 
cells arrested in G0 by imatinib, arrested in G2 by the CDK1 inhibitor RO3306, and in G1 phase (cells 
with 2 N DNA) in a proliferating population. In contrast to G0 cells, loss of DNA-PKcs (Lig4-/-:Prkdc-/-) 
did not reduce the levels of IR-induced chromatin-bound RPA in G2-arrested or cycling G1 phase cells 

analysis of chromatin-bound RPA in G0-arrested Lig4-/- and Lig4-/-:Prkdc-/- abl pre-B cells before and 3 hr after 15 Gray IR. Data is representative of three 
independent experiments in two different cell lines. (D) Flow cytometric analysis of chromatin-bound RPA in G0-arrested Lig4-/- abl pre-B cells with 
and without 10 μM NU7441 (DNA-PK inhibitor) pre-treatment 1 hr before 20 Gray IR. Data is representative of three independent experiments in two 
different cell lines. (E) Representative END-seq tracks at chromosome 3 (left) and chromosome 13 (right) in G0-arrested Lig4-/- abl pre-B cells 4 hr (top) 
and 8 hr (bottom) after AsiSI DSB induction, with and without 10 μM NU7441 treatment.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. A genome-wide gRNA screen identifies DNA-PK as a factor that promotes DNA end resection in G0.

Figure supplement 1—source data 1. Original western blots for Figure 2.

Figure 2 continued

https://doi.org/10.7554/eLife.74700
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(Figure 4A and Figure 4—figure supplement 1A). Similar results were obtained when analyzing Lig4-

/-:Xrcc6-/- abl pre-B cells (Figure 4B). The unique function of DNA-PK activity in promoting DNA end 
resection in G0-arrested cells was confirmed with END-seq analysis of AsiSI-induced DSBs in Lig4-/- abl 
pre-B cells arrested in G0 or G2 and treated with or without DNA-PK inhibitor. Whereas G0-arrested 
Lig4-/- abl pre-B cells treated with DNA-PK inhibitor exhibited significantly reduced END-seq signals 
in regions distal to the DSBs, the same treatment had little effect in cells arrested in G2 phase of 
the cell cycle (Figure 4C and Figure 4—figure supplement 1B). Quantitation of the resection tract 
lengths from the End-seq analysis showed that they were on average 3–4 kb in the G0-arrested cells 
and were greatly reduced upon treatment with DNA-PK inhibitor (Figure 4D). In comparison, the 
resection tract lengths in G2 arrested cells were minimally affected by treatment with DNA-PK inhib-
itor (Figure 4D). Additionally, NHEJ-proficient wild-type MCF10A cells arrested in G0, but not cells in 

Figure 3. FBXL12 inhibits KU70/KU80-promoted DNA end resection. (A) Flow cytometric analysis of chromatin-bound RPA in G0-arrested Lig4-/- abl 
pre-B cells and Lig4-/-:Xrcc6-/- abl pre-B cells before and 3 hr after 20 Gray IR. Data is representative of three independent experiments in two different 
cell lines. (B) As in A, in G0-arrested Lig4-/- and Lig4-/-:Fbxl12-/- abl pre-B cells. Data is representative of three independent experiments in at least two 
different cell lines. (C) Flow cytometric analysis of chromatin-bound RPA in G0-arrested Lig4-/-:Fbxl12-/- abl pre-B cells with and without 10 μM NU7441 
treatment, before and 3 hr after 20 Gray IR. Data is representative of three independent experiments in at least two different cell lines (D) Flow 
cytometric analysis of chromatin-bound RPA in G0-arrested Lig4-/-:Fbxl12-/- abl pre-B cells before and after Xrcc6 knockout, before and 3 hr after 15 Gray 
IR. Data is representative of three independent experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. FBXL12 inhibits KU70/KU80-promoted DNA end resection.

Figure supplement 1—source data 1. Original western blots showing Ku70 depletion in Figure 3—figure supplement 1.

