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Brain oxygen extraction fraction
mapping in patients with
multiple sclerosis
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Abstract

We aimed to demonstrate the feasibility of whole brain oxygen extraction fraction (OEF) mapping for measuring lesion

specific and regional OEF abnormalities in multiple sclerosis (MS) patients. In 22 MS patients and 11 healthy controls

(HC), OEF and neural tissue susceptibility (vn) maps were computed from MRI multi-echo gradient echo data. In MS

patients, 80 chronic active lesions with hyperintense rim on quantitative susceptibility mapping were identified, and the

mean OEF and vn within the rim and core were compared using linear mixed-effect model analysis. The rim showed

higher OEF and vn than the core: relative to their adjacent normal appearing white matter, OEF contrast¼�6.6� 7.0%

vs. �9.8� 7.8% (p< 0.001) and vn contrast¼ 33.9� 20.3 ppb vs. 25.7� 20.5 ppb (p¼ 0.017). Between MS and HC, OEF

and vn were compared using a linear regression model in subject-based regions of interest. In the whole brain, com-

pared to HC, MS had lower OEF, 30.4� 3.3% vs. 21.4� 4.4% (p< 0.001), and higher vn, �23.7� 7.0 ppb vs. �11.3�
7.7 ppb (p¼ 0.018). Our feasibility study suggests that OEF may serve as a useful quantitative marker of tissue oxygen

utilization in MS.
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Introduction

Multiple sclerosis (MS) is an inflammatory demyelinat-
ing disease of the white matter (WM) with progressive
neurodegeneration and is a leading cause of neurologi-
cal disability in young adults.1 MRI has been the stan-
dard in vivo imaging technique for diagnosing MS and
monitoring disease progression.2,3 New acute MS
lesions develop near the disrupted brain blood barrier
(BBB) and appear hyperintense on Gadolinium-
enhanced T1-weighted image (T1wþGd)3,4 as a conse-
quence of contrast agent leakage. Following BBB
repair, lesions are characterized by a non-enhancing
status on T1wþGd; these lesions are typically regarded
as chronic and appear hyperintense on T2-weighted
fluid-attenuated inversion recovery (T2FLAIR) image.
This is attributable to demyelination and axonal loss.2,3

Recently, an important subset of chronic MS lesions
has been identified which exhibit low-grade sustained
microglial activity and expanding demyelination at the
lesion rim.5–7 These so-called chronic active lesions
have been associated with increased tissue damage,
neuroinflammation, and disability,8 and may be a
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driving factor in progressive disease.9,10 Quantitative
susceptibility mapping (QSM)11 has been used to
detect these lesions based on their characteristic para-
magnetic rim appearance (QSM rimþ) owing to its
sensitivity to the iron-rich pro-inflammatory microglia
and macrophages in the rim region.9,12–18 However, the
metabolic activity of these immune cells has yet to be
measured with current imaging techniques such as PET
(due to limited spatial resolution) and conventional
MRI (due to lack of sensitivity).

The primary objective of this study was to demon-
strate the feasibility of whole brain mapping of oxygen
extraction fraction (OEF) in MS patients using a
widely available multi-echo gradient echo (mGRE)
sequence and a novel integrated model of QSM phase
signal and quantitative blood oxygenation level depen-
dent magnitude signal (qBOLD) (QSMþqBOLD, or
QQ).19,20 QQ separates the effect of deoxyheme iron
in a cylindrical micron-scale venule (OEF effect) from
that of neural tissue susceptibility (vn) contributed for
example by the diffuse nano-scale ferritin iron in tissue,
based upon their unique contributions to tissue suscep-
tibility determined on QSM21–23 and to the magnitude
signal decay as modeled by qBOLD.24–27 QQ has been
shown to provide OEF measurements that are in good
agreement with dual-gas calibrated BOLD28 and the
gold standard 15O PET-OEF.29

In our study, we aim to demonstrate the potential of
QQ to provide a quantitative marker of oxygen metab-
olism in the rim area of QSM rimþ lesions, which may
be useful in the development of new therapeutic targets
to reduce inflammation in chronic active lesions. As a
secondary objective, QQ-based OEF mapping is used
to investigate regional oxygen metabolism differences
in cortical gray matter (CGM) and deep gray matter
(DGM) between MS patients and healthy controls
(HCs), which have been implicated in neurodegenera-
tive processes and are regarded as major indicators of
tissue injury and neuronal loss in MS.30–36

