
Fast Sparse Classification for Generalized Linear and Additive
Models

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

1Duke University

2University of British Columbia

Abstract

We present fast classification techniques for sparse generalized linear and additive models. These

techniques can handle thousands of features and thousands of observations in minutes, even in the

presence of many highly correlated features. For fast sparse logistic regression, our computational

speed-up over other best-subset search techniques owes to linear and quadratic surrogate cuts for

the logistic loss that allow us to efficiently screen features for elimination, as well as use of a

priority queue that favors a more uniform exploration of features. As an alternative to the logistic

loss, we propose the exponential loss, which permits an analytical solution to the line search at

each iteration. Our algorithms are generally 2 to 5 times faster than previous approaches. They

produce interpretable models that have accuracy comparable to black box models on challenging

datasets.

1 INTRODUCTION

Our goal is to produce sparse generalized linear models or sparse generalized additive

models from large datasets in under a minute, even in the presence of highly-correlated

features. Specifically, our interest is in the following problem:

min
w

∑
i = 1

n
ℓ w, xi, yi + λ0 w

0
(1)

with the logistic loss

ℓ w, xi, yi = log 1 + e−yi wTxi

or the exponential loss

jiachang.liu@duke.edu .

Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS) 2022, Valencia, Spain. PMLR:
Volume 151. Copyright 2022 by the author(s).

Code Availability
Implementations of the fast sparse classification method discussed in this paper are available at https://github.com/jiachangliu/
fastSparse.

HHS Public Access
Author manuscript
Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

Published in final edited form as:
Proc Mach Learn Res. 2022 March ; 151: 9304–9333.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jiachangliu/fastSparse
https://github.com/jiachangliu/fastSparse

ℓ w, xi, yi = e−yi wTxi

where xi ∈ ℝp is the i-th observation, and yi ∈ {−1, 1} is the label of the i-th data sample.

The logistic loss tends to yield nicely calibrated probability estimates, which explains its

broad appeal. The exponential loss, used in boosting, has been overlooked as an approach

to sparse additive modeling, but like logistic regression, it also yields direct probability

estimates. It has the advantage of analytical solutions for line search, dramatically improving

convergence rates.

A small ℓ2 regularization is used with the logistic loss to speed up convergence, as discussed

later:

min
w

∑
i = 1

n
ℓ w, xi, yi + λ0 w

0
+ λ2 w

2

2
. (2)

We do not include ℓ1: since we are looking for very sparse and accurate models,

ℓ1 regularization would degrade the quality of the solution compared to true sparsity

regularization with ℓ0. The ℓ0 penalty term makes Problems (1) or (2) NP-hard.

Problems (1) or (2) can produce generalized additive models (Lou et al., 2016; Hastie

and Tibshirani, 2017; Nori et al., 2019; Rudin et al., 2022) through a transformation of

the input variables, replacing each continuous feature x·,j with a set of dummy variables

x ⋅ , j, θ = 1[x ⋅ , j ≥ θ], for θ set to be each realized value of feature j in the dataset. Then,

solving (1) or (2) yields a generalized additive model where component function j is a sum

of the weighted dummy variables for feature j. This transformation yields a large feature set

with many correlated features, but the approaches provided here can handle such sizes.

There are at least two general approaches for tackling these problem (besides relaxing the

ℓ0 term to ℓ1 and suffering the associated bias). The first uses call-backs to a mathematical

programming solver, such as a mixed-integer programming (MIP) solver (Sato et al., 2016;

Ustun and Rudin, 2017; Sato et al., 2017; Bertsimas and King, 2017; Bertsimas et al., 2021;

Ustun and Rudin, 2019). This approach can solve the problem exactly. However, it cannot

handle large feature spaces or highly-correlated features. A solver might take several days or

run out of memory on even a modestly-sized problem. The second approach to Problems (1)

or (2) is to use coordinate descent with local swap operations for best subset search, similar

to simulated annealing, Metropolis-Hastings, or other MCMC methods (Metropolis et al.,

1953; Kirkpatrick et al., 1983; Del Moral et al., 2006). Our approach is of this second type,

though it is important to note that a solution from our method could be used as a warm-start

for one of the MIP solvers; a better warm-start is the key to finding optimal solutions faster

with MIP.