Figure supplement 1—source data 2. Original western blots for Ku70 depletion in Fbxl12- cells.

https://doi.org/10.7554/eLife.74700
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Figure 4. DNA-PK mediates DNA end resection in G0 but not in G1 or G2 phases of the cell cycle. (A) Flow cytometric analysis of chromatin-bound RPA 
in Lig4-/- and Lig4-/-:Prkdc-/- abl pre-B cells arrested in G0 (left), arrested in G2 by 10 μM RO-3306 treatment for 16 hr and gated on 4 N (middle), and G1 
cells gated on 2 N DNA content in cycling cells (right), before and 3 hr after 20 Gray IR. Data is representative of three independent experiments in at 
least two different cell lines. (B) As in A in Lig4-/- and Lig4-/-:Xrcc6-/- abl pre-B cells. (C) Representative END-seq tracks in G0 (left) and G2-arrested (right, 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.74700
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G1 phase, exhibited reduced RPA on chromatin after IR upon DNA-PK inhibition (Figure 4E). These 
results suggest that DNA-PK distinctly promotes DNA end resection at DSBs in mammalian cells in G0 
but not in other cell cycle phases.

Discussion
DNA end resection is one of the key events that determines whether cells utilize NHEJ, HR, or other 
repair pathways utilizing homologous sequences. During G0 and G1 phase of the cell cycle, NHEJ is 
the predominant DSB repair pathway and DNA end resection is largely limited compared to other 
phases of the cell cycle. However, in this study we revealed that DNA end resection dependent on 
CtIP and MRE11, which are required for resection in S and G2 phases of the cell cycle, occurs at DSBs 
in G0 mammalian cells (Figure 1B). Because CtIP activity in G1, G2 and S phases requires its phosphor-
ylation, this is likely to be the case in G0 cells and future studies will identify the kinase responsible for 
any CtIP phosphorylation in G0 cells. In addition to CtIP and MRE11, we identified additional factors 
that promote resection in G0 cells as components of the DNA-PK complex, including KU70, KU80, and 
DNA-PKcs, in a genome-wide CRISPR/Cas9 screen and showed that the kinase activity of DNA-PK is 

by 10 μM RO-3306 treatment for 16 hr) Lig4-/- abl pre-B cells, with and without 10 μM NU7441 treatment on chromosome 1, 4 hr (top) and 8 hr (bottom) 
after AsiSI endonuclease induction. (D) Average resection length in G0-arrested Lig4-/- abl pre-B (left) and G2-arrested Lig4-/- abl pre-B (right) 4 and 8 hr 
after AsiSI DSB induction, with and without 10 μM NU7441 treatment (DNA-PKi). (E) Flow cytometric analysis of chromatin-bound RPA 4 hr after 20 Gray 
IR in MCF10A cells arrested in G0 after EGF withdrawal for 48 hr or cycling cells gated on 2 N DNA content, with and without 10 μM NU7441 treatment 
(DNA-PKi).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. DNA-PK mediates DNA end resection in G0 but not G2.

Figure 4 continued

Figure 5. Model of DNA-PK-mediated DNA end resection in G0 cells. Normally in G0 phase at DSBs, the DNA-PK complex promotes DNA end 
resection. This resection is counteracted by FBXL12. Without DNA-PK, there is no DNA end resection in G0. Without FBXL12, DNA-PK persists at DSBs 
and leads to more extensive DNA end resection.

https://doi.org/10.7554/eLife.74700
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critical as resection of DSBs diminishes upon DNA-PK inhibitor treatment (Figures 2 and 3). Interest-
ingly, we also found in our genome wide CRISPR/Cas9 screen that inactivating FBXL12, the substrate 
recognition subunit of the SCFFBXL12 E3 ubiquitin ligase complex, promotes extensive resection of 
DNA ends in G0 cells (Figure 3B). As the SCFFBXL12 E3 ubiquitin is thought to limit the abundance of 
the KU70/KU80 heterodimer (Postow and Funabiki, 2013), our data are in line with the notion that 
loss of FBXL12 results in aberrant accumulation of KU70/KU80 at DSBs, and consequently elevated or 
prolonged activation of DNA-PK at DSBs which promotes resection in G0 cells (Figure 5).