Materials and methods

Study cohort

This retrospective image analysis study was approved
by the Weill Cornell Medicine local Institutional
Review Board, and written informed consent was
obtained from all individuals in accordance with the
ethical standards of the Helsinki Declaration of 1975
and its later amendments. MS patients were selected
from an ongoing imaging and clinical MS research
database and were diagnosed according to the
McDonald criteria.3 A total of 22 relapsing-remitting
MS patients with at least one chronic active QSM rimþ
lesion was included (17 females, 5 males; mean age,

37� 6 years). In addition, 11 age-matched HCs

(1 female, 10 males; mean age, 34� 12 years) were

included for comparison. The demographic and clinical

characteristics of the study participants, e.g. expanded

disability status scale (EDSS) to evaluate the functional

systems of the central nervous system (0¼normal neu-

rologic status, 10¼death due to MS),37 are summa-

rized in Table 1.

MRI protocol

All brain MRIs were performed on a 3T GE scanner.

The typical MS imaging protocol consisted of 3D sag-

ittal T1w and T1wþGd (field of view (FOV)¼ 24 cm,

TR¼ 8.8ms, TE¼ 3.4ms, TI¼ 450ms, flip angle

(FA)¼ 15�, voxel size¼ 1.2� 1.2� 1.2mm3), 2D axial

T2w (FOV¼ 28 cm, TR¼ 5917ms, TE¼ 88ms, flip

FA¼ 90�, voxel size¼ 0.7� 1.2� 3mm3), and 3D

T2FLAIR (FOV¼ 24 cm, TR¼ 6050ms, TE¼
149.4ms, TI¼ 1820ms, FA¼ 90�, voxel size¼ 1.2�
1.2� 1.2mm3) for anatomy and lesion detection, as

well as 3D mGRE for QSM and OEF mapping

(FOV¼ 24 cm, TR¼ 57.5ms, TE1/DTE¼ 4.5/4.8ms,

number of TEs¼ 11, FA¼ 20�, voxel size¼ 0.7� 0.9�
3mm3, axial slice acquisition parallel to B0 direction).

The imaging protocol for HCs consisted of axial 3D

mGRE (FOV¼ 20 cm, TR¼ 30.5ms, TE1/DTE¼ 2.3/

3.9ms, number of TEs¼ 7, FA¼ 15�, voxel size¼ 1.2�
1.2� 1.2mm3, flow-compensated in all three direc-

tions,38 axial slice acquisition parallel to B0 direction)

and 3D T1w (FOV¼ 20 cm, TR¼ 7.7ms, TE¼ 2.9ms,

TI¼ 450ms, FA¼ 15�, voxel size¼ 0.8� 0.8�1.2mm3).

Image processing and analysis

QSM reconstruction consisted of total field estimation

from the mGRE phase data by linear fitting,39

Table 1. Clinical and demographic characteristics of the study
cohort. Age, disease duration, and expanded disability status
scale (EDSS) score are shown as mean� standard deviation
(minimum-maximum).

Variable

Healthy

controls MS patients P-value

Number 11 22

Number of womena 1 (9%) 17 (77%) <0.001a

Age (years)b 34� 12 (22–63) 37� 6 (28–52) 0.19b

Disease duration

(years)

N.A. 16� 12 (1–40)

EDSS score N.A. 1.4� 1.1 (0–3.5)

MS phenotype N.A. Relapsing-remitting

Medical treatmentc N.A. 21 (95%)

av2 test.
bWilcoxon rank sum test.
cMedical treatment includes Gilenya (N¼ 3), Ocrevus (N¼ 9), Tecfidera

(N¼ 3), Tysabri (N¼ 4), and Copaxone (N¼ 2).
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background field removal using Projection onto Dipole