There are two main steps per iteration in these types of algorithms: (i) coordinate descent

steps involving a line search along the objective function, often using a local surrogate

Liu et al. Page 2

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

function, and (ii) local swaps, where the support set (the set of features permitted to have

nonzero coefficients) changes over iterations. Our work advances both of these steps over

previous work. For (i), we show that a natural surrogate for the logistic loss used in previous

work leads to inefficiency, in that its step sizes are provably too conservative. We propose a

more aggressive step. This opens up the possibility of using cutting planes or quadratic cuts.

Cuts often help us rapidly prune the search space: by comparing the lower bound from the

cuts with the current best loss, we are often able to prove that there is no possible step size

we could take that would reduce our objective, in which case we will try a more promising

direction in the search space. The ℓ2 penalty term permits us to use quadratic cuts. When

we do not want the ℓ2 term (i.e., λ2 = 0), we can use cutting planes. For (ii), we find that

the order in which we evaluate features plays an important role, which has been previously

overlooked. We use a priority queue to dynamically manage the order of evaluating features.

The priority queue discourages us from checking features that are unlikely to change the

model’s support set, making the process of finding high-quality solutions more efficient.

In addition, for (i), improving the speed of the coordinate descent steps, we propose to

use the exponential loss, which has a major advantage over the logistic loss in that the

line search taken at each coordinate descent iteration has an analytical solution. Another

appealing property of the exponential loss is that its probabilistic interpretation is extremely

similar to that of logistic regression. Also, minimizing the exponential loss is known to

provably maximize a proxy for the Area Under the ROC Curve (Ertekin and Rudin, 2011),

making it an ideal choice for this problem.

Our contributions are:

1. We prove that previous work on surrogate loss optimization yields step sizes that

are too conservative (Theorem 4.1).

2. When λ2 = 0, we propose a linear cutting plane algorithm that prunes the search

space by efficiently determining whether adding a feature could potentially

reduce the objective.

3. With a small amount of ℓ2 regularization, we propose a quadratic cut algorithm

giving a tighter lower bound than the linear cutting plane algorithm.

4. We propose a method using the exponential loss, which is cleaner and simpler.

5. For more efficient best subset search, we use a priority queue to dynamically

manage the order of checking features.

Our algorithms provide a dramatic improvement over previous approaches, often achieving

the same results in less than half the time, and are able to produce models for thousands of

features and observations in seconds. For instance, on the challenging FICO dataset from the

2018 Explainable Machine Learning Challenge, which, after the transformation to dummy

variables, has 1,917 dummy features and 10K observations, we produce a generalized

additive model of 19 total dummy variables, with performance comparable to black-box

performance, in under 5 seconds.

Liu et al. Page 3

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2 BACKGROUND

Coordinate descent is popular in machine learning. Other techniques that use variations of it

include AdaBoost (Freund and Schapire, 1997) and Sequential Minimal Optimization used

for support vector machines (Platt, 1998). Surrogate functions are also common, e.g., they

are used by Expectation Maximization (Dempster et al., 1977). We begin with background,

following Patrascu and Necoara (2015) and Dedieu et al. (2021).

The loss function in Problem (2) can be rewritten as:

ℒ(w) = G(w) + λ0 w 0,

with G(w) = ∑i = 1
n log 1 + exp −yi xiTw + λ2 w 2

2.

Let us optimize ℒ(w) along coordinate j starting at point wt at iteration t. Let ∇jG(wt) denote

the j-th component of the gradient of G(wt), and let Lj be the Lipschitz constant for ∇jG(wt).

For any d ∈ ℝ:

∇jG wt + ejd − ∇jG wt ≤ Lj d

where ej is a vector with all components equal to 0 except for the j-th component, which is

equal to 1. A surrogate upper bound on G(wt + ejd) is thus:

G wt + ejd ≤ G wt + d∇jG wt + 1
2Ljd2 . (3)

Instead of minimizing the original loss function with respect to coordinate j (as would be

typical in coordinate descent), we can minimize this quadratic upper bound with the new

coefficient wj
t + 1 = wjt + d:

wj
t + 1 ∈ arg min

u
G wt + u − wjt ∇jG wt + 1

2Lj u − wjt
2 + λ01u ≠ 0 .