Why would resection occur in G0 cells? Chemical modifications or secondary structures at DSBs 
have been identified as requiring DNA end processing to create a more accessible repair environ-
ment, which could presumably be the case at DSBs in G0 cells (Weinfeld and Soderlind, 1991). For 
example, Artemis is an endo and exonuclease which is activated by DNA-PKcs and uses its nuclease 
activity to open DNA hairpins at coding ends, which is required for V(D)J recombination, and cleaves 
3’ ssDNA overhangs during NHEJ (Ma et  al., 2002; Ma et  al., 2005). Artemis was also recently 
shown to contribute to slow, resection dependent NHEJ repair in G1 phase cells (Biehs et al., 2017). 
Though Artemis does not have a role in DNA end resection in G0 (Figure 1—figure supplement 1D). 
it serves as an example of nuclease activity being critical for DSB repair outside of HR. It is addition-
ally possible that DNA end resection in G0 results in substrates that are ideal for Pol Theta-mediated 
end joining (TMEJ). TMEJ occurs after extensive DNA end resection when HR is not possible or when 
substrates are not suitable for NHEJ, which could be the case at a subset of breaks in G0 (Yousefzadeh 
et al., 2014; Wyatt et al., 2016). However, it is notably that TMEJ is KU70/KU80 independent, while 
the resection that we see in G0 is KU70/KU80 dependent. Interestingly, DNA end resection has a 
role in recruiting anti-resection factors to limit extensive DNA end resection. The SHLD2 component 
of Shieldin binds ssDNA, suppresses RAD51 loading, and ultimately limits DNA end resection by 
preventing access to resection nucleases (Noordermeer et al., 2018). HELB, a 5’–3’ DNA helicase, 
binds to RPA and limits EXO1 and BLM-DNA2-mediated DNA end resection (Tkáč et al., 2016). In this 
way, limited DNA end resection in G0 cells could be important in preventing more extensive DNA end 
resection. Altogether, we propose that DNA end resection in G0 cells is likely not resulting in aberrant 
HR but may be required to create more accessible DNA ends and/or to recruit anti-resection factors.

Studies investigating the role of KU70/KU80 during DSB repair have found that KU70/KU80 
protects DSBs from nuclease activity. For example, at HO endonuclease breaks in budding yeast, 
deletion of KU70/KU80 leads to ssDNA accumulation in G1 cells and increased MRE11 recruitment to 
DSBs compared to wild-type cells (Lee et al., 1998; Clerici et al., 2008). Also in budding yeast, at 
inducible I-SceI DSBs, deletion of KU70 results in increased RFA1 foci formation in G1, but deletion 
of NHEJ factor DNA Ligase IV leads to no defect in RFA1 foci formation compared to wild-type cells, 
indicating that KU70 itself, not NHEJ, is a barrier to DNA end resection (Barlow et al., 2008). In 
mammalian cells, complementation of KU70/KU80 knockout cells with a M. tuberculosis KU homolog 
persistently bound to DSBs in S phase results in reduced RPA and RAD51 foci formation after IR 
(Shao et al., 2012). Contrary to these roles for KU70/KU80 in protecting DNA ends from nucleolytic 
attack, we found that in G0 cells, KU70/KU80 promotes DNA end resection (Figures 3A and 4B). We 
hypothesize that KU70/KU80 promotes resection through recruitment and activation of DNA-PKcs at 
DSBs (Gottlieb and Jackson, 1993), as we also found that DNA-PKcs inhibition and genetic deletion 
of Prkdc leads to less RPA on chromatin after IR and shorter tracts of DNA end resection in G0 cells 
(Figure 2C–E, Figure 2—figure supplement 1C and D, 4A, 4C, 4D). It is important to note that most 
studies establishing the role of KU70/KU80 in protecting DNA ends were performed in S. cerevisiae 
which do not have a homolog to DNA-PKcs. Therefore, we hypothesize that the function of DNA-PK 
promoting DNA end resection in G0 cells may not be evolutionarily conserved. Moreover, previous 
studies in S. cerevisiae and mammalian cells establishing DNA-PK as a pro-NHEJ complex did not 
analyze G0 cells. We found that DNA-PK does not promote DNA end resection in G1 or G2 phase cells, 
only in G0-arrested cells, indicating that DNA-PK-dependent DNA end resection is unique to G0, but 
is not contradictory to its anti-resection function in G1 or G2 phase cells (Figure 4). In G0 cells, KU70/
KU80 could protect some DNA ends, but after recruitment and activation of DNA-PKcs, the net effect 
is DNA end resection. Additional studies may elucidate how the balance between DNA end protec-
tion and DNA end resection is regulated in G0.