Fields (PDF) algorithm,40 and inversion of the local

field to obtain the susceptibility distribution using

Morphology Enabled Dipole Inversion with automatic

uniform cerebrospinal fluid zero reference (MEDIþ 0)

algorithm.11,41–43 In HCs, the total field was estimated

using an adaptive quadratic-fit of the mGRE phase to

benefit from 3D flow-compensation.38

OEF and neural tissue susceptibility (vn) maps were

computed from QSM and mGRE magnitude data

using the QQ algorithm.19,20 QQ unifies two biophysi-

cal models of mGRE data:19 1) a QSM-based model

which distinguishes the susceptibility contribution of

blood (determined by its oxygenation level) from that

of neural tissue 22,23,44 on a per voxel basis, and 2)

qBOLD which models the mGRE magnitude signal

decay by the field variation inside a voxel based on

the susceptibility difference between blood and the sur-

rounding tissue.24–27,45–47

To improve the robustness of QQ against noise in

the data fitting, the original cluster analysis of time

evolution (CAT) algorithm20 was refined by incorpo-

rating a brain/CSF segmentation into clustering.48,49

This segmentation was obtained from the echo-

combined magnitude mGRE image using the FSL

FAST segmentation algorithm.50 The CAT method

groups voxels of the same tissue type with similar tem-

poral mGRE magnitude evolutions into a cluster that

are assumed to have similar model parameter values

including OEF. Then, cluster-wise optimization is per-

formed to solve for the model parameters.

Total variation denoising51 was applied to enhance

the effective signal-to-noise ratio of OEF

reconstruction.
For MS lesion-specific OEF analysis, two neuro-

radiologists (S.Z., 6 years of experience and W.H.,

11 years of experience) identified lesions on T2FLAIR

and manually traced QSM rimþ lesions on QSM based

on their relative contrast with respect to the adjacent

normal appearing white matter (NAWM).12,13 To

exclude both regional variation within a subject and

inter-subject variation, the average OEF within each

lesion was referenced to the average of its adjacent

NAWM, OEF contrast (OEFC)¼OEF �OEFNAWM .

Lesion vn contrast was defined in the same way

(vnC ¼ vn � vn;NAWM ). The average and standard

deviation of vn;NAWM among all the lesions was

�21.9� 13.8 ppb. For each QSM rimþ lesion, the cen-

tral veins were removed, and the hyperintense rim area

in QSM was traced as lesion rim by three neuroradiol-

ogists (S.Z., 6 years of experience, W.H., 11 years of

experience, and I.K., 23 years of experience), with the
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Figure 1. Example of T1wþGd image, T2w image, OEF and neural tissue susceptibility (vn) maps obtained from an MS patient
(disease duration, 11 years) showing two chronic active lesions with paramagnetic rims (A and B). In both lesions, the rim regions
(red) show higher OEF and vn than the core regions (green). The central vein within lesion A is excluded from the lesion ROI. Normal
appearing white matter (NAWM) mask for each lesion is shown in cyan blue in lesion ROI map.
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remaining part of the lesion defined as the lesion core.
No significant blooming artifact were found near the

lesions in the susceptibility maps (Figures 1 and 3). The
blooming artifact seen on the gradient echo magnitude

images is caused by the field inhomogeneity in the
vicinity of a strong susceptibility source such as iron
or air-tissue interface. The field can be described math-

ematically as the spatial convolution of the susceptibil-
ity source with a dipole kernel. QSM deconvolves the
field to remove the blooming artifact and reveal the

true susceptibility.52 Acute T1wþGd enhancing lesions
were excluded from analysis. To compare OEF
between HC and MS patients, FreeSurfer analysis of

T1w anatomical images was used to obtain regions of
interest (ROIs)53 including cortical gray matter (CGM)
and selective DGM including thalamus, caudate, puta-

men, and pallidum, which have been shown to be asso-
ciated with neuronal loss and atrophy in MS.30–33,35,54

MS lesions were excluded from these ROIs.