Following previous work (Dedieu et al., 2021), we have an analytical solution for the above

problem:

wj
t + 1 = T (j, w) = c, if c ≥ 2λ0

Lj + 2λ2
0, otherwise

(4)

where c = Lj/ Lj + 2λj wjt − ∇jG wt /Lj .

If a solution cannot be improved by coordinate descent using this surrogate and thresholding

function, we say this solution is surrogate 1-OPT, meaning that no single coordinate can be

changed to improve the objective when using this surrogate for the line search.

Liu et al. Page 4

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As discussed earlier, local swap, add, and remove operations are useful for best subset

search and other local search problems. These govern the support of the coefficient vector,

determining which coefficients are permitted to be nonzero. We use S to denote the

support of the feature vector; that is, the set of features that are permitted to have nonzero

coefficients. We can swap some features in the current support, denoted by S1 ⊆ S, for

other features not in the support, denoted by S2 ⊆ Sc. After each swap, we optimize the

coefficients that are permitted to be nonzero.

To reduce computational cost, while evaluating a possible swap, we use an approximate

evaluation procedure where we update only the coefficients of the swapped features and

keep coefficients of other unswapped features fixed. If such a swap leads to a better loss,

we add S2 to the support, remove S1 from the support, and update all coefficients for the

features in the new support. We will focus on single feature swaps (i.e. |S1| = |S2| = 1) in

this work. If no allowed swap appears to improve the loss, then we call the solution a swap
1-OPT solution.

3 OVERVIEW OF FAST SPARSE LOGISTIC REGRESSION

Let us focus on the logistic loss. Given an initial solution, we optimize one feature’s

coefficient at a time, and swap features within the support set to improve the solution. Our

technique evaluates whether it could be worthwhile to swap two features. It is based on a

theorem showing that thresholding from (4) yields step sizes that are too conservative. Using

this information, we develop an algorithm that uses quadratic cuts. Typically, cutting planes

(Kelley, 1960) are used in mathematical programming solvers, whereas here, we use cuts as

part of efficient feature elimination within coordinate descent. Our second technique uses

a priority queue to manage the search order for pairs of features to swap. At each outer

iteration, we drop a feature j in the support and at each inner iteration, we evaluate adding a

feature j′. The full pseudocode is in Appendix B. The main steps are:

1. Remove and find alternatives. According to the priority queue, try removing

feature j from the current support. Find J′ features outside the support as

alternatives for feature j. These alternative features are picked according to

orthogonal matching pursuit (Lozano et al., 2011). For each feature j′ ∈ J′, we

evaluate whether it is worthwhile to include it in our support as a replacement of

feature j. This is done using the following procedures.

2. Aggressive step. Given a new feature j′ that we may want to include in our

support, we wish to find two values on opposite sides of the optimal coefficient

wj′*. However, at current value wj′, the thresholding results stay on a single

side of the optimal value (as we will prove in Theorem 4.1). Thus, we take an

aggressive step by going double the distance suggested by thresholding, or triple

the distance if necessary. If this triple-sized step does not get to the opposite side

of wj′*, we iteratively apply thresholding (4) to get a near-optimal coefficient and

move to Step 6.

3. Binary search. Suppose we have found two values a and b on opposite sides

of wj′*. We then perform one binary search step to get a point closer to wj′* by

Liu et al. Page 5

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

setting c to be the midpoint, c = 1
2 (a + b). If c is on the same side of a, we replace

a with c; if not, we replace b with c. We use quadratic cuts (via the Quadratic Cut
Bound, Theorem 4.3) at points a and b to obtain a lower bound on the objective

for the optimal coefficient of the feature. In the case of no ℓ2 regularization, we

use cutting planes instead. More detail on this is in the next section.

4. Eliminate. If the lower bound is larger than the current best loss we have

encountered so far, the new feature can be eliminated from consideration; we do

not add this feature into our support. We move onto the next possible feature and

start again from Step 2.

5. Line search. If the lower bound is smaller than the current best loss we have

encountered, then feature j′ could lead to a better solution. Therefore, we

iteratively use thresholding (4) to obtain a near-optimal coefficient for the line

search. (Alternatively, we could continue binary search for the minimum.)