ATM and DNA-PK have been shown to have some overlapping functions in DNA damage response 
and repair, including phosphorylation of H2A.X in response to IR and signal join formation during V(D)

https://doi.org/10.7554/eLife.74700
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J recombination (Stiff et al., 2004; Gapud et al., 2011; Zha et al., 2011). However, we find that this is 
not the case during DNA end resection in G0 cells as DNA-PK promotes resection in G0 cells, but ATM 
does not have a detectable impact (Figure 2—figure supplement 1B). ATM has been implicated in 
promoting HR repair by phosphorylating CtIP and promoting KU70/KU80 removal from DSBs, as well 
as phosphorylating DNA-PKcs at single-ended DSBs to remove it from these breaks that require DNA 
end resection (Wang et al., 2013; Britton et al., 2020). DNA-PKcs autophosphorylation promotes 
HR by removing it from DSBs to allow nuclease access but is typically associated with promoting 
NHEJ by phosphorylating Artemis, XRCC4, and XLF (Zhou and Paull, 2013; Bartlett and Lees-Miller 
2018Bartlett and Lees-Miller, 2018). So while ATM often promotes DNA end resection and HR, it 
appears that DNA-PKcs could be acting in place of ATM to promote DNA end resection in G0 cells. It 
is additionally possible that DNA-PKcs phosphorylates a unique substrate(s) in G0 cells that promotes 
DNA end resection.

In summary, we provide here evidence that DNA-PK promotes DNA end resection uniquely in G0 
cells, and that this DNA end resection is counteracted by FBXL12. We speculate that some aspects of 
DSB repair in G0 function differently than DSB repair in cycling cells, and future studies may reveal the 
mechanism and utility of these key differences.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody Anti-CtIP (Rabbit polyclonal) N/A
custom made (Richard Baer, 
Columbia University) WB (1:1000)

Antibody
Anti-MRE11 (Rabbit 
polyclonal) Novus Biologicals

NB100-142
RRID:AB_1109376 WB (1:2000)

Antibody
Anti-GAPDH (GAPDH-71.1) 
(Mouse monoclonal) Millipore Sigma

G8795
RRID:AB_1078991 WB (1:10000)

Antibody
Anti-KAP1 (N3C2) (Rabbit 
polyclonal) Genetex

GTX102226
RRID:AB_2037324 WB (1:2000)

Antibody
Anti-RPA32 (4E4) (Rat 
monoclonal)

Cell Signaling 
Technology

2,208 S
RRID:AB_2238543

WB (1:1000)
FC (1:200)
IF (1:500)

Antibody
Anti-KU70 (D10A7) (Rabbit 
monoclonal)

Cell Signaling 
Technology

4,588 S
RRID:AB_11179211 WB (1:1000)

Antibody
Anti-DNA-PK (SC57-08) 
(Rabbit monoclonal) Invitrogen

MA5-32192
RRID:AB_2809479 WB (1:1000)

Antibody
Anti-RPA32
(rabbit polyclonal) Abcam ab10359 RRID:AB_297095 ChIP (10 ug)

Antibody
HRP, goat anti-mouse (goat 
polyclonal) Promega

W4021
RRID:AB_430834 WB (1:5000)

Antibody
HRP, goat anti-rabbit IgG 
(goat polyclonal) Promega

W4011
RRID:AB_430833 WB (1:5000)

Antibody
Alexa Fluor 488, goat anti-rat 
IgG (goat polyclonal) BioLegend

405,418
RRID:AB_2563120 FC (1:500)

Antibody
Alexa Fluor 647, goat anti-rat 
IgG (goat polyclonal) BioLegend

405,416
RRID:AB_2562967 FC (1:500)

Antibody
Alexa Fluor 594, goat anti-rat 
IgG (goat polyclonal) BioLegend

405,422
RRID:AB_2563301 IF (1:500)

Recombinant DNA 
reagent pCW-Cas9 (plasmid) Addgene

50,661
RRID:Addgene_50661

Recombinant DNA 
reagent

pKLV-U6 gRNA(BbsI)-
PGKpuro-2ABFP (plasmid) Addgene

50,946
RRID:Addgene_50946

Recombinant DNA 
reagent

Genome-wide CRISPR guide 
RNA library V2 (plasmid) Addgene

67,988
RRID:Addgene_67988
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Cell line (H. 
sapiens) MCF10A ATCC

CRL-10317
RRID:CVCL_0598

Cell line (H. 
sapiens) MCF10A: iCas9 This study Clone 25 Available upon request

Cell line (M. 
musculus) WT:iCas9 abl pre-B cells This study M63.1.MG36.iCas9.302 Available upon request

Cell line (M. 
musculus) Lig4-/-:iCas9 abl pre-B cells This study A5.83.MG9.iCas9.16 Available upon request

Cell line (M. 
musculus) Lig4-/-:iCas9 abl pre-B cells This study A5.115.iCas9.72 Available upon request

Cell line (M 
musculus)