Statistical analysis

For QSM rimþ lesions, a linear mixed-effect model
with a random effect for patient was used to assess

the OEFC between the rim and core regions (core¼ 0,
rim ¼1), adjusting for lesion volume. The random
effect for patient accounts for the correlation within a

patient. For OEF comparison between HC and MS,
linear regression models were fit for each ROI (whole
brain, CGM, and DGM), with average OEF in the
region as the dependent variable and an indicator of
MS versus HC (0¼HC, 1¼MS), gender (female¼ 0,
male¼ 1), and age as independent variables. Multiple
comparisons correction was performed using the false
discovery rate.55 The Jarque-Bera test confirmed
the normality of each ROI data distribution (all
p-values> 0.09).56 A p-value of less than 0.05 was con-
sidered statistically significant. The same analyses were
performed for vn.

Results

In MS patients, a total of 80 chronic QSM rimþ lesions
were identified. Of these, the mean lesion volume was
440.0� 431.0mm3, and the mean volume of rim and
core regions was 267.0� 267.4mm3 and 172.9�
185.4mm3, respectively.

Figure 1 shows a representative case with two QSM
rimþ lesions, showing higher OEF and vn in the rim
region compared to the core region. Over 80 QSM
rimþ lesions, the mean OEF and vn in the rim region
was found to be significantly higher than that in the
core region in the linear mixed-effect model analyses
(Figure 2): OEFC¼�6.6� 7.0% vs. �9.8� 7.8%

rim corerim core

OEFC

10

0

-10

-20

-30

-40

[%] [ppb]

χ
n
C

80

20

0

-20

100

60

40

**

Figure 2. Comparison of mean OEF and neural tissue susceptibility (vn) contrast relative to adjacent normal appearing white matter
(OEFC and vnC) between the rim and core regions of QSM rimþ lesions (n¼ 80). The rim region showed significantly higher mean
OEFC and vnC than the core region in linear mixed-effect model analysis. Red line, blue box, black whisker, and red cross indicates
median value, interquartile range, the range extending to 1.5 of the interquartile range, and outlier beyond the whisker range. Asterisk
(*) indicates the significant difference (p< 0.05, linear mixed-effect model).
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(b¼ 0.037, 95% CI: [0.023, 0.051], p< 0.001) and

vnC¼ 33.9� 20.3 ppb vs. 25.7� 20.5 ppb (b¼ 0.007,

95% CI: [0.001, 0.013], p¼ 0.017). Between MS and

HC, the clusters appear similar, consisting mainly of

GM, NAWM, and WM lesions (in MS subjects)

(Supporting Information Figure S1). MS lesions with

rim appearance tend to have distinctive clusters corre-

sponding to the rim and core regions.
The lesion volume remained a significant covariate

for OEFC (b¼�0.011, 95% CI: [�0.019, �0.003],

p¼ 0.009), but not for vnC (p¼ 0.172). The vn map

was very similar to the QSM map (not shown) with

an approximately 5 ppb difference (Figures 1 and 3).
Both HCs and MS patients generally show uniform

OEF maps except for lesions and GM/WM contrast in

vn maps (Figure 3). Compared to HCs, MS patients

had significantly lower OEF values (Figure 4) as

revealed by the linear regression model analyses:

30.4%� 3.3% vs. 21.4� 4.4% (b¼�0.099, 95% CI:

[�0.143, �0.055], p< 0.001) in whole brain, 29.9�
2.9% vs. 19.9� 4.3% (b¼�0.112, 95% CI: [�0.153,

�0.071], p< 0.001) in CGM, 31.3� 3.5% vs. 23.3�
4.3% (b¼�0.086, 95% CI: [�0.130, �0.042],

p¼ 0.001) in thalamus, 31.7� 3.0% vs. 23.3� 3.6%

(b¼�0.088, 95% CI: [�0.125, �0.051], p< 0.001) in

caudate, 31.5� 3.2% vs. 24.6� 3.9% (b¼�0.072, 95%

CI: [�0.111, �0.033], p¼ 0.002) in putamen, 31.0�

3.5% vs. 25.2� 3.4% (b¼�0.052, 95% CI: [�0.089,
�0.015], p¼ 0.012) in pallidum. Gender and age were
not significant covariates: p-values � 0.751 for gender
and � 0.738 for age.