6. Complete the step. We then calculate the loss with respect to this near-optimal

coefficient for the line search. If the loss is higher than the current best loss, we

eliminate this feature and move to the next best alternative feature; if the loss is

lower, we add this new feature j′ into the support to make up for the removed

feature j and optimize all of the coefficients, completing a successful swap step.

7. Update priority queue. If no alternative feature can replace feature j, we add

feature j back into the support and rate feature j less promising in our priority

queue. This allows us to explore features that have a better chance of being

swapped with an alternative feature next time.

4 SURROGATE QUADRATIC CUTS

Let us provide the theorem motivating our coordinate descent method for the logistic loss,

which shows that the step sizes from thresholding in (4) are too conservative. Recall that

thresholding is derived by minimizing a quadratic upper bound of the loss function. The

coefficient of the quadratic function is the Lipschitz constant, which defines the maximum

curvature the loss function can achieve. These connections imply:

Theorem 4.1. (Thresholding is too conservative.) Let wt be the current solution at iteration

t, wjt be the coefficient for the j-th feature, and let wj* be the optimal value on the j-th

coefficient while keeping all other coefficients fixed to their values at time t. Furthermore,

let wt + 1 = wt + ej T j, wt − wjt , where ej is a vector with 1 on the j-th component and 0

otherwise and T (j, wt) is the thresholding operation with the support set fixed (i.e., λ0 = 0).
Then we have the following inequalities:

∇jG wt ∇jG wt + 1 ≥ 0, (5)

wjt − wj* wj
t + 1 − wj* ≥ 0, (6)

Liu et al. Page 6

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and G wt ≥ G wt + 1 . (7)

This result shows that the thresholding operation will move the coefficient of the j-th feature

closer to the optimal value wj* with a smaller loss value, as shown by (7). However, the

coefficients before and after the thresholding operation will always remain on the same side
of wj*, as shown by either (6) or (5). To see this, consider (6). We have two scalars of the

same sign: wjt − wj* and wj
t + 1 − wj*. If wj

t + 1 were on the opposite side of w* than wjt, the

product of these two scalars would instead be negative. Alternatively, by (5), if the slope of

G at wt is negative, the slope at wt+1 is also negative, indicating that we have not yet passed

the minimum (of our convex logistic loss). Thus, this theorem indicates that the step size

provided by the surrogate is too conservative; the distance is always too small to reach wj*.

Figure 1 (left) illustrates this issue. The algorithm may make several steps before becoming

sufficiently close to wj*.

Our technique chooses an aggressive step size that takes us beyond wj*, in order to use cuts

to produce a lower bound on the loss at w*. If the lower bound is too high, we can exclude

the feature all together.

The first type of cut we introduce is classical cutting planes, which provide a linear lower

bound on the loss. This can be used even if we have only ℓ0 regularization on the logistic

loss (i.e., if λ2 in (2) is 0). With an additional ℓ2 penalty term, we can obtain a strictly

tighter lower bound on the loss, yielding quadratic cuts. We introduce both types of cuts

next, starting with cutting planes.

Theorem 4.2. (Classical cutting planes, not novel to this paper) Suppose f(x) is convex and
differentiable on domain ℝ. Let α1 and α2 be slopes of tangent lines of f(x) at locations x1

and x2. If α1α2 ≤ 0, there is a lower bound on the optimal value f(x*):

f x* ≥ α1f x2 − α2f x1 + α1α2 x1 − x2
α1 − α2

. (8)

This method originates from a first-order approximation of function f(x). Figure 1(b) shows

linear cuts.

With an additional ℓ2 penalty term, we can obtain a strictly tighter lower bound on the loss

via quadratic cuts. The ℓ2 term makes G(w) strongly convex, which means for any two points

w and w′ in the domain:

G w′ ≥ G(w) + ∇G w T w′ − w + λ2 w′ − w 2
2 .