Lig4-/-:Trp53bp1:iCas9 abl 
pre-B cells This study Clone 82 Available upon request

Cell line (M 
musculus)

Lig4-/-:Xrcc6-/-:iCas9 abl pre-B 
cells This study Clones 134 and 140 Available upon request

Cell line (M. 
musculus)

Lig4-/-:Prkdc-/-:iCas9 abl pre-B 
cells This study Clone 6 Available upon request

Cell line (M. 
musculus)

Lig4-/-:Fbxl12-/-:iCas9 abl pre-B 
cells This study Clone 6 Available upon request

Cell line (M. 
musculus) Lig4-/-:iAsiSI abl pre-B cells This study Clone 20 Available upon request

Chemical 
compound, drug Imatinib Selleckchem S2475

Chemical 
compound, drug Doxycycline Sigma-Aldrich D9891

Chemical 
compound, drug Polybrene Sigma Aldrich S2667

Chemical 
compound, drug Lipofectamine 2000

Thermo Fisher 
Scientific 11668019

Chemical 
compound, drug NU7441 Selleck Chemicals S2638

Chemical 
compound, drug KU-55933 Selleck Chemicals S1092

Chemical 
compound, drug EGF PeproTech AF-100–15

Chemical 
compound, drug Hydrocortisone Sigma-Aldrich H-0888

Chemical 
compound, drug Cholera Toxin Sigma-Aldrich C-8052

Chemical 
compound, drug Insulin Sigma-Aldrich I-1882

Commercial assay, 
kit 7-AAD (DNA stain) BD Biosciences

559,925
RRID:AB_2869266

Commercial assay, 
kit Cytofix/Cytoperm solution BD Biosciences

554,722
RRID:AB_2869010

Commercial assay, 
kit Perm/Wash Buffer BD Biosciences

554,723
RRID:AB_2869011

Commercial assay, 
kit FITC BrdU Flow Kit BD Biosciences

559,619
RRID:AB_2617060

 Continued on next page
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence-based 
reagent pKLV lib330F

This study 
designed based 
on [Tzelepis 
et al., 2016] PCR primers ​AATG​GACT​ATCA​TATG​CTTACCGT

Sequence-based 
reagent pKLV lib490R

This study 
designed based 
on Tzelepis et al., 
2016 PCR primers ​CCTA​CCGG​TGGA​TGTG​GAATG

Sequence-based 
reagent PE.P5_pKLV lib195 Fwd

This study 
designed based 
on Tzelepis 
et al., 2016 
and standard 
Illumina adaptor 
sequences PCR primers

​AATG​ATAC​GGCG​ACCA​CCGA​GATCTGG 
​CTTT​ATAT​ATCT​TGTG​GAAAGGAC

Sequence-based 
reagent P7 index180 Rev

This study 
designed based 
on Tzelepis 
et al., 2016 
and standard 
Illumina adaptor 
sequences PCR primers

​CAAG​CAGA​AGAC​GGCA​TACGAGAT 
​INDEX​GTGACTGGAGTTCAGACGTG 
​TGCT​CTTC​CGAT​CCAG​ACTG​CCTT​GGGA​AAAGC

Sequence-based 
reagent BU1

Canela et al., 
2016 PCR primers

5′-Phos-GATCGGAAGAGCGTCGT  
GTAGGGAAAGAGTGUU[Biotin-dT]U  
[Biotin-dT]UUACACTCTTTC CCTACA 
CGACGCTCTTCCGATC* T-3′  
[*phosphorothioate bond]

Sequence-based 
reagent BU2

Canela et al., 
2016 PCR primers

5′-Phos-GATCGGAAGAGCACACG  
​TCUU​UUUU​UUAG​ACGT​GTGCTC 
TTCCGATC*T-3′ [*phosphorothioate bond]