MS patients showed significantly higher vn values in
the whole brain, �23.7� 7.0 ppb vs. �11.3� 7.7 ppb
(b¼ 0.010, 95% CI: [0.002, 0.018], p¼ 0.018) and
CGM, �23.3� 7.4 ppb vs. �7.1� 8.0 ppb ðb¼ 0.015,
95% CI: [0.007, 0.023], p¼ 0.003) than HCs (Figure
4), whereas vn values were comparable in DGM:
�12.6� 10.4 ppb vs. �12.9� 10.6 ppb (p¼ 0.599) in
thalamus, 38.7� 10.2 ppb vs. 42.2� 14.0 ppb
(p¼ 0.613) in caudate, 21.5� 13.5 ppb vs. 15.8�
16.6 ppb (p¼ 0.055) in putamen, and 86.9� 19.9 ppb
vs. 84.8� 22.8 ppb (p¼ 0.201) in pallidum. Gender
and age were not significant covariates: p-values
�0.583 for gender and �0.494 for age.

Discussion

Our feasibility study demonstrated that high-resolution
OEF maps can be extracted from mGRE data using the
QQ algorithm for the study of global and regional
tissue oxygen utilization in MS brains. We showed
for the first time an OEF increase in the rim region
compared to the core region in chronic active MS
lesions with paramagnetic rim appearance. As QSM
has become a reliable imaging tool for measuring
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Figure 3. Exemplary OEF and neural tissue susceptibility (vn) maps obtained in HC and an MS patient (disease duration, 2 years).
Pink arrow indicates a QSM rimþ lesion with a hyperintense rim consistent with iron-rich activated microglia. Brain OEF map for both
subjects appears uniform except in lesion areas.
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susceptibility changes in the brain, the ability to further

separate the contributions of blood deoxyheme iron

and neural tissue to tissue susceptibility by the QQ

algorithm has the potential to provide a more compre-

hensive picture of both tissue oxygenation status and

change in tissue iron and/or myelin content in chronic

active MS lesion.9,12–17

In QSM rimþ lesions, the rim region was found to

have significantly higher mean OEF and vn values than

the core region (Figures 1 and 2). This difference is

consistent with the histological evidence of higher den-

sity of iron-rich microglial cells in the lesion rim and

PET imaging findings showing increased overall

inflammatory activity in chronic active rim

lesions.8,12,16,57 The lower OEF observed in the core
area of these lesions is also consistent with the irrevers-

ible tissue damage seen on histopathology.8,10,57 These

promising results suggest that OEF derived from

mGRE data may serve as a sensitive marker of tissue

oxygen metabolism in QSM rimþ lesions, which can be

important for lesion status monitoring and develop-

ment of novel MS therapeutic targets.
In both HCs and MS patients, brain OEF maps

generally appear uniform except in lesions (Figure 3).

This observation is consistent with OEF maps that

were obtained by the reference standard 15O PET,58,59

which supports the presence of an equilibrium between

metabolic needs and blood flow in the resting state.59

The observed lower global OEF obtained by the QQ

algorithm in MS brains as compared to HCs (Figures 3

and 4) agrees well with the previously reported reduced

OEF in MRI,34,35,60 near-infrared spectroscopy,60 and
PET studies.61 Lower OEF may represent a unique

tissue injury mechanism underlying progressive demy-

elination and neurodegeneration in the MS brain.

Several studies have indicated that impaired mitochon-

drial function via nitric oxide overproduction likely
induces chronic oxygen deprivation in neuronal cells,

which may result in neuronal dysfunction.62–65

Compared to a previous MRI-based OEF study

using vein susceptibility modeling,35 cortical OEF

values in our study were similar for HCs, 29.9� 2.9
vs. 31.5� 3.0%, but lower for MS patients, 19.9� 4.3

vs. 28.1� 3.0%, which may be explained by the longer

disease duration of our cohort (16 vs. 8.5 years).35

Significantly lower OEF in frontal, temporal, parietal,

and occipital CGM in MS, compared to HC
(Supporting Information Figure S2), agrees with

lower OEF observed in regional cortices, e.g. sensori-

motor, parietal, and prefrontal cortex, with using the

vein susceptibility modeling.35 Furthermore, our global

OEF was lower for both HCs (30.4� 3.3 vs. 38.6�
4.1%) and patients (21.1� 4.4 vs. 32.8� 5.2%) com-

pared to a study using venous T2 modeling.34 This dis-

crepancy may be explained by the complexity in

estimating oxygenation from T2 modeling. For
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instance, performance of T2 oxygenation modeling is
strongly dependent on accurate calibration of its model
parameters.66