Using this strongly convex property, we can tighten the lower bound given in Theorem 4.2

as follows:

Liu et al. Page 7

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Theorem 4.3. (Quadratic Cut Bound) Suppose f(x) is strongly convex and differentiable
over ℝ with λ2 for the coefficient of the quadratic term. Let α1 be the slope of the tangent
line to f(x) at location x1. Then, there is a lower bound on the optimal value f(x*):

f x* ≥ ℒlow ≔ f x1 −
α1

2

4λ2
. (9)

Let α2 be the slope of the tangent line to f(x) at another location x2. If α1α2 ≤ 0, a lower
bound on the optimal value f(x*) is as follows:

f x* ≥ ℒlow ≔ f(x) + α1 x − x1 + λ2 x − x1
2, (10)

x =
−f x1 + f x2 + α1x1 − α2x2 − λ2 x1

2 − x2
2

α1 − α2 − 2λ2 x1 − x2
.

Since this method originates from a second-order approximation of the function f(x), we

name this bound the Quadratic Cut Bound. Either this bound or cutting planes helps us

decide when not to include a potential feature in our support, even without knowing its

optimal coefficient from the line search.

5 FAST SPARSE CLASSIFICATION WITH EXPONENTIAL LOSS

Let us now switch from logistic loss to the exponential loss, optimizing:

min
w

 ∑
i = 1

n
exp −yiwTxi + λ0 w

0
.

Though exponential loss typically is not used for sparse classification, it has no clear

disadvantages over the logistic loss and even has several advantages. First we point out that

exponential loss and logistic loss have remarkably similar probabilistic interpretations under

the assumption that we have captured the correct set of features. While logistic regression

estimates conditional probabilities as P logistic (y = 1 ∣ x) = ef(x)
1 + ef(x) where f(x) = wTx, the

exponential loss has almost the same probabilistic model: Pexp loss(y = 1 ∣ x) = e2f(x)
1 + e2f(x) .

Thus, both loss functions are equally relevant for modeling conditional probabilities.

The main benefit of exponential loss is that it has an analytical solution for the line
search at each iteration when features are binary (−1 and 1). This avoids the necessity

for cutting planes, quadratic cuts, or even surrogate upper bounds. Following the derivation

of AdaBoost as a coordinate descent method (Schapire and Freund, 2013), its line search

solution follows the formula 1
2 ln

1 − d−
d−

, where d− indicates the weighted misclassification

error of the feature chosen at iteration t (here we are interpreting each weak classifier as an

individual feature, and the weak learning algorithm picks one of these features per iteration).

Liu et al. Page 8

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

AdaBoost’s weight update step avoids calculation of the exponential loss at each iteration,

and the full procedure is extremely efficient. (The main difference between our method and

this reduced version of AdaBoost is that AdaBoost is not designed to yield sparse models.)

In the following theorem, we provide a condition under which our method would decline

to add a new feature at iteration t, because it does not provide an overall benefit to our

objective. We use zi ∈ ℝp with zi = yixi to succinctly represent the product between yi and xi.

The objective can be then rewritten as:

min
w

H(w) + λ0 w 0

where H(w) = 1
n ∑i = 1

n exp −wTzi .

Theorem 5.1. Let wt be the coefficient vector at iteration t, Ht ≔ H(wt) and λ0 be the
regularization constant for the ℓ0 penalty. For the j-th coordinate, we update the coefficient
according to:

1. Suppose wjt = 0. Let d− = ∑i:zij = − 1ci/∑i = 1
n ci, with ci = exp(−(wt)Tzi). If d− is

within the interval:

1
2 − 1

2Ht λ0 2Ht − λ0 , 1
2 + 1

2Ht λ0 2Ht − λ0 ,

then set wj
t + 1 to 0. Otherwise set wj

t + 1 = 1
2 ln

1 − d−
d−

.

2. Suppose wjt ≠ 0. Let D− = ∑i:zij = − 1ci/∑i = 1
n ci, with ci = exp − wt − wjtej

Tzi .

Let H¬j
t = H wt − wjtej . If D− is within the interval:

1
2 − 1

2H¬jt λ0 2H¬jt − λ0 , 1
2 + 1

2H¬jt λ0 2H¬jt − λ0 ,

then set wj
t + 1 to 0. Otherwise, set wj

t + 1 = 1
2 ln

1 − D−
D−

.

Another potential benefit of the exponential loss is that it is a surrogate for the AUC, i.e.,

Area Under the ROC Curve (Ertekin and Rudin, 2011). Thus, we have reason to expect good

AUC performance when optimizing the exponential loss.