Sequence-based 
reagent Trp53bp1 gRNA sequence

Sequence is from 
Tzelepis et al., 
2016 N/A GAACCTGTCAGACCCGATC

Sequence-based 
reagent Rbbp8 gRNA sequence

Sequence is from 
Tzelepis et al., 
2016 N/A ATTAACCGGCTACGAAAGA

Sequence-based 
reagent Mre11 gRNA sequence

Sequence is from 
Tzelepis et al., 
2016 N/A TGCCGTGGATACTAAATAC

Sequence-based 
reagent Prkdc gRNA sequence

Sequence is from 
Tzelepis et al., 
2016 N/A ATGCGTCTTAGGTGATCGA

Sequence-based 
reagent Xrcc6 gRNA sequence

Sequence is from 
Tzelepis et al., 
2016 N/A CCGAGACACGGTTGGCCAT

Sequence-based 
reagent Fbxl12 gRNA sequence

Sequence is from 
Tzelepis et al., 
2016 N/A TTCGCGATGAGCATCTGCA

Software, algorithm Image J NIH RRID:SCR_003070

Software, algorithm FlowJo FlowJo RRID:SCR_008520

Software, algorithm Prism GraphPad RRID:SCR_002798

Software, algorithm Gen5 Biotek Instruments RRID:SCR_017317

Software, algorithm SeqKit Shen et al., 2016 RRID:SCR_018926

Software, algorithm Bowtie
Langmead et al., 
2009 RRID:SCR_005476

Software, algorithm SAMtools Li et al., 2009 RRID:SCR_002105

 Continued

 Continued on next page
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Software, algorithm BEDtools
Quinlan and Hall, 
2010 RRID:SCR_006646

Other LSRII Flow cytometer BD Bioscience RRID:SCR_002159 Flow cytometer

Other FACS Celesta Flow Cytometer BD Bioscience RRID:SCR_019597 Flow cytometer

Other FACSAria II Cell Sorter BD Bioscience RRID:SCR_018934 Flow assisted cell sorter

Other
Lionheart LX automated 
microscope

BioTex 
Instruments RRID:SCR_019745 Automated microscope

Other 4-D Amaxa Nucleofecter Lonza NA Nucleofector

 Continued

Cell lines and maintenance
Abelson virus-transformed pre-B cell lines were maintained in DMEM (Thermo Fisher #11960–077) 
supplemented with 10% fetal bovine serum, 1  X Penicillin-Streptomycin, 2  mM glutamine, 1  mM 
sodium pyruvate, 1 X nonessential amino acids, and 0.4% beta-mercaptoethanol at 37 °C with 5% 
CO2. MCF10A cells were maintained in DMEM/F12 (Gibco, #11330032), 5% horse serum, 20  ng/
mL EGF, 0.5 μg/mL hydrocortisone, 100 ng/mL cholera toxin, 10 μg/mL insulin, and 1% Penicillin-
Streptomycin at 37 °C with 5% CO2. 293T cells were maintained in DMEM (Corning, #10–013 CM) 
supplemented with 10% fetal bovine serum and 1 X Penicillin-Streptomycin at 37 °C with 5% CO2. 
MCF10A cell lines were authenticated by STR profiling, and MCF10A and murine cell lines tested 
negative for mycoplasma contamination.

Lig4-/- abl pre-B cells contain pCW-Cas9 (addgene, #50661) which expresses cas9 under a 
doxycycline-induced promoter. To generate single cell clones of Lig4-/-:Trp53bp1-/-, Lig4-/-:Xrcc6-/-, Lig4-

/-:Prkdc-/-, and Lig4-/-:Fbxl12-/-, guide RNAs (gRNAs) against each gene were cloned into pKLV-U6gRNA-
EF(BbsI)-PGKpuro2ABFP (addgene, #62348) modified to express human CD2 as a cell surface marker. 
Lig4-/- abl pre-B cells were grown in 3 μg/mL of doxycycline for 2 days and then nucleofected with 
the pKLV-gRNA plasmid using a Lonza Amaxa Nucleofector. The next day, cells were magnetically 
selected for human CD2 cell surface expression, and selected cells were grown in 3 μg/mL doxycycline 
overnight. Serial dilution in 96 well plates was used to isolate single cells. After cell growth, potential 
clones were confirmed to have the gene of interest knocked out by Sanger sequencing or western 
blotting. Lig4 deletion was confirmed by PCR as previously described (Chen et al., 2021a).

Bulk gene inactivation gRNAs against Mre11, Rbbp8, and Xrcc6 were cloned into pKLV-U6gRNA-
EF(BbsI)-PGKpuro2ABFP (addgene, #62348). 293T cells were transfected with the pKLV-gRNA 
plasmid along with lentiviral packaging and lentiviral envelope plasmids. Three days post-transfection, 
supernatant containing pKLV-gRNA lentivirus was filtered with a 0.45  μm filter. Lig4-/- cells were 
resuspended in the filtered viral supernatant supplemented with 5 μg/mL polybrene (Sigma-Aldrich, 
#S2667) in six-well plates and centrifuged at 1800 RPM for 1.5 hr at room temperature. After spin 
infection, virally transduced cells were supplemented with DMEM containing 3 μg/mL doxycycline for 
3 days before flow cytometry-assisted cell sorting or magnetic-assisted cell sorting based on hCD2 
cell surface expression.