In DGM, MS patients have lower OEF values than
HCs (Figure 4), which may be associated with tissue
loss in those regions in MS brains.30,32,67 For instance,
the lower OEF in the thalamus, a central link for
cortical-subcortical circuits,68 may be related to tha-
lamic neuronal loss33 and atrophy,69 which are predic-
tors of long-term disability progression in MS.70

QSM sensitivity to tissue iron71–73 has been applied
to study MS brain tissue.57,74 The susceptibility values
of several deep gray nuclei (e.g. caudate and globus
pallidus) in MS brains have been reported to be
higher compared to HC.67,74 This study furthers our
understanding of QSM as it separates QSM into the
contribution of oxygen metabolism (OEF effect) and
neural tissue (vn effect). While OEF is reduced in all
deep gray nuclei of MS brains, vn is not significantly
changed compared to HC, unlike previous litera-
ture.67,74 This may be due to the longer disease dura-
tion of subjects in this study, as iron content of deep
gray nuclei in MS brains decreases as disease duration
increases, while iron content in HC brains increases or
remains stable.73,75 Additional studies may be needed
as there is no agreement in the literature on QSM
values in the thalamus and putamen in MS as com-
pared to HC.67,74

Both HC and MS showed generally higher vn in
CGM compared to WM (Figure 3). This contrast is
in line with the lower myelin and higher iron content
in CGM.76 However, compared to HC, vn was signifi-
cantly higher in the whole brain and CGM of the MS
brains, whereas OEF was lower (Figure 4). The biolog-
ical cause of higher vn in CGM remains to be elucidat-
ed, though it may be related to iron accumulation and/
or demyelination.57,77

This study has several limitations. First, the patient
cohort is small and limited to relapsing-remitting MS
with low EDSS. For instance, OEF was not significant-
ly correlated with disease duration in all the ROIs
(uncorrected p-values> 0.538, Spearman correlation
analysis) (Supporting Information Figure S3) unlike a
previously reported negative correlation.35 This may be
caused by a small number of patient cohort. Also, no
significant correlation was found between OEF and
EDSS in this study (Supporting Information Figure
S3), whereas cortical OEF negatively correlated with
EDSS in the previous venous OEF study.35 This may
be caused by a limited and low range of EDSS in this
study (0-4).

Second, HC subjects had a different gender ratio
from MS subjects which may affect the comparison
result between HC and MS. To address the lack of
female subjects in the HC group, we performed

additional analysis to compare OEF only in the male
subjects between HC (n¼ 10) and MS (n¼ 5) groups
adjusting for age. We found that the MS group still
showed significantly lower whole brain OEF than the
HC group: 30.9%� 3.2% vs. 18.7� 1.3% (b¼�0.119,
95% CI: [�0.153, �0.085], p< 0.001). Furthermore,
while females generally have lower hemoglobin concen-
tration [Hb] and higher CBF than males,78 prior liter-
ature in healthy adults shows that OEF in women is
slightly higher79 or similar80 compared to OEF in men.
These data suggest that the lower OEF observed in the
MS group with more female subjects compared to the
HC group is not driven by gender. Unfortunately, we
could not obtain [Hb] or CBF measurements in our
study.

Third, QQ has some modeling assumptions: the
random cylinder orientation of the venous microvascu-
lature in qBOLD of QQ may not be valid in MS lesions
and therefore induce bias in OEF estimations.
Although intracranial and extracranial vascular abnor-
malities have not been found in MS compared to
HC,81–83 microvascular abnormalities should be fur-
ther investigated and potentially incorporated into
QQ. Also, QQ does not consider detailed microstruc-
ture of the brain tissue including myelin, which may
lead to a bias in OEF estimation. This may be a con-
founding factor in the comparison between MS and
HC due to the demyelination and axonal loss in MS.
QQ assumes two source compartments in a voxel,
deoxyhemoglobin in venous structure and medium,
such as diffusively distributed non-blood tissue ferratin
or protein. If other structured strong sources including
myelin in WM exists, additional introvoxel field varia-
tion would be induced, which may lead to greater MRI
signal decay than the sole deoxyhemoglobin effect of
venous blood. Consequently, QQ-based OEF may be
overestimated in WM. However, in a validation study
of QQ against the reference standard 15O-PET, the
OEF difference between QQ and PET was not signifi-
cant in WM.29 This may suggest that the myelin effect
in QQ-based OEF estimation may not be significant.