6 DYNAMIC FEATURE ORDERING

Now that we can optimize along the coordinates using either logistic loss (Sections 3 and 4)

or exponential loss (Section 5), we discuss the important swap steps that help the algorithm

drop features that have promising swap candidates. As stated in Section 3, after coordinate

descent is run until a local minimum is reached, we alternate between coordinate descent

Liu et al. Page 9

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

steps and swap steps. The technique proposed here is broadly applicable and can improve

the speed not only for the logistic loss and the exponential loss but also for the squared loss

in linear regression (see Appendix D.1).

We focus on the swap 1-OPT solutions (i.e., |S1| = |S2| = 1). The order of checking features

in S1 for possible swaps is key to improving the efficiency. Instead of checking features

in S1 sequentially based on feature indices (Dedieu et al., 2021), we dynamically order

these features via a priority queue. We provide an example in Figure 2 to illustrate the key

difference between the two approaches.

Suppose we have an initial solution with support on features 1, 3, 7, 9, 11, and 15, and

features 3 and 9 are suboptimal. We can swap feature 3 with feature 5 and feature 9 with

feature 10 to get a lower total loss. The first method checks features sequentially and always

starts from the first index in the support after a successful swap. The algorithm terminates

if we have checked all features without making any swaps. This method implicitly assumes

that each feature in the support has an equal probability of having a successful swap.

However, a feature that has not been swapped for many iterations is likely to be important

and therefore unlikely to be swapped in the near future. It is better to check more promising

features first.

To achieve this, we record how many times a feature has failed to swap. The features are

ranked in ascending order of the number of failure times. Features that have never been

checked are kept at the top of our priority queue. This local search process terminates when

all features have been evaluated (i.e., the full priority queue) without making a successful

swap. This accelerates the process to reach a swap 1-OPT solution.

7 EXPERIMENTS

Our evaluation answers the following questions: (1) How well do our early pruning

technique, priority queue ordering, and proposed exponential loss perform in terms of run

time relative to the state-of-the-art? (§7.1) (2) How well do our methods perform in terms

of AUC, accuracy, and sparsity relative to state-of-the-art algorithms on simulated and real

datasets? (§7.2)

We compare our methods to ℓ1 regularized logistic regression (LASSO) via the glmnet
package (Friedman et al., 2010), MCP via the ncvreg package (Breheny and Huang, 2011),

and L0Learn (Dedieu et al., 2021). We use the fast C++ linear algebra libraries of L0Learn

in our implementation. For all datasets, we run 5-fold cross validation and report the mean

and standard deviation. Appendix C presents the experimental setup, datasets, and evaluation

metrics, and Appendix D presents additional experimental results. Our methods are denoted

as LogRegQuad-L0 (logistic loss and quadratic cuts) and Exp-L0 (exponential loss).

7.1 Computational Efficiency

To examine the impact of the quadratic cuts and dynamic ordering, we first run our

algorithm with only quadratic cuts and then enable dynamic ordering on the FICO dataset

from the Explainable Machine Learning Challenge (FICO et al., 2018). We also run this

Liu et al. Page 10

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

experiment using Exp-L0. L0Learn is used as a baseline. (MCP and LASSO use continuous

regularization terms, which provides them with a run-time advantage, though these methods

do not perform as well, as shown in the next subsections.) The ℓ0 parameters we used are

{0.8, 1, 2, 3, 4, 5, 6, 7} and the ℓ2 parameters used are {0.00001, 0.001}.

Figure 3 shows the training time and AUC values on the FICO dataset. The methods achieve

performance comparable with Chen et al. (2021), who reported best black-box AUC ~0.8.

Our method using only linear cuts (purple bars) runs faster than the baseline (orange bars,

L0Learn) for all regularization options. With ℓ2 regularization coefficient λ2 = 0.001, the

time is reduced when we switch from using linear cuts to quadratic cuts (green bars) due to

the tighter lower bound, as in Figure 1. The training time is further reduced by using both

quadratic cuts and dynamic ordering (blue bars, which is LogRegQuad-L0). Exp-L0 (red
bars) is the fastest approach. Again, this speed-up owes to the analytical line search and fast

update.