Flow cytometry
Abl pre-B cells were arrested in G0 using 3 μM imatinib (Selleck Chemicals, #S2475) for 48 hr. MCF10A 
cells were arrested in G0 by withdrawing EGF for 48 hr. To arrest cells in G2, abl pre-B cells were 
treated with 10 μM RO-3306 (Selleck Chemicals, #S7747) overnight. For experiments analyzing DNA-
PKcs and ATM inhibition, 10 μM NU7441 (Selleck Chemicals, #S2638) or 15 μM KU-55933 (Selleck 
Chemicals, #S1092) was added 1  hr prior to irradiation. After irradiation with 20 Gray, cells were 
allowed to recover for 3 hr. Cells were then pre-extracted with 0.05% Triton-X 100 (imatinib-treated 
abl pre-B cells), 0.2% Triton-X 100 (proliferating abl pre-B cells), or 0.5% Triton-X 100 (MCF10A cells) 
in PBS and fixed with BD Cytofix/Cytoperm solution (BD Biosciences, #554722) containing 4.2% form-
aldehyde. Fixed cells were stained with anti-RPA32 (Cell Signaling Technology, #2,208 S) for 2 hr at 
room temperature, and then treated with a fluorescent conjugated secondary antibody (BioLegend, 
#405,416 or BioLegend, #405418) for 1 hr at room temperature. 7-AAD was added to each sample 
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to stain for DNA content. Cells were analyzed using a BD LSRII Flow Cytometer or a BD FACSCelesta 
and flow cytometry results were further analyzed using FlowJo.

Nuclear RPA immunofluorescence staining
A total of 60,000 G0-arrested MCF10A cells grown on cover slips were irradiated with 10 Gray IR and 
then allowed to recover for 3 hr at 37 °C with 5% CO2. Cells were then washed with PBS containing 
0.1% Tween-20 (PBST), pre-extracted using cold 0.5% Triton-X100 in PBS for 5 min, fixed with 4% 
formaldehyde for 15 min, and blocked in 3% BSA-PBST for 1 hr at room temperature. Cells were incu-
bated overnight at 4 °C in primary antibody (anti-RPA32, Cell Signaling Technology, #2208). Samples 
diluted in 3% BSA-PBST were then washed 3 x with PBST, incubated with secondary antibody diluted 
in 3% BSA (Alexa Fluor 594 Goat anti-Rat IgG, BioLegend, #405422) in the dark for 1 hr at room 
temperature, washed 3 x with PBST, and mounted in Prolong Gold Antifade Mountant with DAPI (Life 
Technologies, #P-36931). Images were taken using a Biotek Lionheart Automatic Microscope and foci 
quantification was performed using Biotek Gen5 software.

END-Seq and RPA-ChIP Seq
Sequencing assays were performed in Lig4-/- abl pre-B cells after arrest in G0 with imatinib for 24 hr 
or arrest in G2 with RO-3306 for 12 hr, then treated with doxycycline (3 µg/µL) for 24 hr followed 
by tamoxifen treatment (1 µM) for 4 or 8 hr to induce AsiSI breaks in the nucleus. Cell cycle arrest 
and AsiSI induction were confirmed as previously described (Paiano et al., 2021). G1 and G2 arrest 
were confirmed by EdU/DAPI FACS. Cells were pulsed with EdU (10 µM) for 30 min and then fixed 
in a 1% formaldehyde solution and stained with an AF488 azide. Approximately 90% of cells were in 
G1 or G2 (respectively) at the time of tamoxifen addition. AsiSI induction was confirmed by staining 
with an anti-phospho-KAP1 antibody (Thermo Fisher A300-767A) at multiple timepoints and then 
staining with a fluorescent secondary antibody (AF647). AsiSI was induced at consistent levels after 
4 hr (90–95% positivity) (data not shown). END-Seq was performed as previously described (Chen 
et al., 2021a; Wong et al., 2021). Cells were embedded in agarose plugs, lysed, and treated with 
proteinase K and RNase A. The DNA was then blunted with ExoVII (NEB) and ExoT (NEB), A-tailed, 
and ligated with a biotinylated hairpin adaptor. DNA was then recovered and sonicated to a length 
between 150 and 200 bp and biotinylated DNA fragments were purified using streptavidin beads 
(MyOne C1, Invitrogen). The DNA was then end-repaired and ligated to hairpin adaptor BU2 and 
amplified by PCR. RPA single-strand DNA sequencing was performed as previously described (Paiano 
et al., 2021). Cells were fixed in 1% formaldehyde (Sigma F1635) for 10 min at 37 °C, quenched with 
125 mM glycine (Sigma), washed twice with cold 1×PBS. After centrifugation, pellets were frozen 
on dry ice, and stored at −80  °C. Sonication, immunoprecipitation, and library preparation were 
performed as previously detailed (Tubbs et al., 2018). Before immunoprecipitation, sheared chro-
matin was precleared with 40 µL of Dynabeads Protein A (Thermo Fisher) for 30 min at 4 °C. Sheared 
chromatin was enriched with 10 µg of anti-RPA32/RPA2 antibody (Abcam ab10359) on Dynabeads 
Protein A overnight at 4 °C. During library preparation, kinetic enrichment of single-strand DNA was 
performed by heating sheared DNA for 3 min at 95 °C and allowing DNA to return to room tempera-
ture (Tubbs et al., 2018). All END-seq and RPA ChIP-seq libraries were collected by gel purification 
and quantified using qPCR. Sequencing was performed on the Illumina NextSeq500 (75 cycles) as 
previously described (Chen et al., 2021a).