Fourth, vein voxels (blood only) were treated the
same way as brain voxels (mixture of neural tissue
and blood), which could influence the accuracy of
OEF and vn estimations in large veins. This could be
mitigated by segmenting large veins; additional studies
are needed to perform accurate vein segmentation.

Fifth, different scan protocols between HC and MS
patients, e.g. longer TE range, no flow compensation,
and lower slice resolution in MS, may affect the OEF
comparison between HC and MS patients. Additional
OEF processing was performed to investigate the
effects of scan parameters on OEF comparison.
When MS data were processed using a similar TE
range (TE1/DTE/TE6¼ 4.7/4.8/28.5ms) compared to
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that of HC (TE1/DTE/TE7¼ 2.3/3.9/25.7ms), we found

lower OEF values in MS than HC, e.g. 23.0� 3.2% vs.

30.4� 3.5% for whole brain average OEF, in good

agreement with the original findings (Supporting

Information Figure S4). Lack of flow compensation

may cause large veins with high blood velocity to

shift due to mis-encoding.84 In this study, this problem

was alleviated by manually excluding the central veins

from the lesion ROI (identified and segmented by neu-

roradiologists experienced with brain QSM, S.Z., W.H,

and I.K) from the MS lesion ROI. For capillary level

vessels, flow-related issue is not expected as they exhibit

very slow blood flow of less than 1mm/sec. Spatial

resolution, which scales linearly with SNR, could

have an impact on OEF quantification. To investigate

this issue, a numerical simulation was performed to

compare OEF obtained at SNR ¼1000, 100, and 50

using CAT algorithm used in this study, and negligible

difference in mean OEF value was found.20 The CAT

may alleviate the OEF dependency on SNR by sub-

stantially improving the effective SNR through signal

averaging in clusters.20

Sixth, the medication effect has not been considered

in the statistical analysis due to the limited sample size

and variation of treatment drugs.
Seventh, though the comparison of venous oxygen-

ation in lesion draining veins and its corresponding

normal veins would be valuable to study the source

of decreased OEF in the lesion core, it is difficult to

perform because it is hard to specify the exact draining

veins and venous oxygenation estimation may be

biased due to partial volume effect. For instance, in

an additional comparison, a neuroradiologist (I.K.,

23 years of experience) identified central veins in 17

out of 80 lesions with thickness of 1�2 voxels and its

corresponding normal veins on contralateral side.

Then, venous oxygenation in the central veins was cal-

culated using mean QSM values85 and compared with

that in the normal veins. The venous oxygenation was

similar and not significantly different between the

lesion central veins and its corresponding normal

veins: 88.9� 1.5% vs. 89.1� 1.1% (b¼�0.002, 95%

CI: [�0.012, 0.009], p¼ 0.78, linear mixed-effect

model analysis). This may result from that the central

veins in MS lesions are not generally the draining veins

of the MS lesions.86 Even if the draining veins are cor-

rectly identified, its oxygenation is likely to suffer from

partial volume effect due to the limited resolution, e.g.

3mm slice thickness used in this study. A higher venous

oxygenation in the normal veins than previously

reported venous oxygenation in large veins, 89.1% vs.

63.7%,85 suggests that the central vein oxygenation

suffers from the partial volume effect.

Finally, this study used a cross-sectional design to

investigate chronic active rim lesions. We plan to per-

form longitudinal studies in our future work.
In conclusion, brain OEF mapping is feasible in MS

brains and can detect within-lesion difference between

the rim and core regions of MS lesions with QSM

hyperintense rim as well as global and regional gray

matter differences between MS and HC. OEF maps

may provide useful information on tissue oxygenation

and viability for MS monitoring and treatment.
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