Genome alignment and visualization
END-seq and RPA ChIP-seq single-end reads were aligned to the mouse genome (mm10) using Bowtie 
v1.1.2 (Langmead et al., 2009) with parameters (-n 3 k 1 l 50) for END-seq and (-n 2 m 1 l 50) for RPA 
ChIP-seq. All plots or analysis were done for the top 200 AsiSI sites determined by END-seq. Alignment 
files were generated and sorted using SAMtools (Li et al., 2009) and converted to bedgraph files using 
bedtools genomecov Quinlan and Hall, 2010 following by bedGraphToBigWig to make a bigwig file 
(Kent et al., 2010). Visualization of genomic profiles was done by the UCSC genome browser (Kent 
et al., 2002) and normalized to present RPM. Heat maps were produced using the R package pheatmap.

Genome-wide guide RNA library screen
A total of 144  million Lig4-/- abl pre-B cells with tet-inducible Cas9 were transduced with a lenti-
viral gRNA library (Pooled Library #67988, Addgene) containing 90,000 gRNAs targeting over 
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18,000 mouse genes. Three days post-infection, cells were sorted for gRNA vector expression using a 
BD FACSAria flow cytometry assisted cell sorter by BFP fluorescence. The next day, sorted cells were 
treated with 3 µg/ml doxycycline to induce Cas9-mediated gene inactivation. Seven days later, cells 
were treated with imatinib to arrest cells in G0. Forty-eight hours later, cells were irradiated with 20 
Gray and allowed to recover for 2 hr. After collection, cells were permeabilized, fixed, and stained with 
anti-RPA32 in the same manner as described in the Flow Cytometry section. After staining, the top 
10% and bottom 10% of RPA stained cells were collected using flow cytometry assisted cell sorting 
and genomic DNA was extracted. An Illumina sequencing library was generated using two rounds of 
PCR to amplify the gRNA and add a barcode, then purified PCR products containing the barcoded 
enriched gRNAs were sequenced on an Illumina HiSeq2500. Sequencing data were processed as 
previously described (Chen et al., 2021a).

Western blotting
The following antibodies were used for western blot analysis: CtIP (gift from Dr. Richard Baer, 
[Columbia University, New York], 1:1000), MRE11 (Novus Biologicals, NB100-142, 1:2000), GAPDH 
(Sigma, G8795, 1:10,000), DNA-PKcs (Invitrogen, MA5-32192, 1:1000), KAP1 (Genetex, GTX102226, 
1:2000), KU70 (Cell Signaling Technology, #4588, 1:1000).

Plasmid Constructs pCW-Cas9 was a gift from Eric Lander and David Sabatini (Addgene plasmid 
#50661) (Wang et  al., 2014). pKLV-U6gRNA(BbsI)-PGKpuro2ABFP was a gift from Kosuke Yusa 
(Addgene plasmid #50946) (Koike-Yusa et  al., 2014). Mouse Improved Genome-wide Knockout 
CRISPR Library v2 was a gift from Kosuke Yusa (Addgene #67988) (Tzelepis et al., 2016).
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