From the four rightmost subfigures, we find that our improvement in training time does not

negatively impact training/test AUC scores, as our methods (red and blue dots) form a “left

frontier” with respect to the baseline L0Learn (orange dots). Results for additional datasets

are in Appendix D.2.

7.2 Solution Quality

We next evaluate sparsity vs. performance. In addition to AUC on the datasets, we calculate

Recovery-F1 score to measure how well we captured the ground truth support (ground

truth coefficients w* are known for simulated datasets). Recovery-F1 score is 2PR
P + R , where

P = supp(w) ∩ supp w* / supp(w) is the precision and R = supp(w) ∩ supp w* / supp w* is

the recall. supp(·) stands for the support (indices with nonzero coefficients) of a solution. We

can use Recovery-F1 score for synthetic data only, since we need to know w* to calculate it.

Synthetic Data: Figure 4 shows sparsity/AUC tradeoffs and sparsity/Recovery-F1

tradeoffs on a synthetic dataset consisting of highly correlated features. Our methods are

generally tied for the best results. LASSO (pink curves) and MCP (green curves) do not

fully optimize the AUC, nor recover the correct support. For the full regularization path,

the AUC’s of L0Learn and our method largely overlap. However, as demonstrated in the

previous subsection, our method runs much more quickly than L0Learn.

Since the features for this synthetic dataset are continuous (and we chose not to binarize

them), Exp-L0 cannot be applied; its advantage comes from exploiting its analytical line

search for binary features.

Real Datasets: Figure 5 shows sparsity-AUC tradeoffs and sparsity-accuracy tradeoffs

on the COMPAS and NETHERLANDS datasets. LASSO and MCP do not achieve high

prediction accuracy on training and test sets. L0Learn and our proposed methods have

higher AUC and accuracy. Again, while L0Learn and our methods are tied for the best

performance (which could be the optimal possible performance for this problem), our

methods have major advantages in speed. More results are in Appendix D.3.

Liu et al. Page 11

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

8 RELATED WORK

Mixed Integer Optimization.

There have been many approaches to finding the optimal solution to logistic regression

either with an ℓ0 regularization or cardinality constraint (Sato et al., 2016, 2017; Ustun

and Rudin, 2017; Bertsimas and King, 2017; Bertsimas et al., 2021; Sakaue and Marumo,

2019; Ustun and Rudin, 2019). In general, these approaches formulate the problem as a

mixed-integer optimization problem (see Bertsekas, 1997; Wolsey and Nemhauser, 1999).

The problem can then be solved using branch-and-bound search (see Land and Doig, 2010)

or cutting-plane methods (Kelley, 1960; Gilmore and Gomory, 1961, 1963). However, even

with the recent advances in hardware and software, MIP solvers are orders of magnitude

slower than the methods we consider here and requires relatively large ℓ2 regularization to

work well (Bertsimas et al., 2021; Dedieu et al., 2021).

Gradient-based Heuristic Methods.

One of the most widely used methods to promote sparsity is LASSO (Tibshirani, 1996),

which relaxes the ℓ0 penalty to ℓ1. However, ℓ1 simultaneously promotes sparsity and shrinks

the coefficients, leading to bias. Several new methods obtain solutions under cardinality

constraints or ℓ0 penalty terms. One method is Orthogonal Matching Pursuit (OMP) (Lozano

et al., 2011; Elenberg et al., 2018), which greedily selects the next-best feature based on

the current support and gradients on coefficients. Other methods include Iterative Hard

Thresholding (IHT) (Blumensath and Davies, 2009), coordinate descent (Beck and Eldar,

2013; Patrascu and Necoara, 2015; Dedieu et al., 2021), GraSP (Bahmani et al., 2013), and

NHTP (Zhou et al., 2021). These methods enjoy fast computation, but their solutions suffer

when the feature dimension is high or features are highly correlated because they can get

stuck at local minima (Dedieu et al., 2021).

Local Feature Swaps.

Some recent work considers swapping features on a given support. One such example

is ABESS (Zhu et al., 2020; Zhang et al., 2021), which ranks features based on their

contribution to the loss objective. Then, they swap only unimportant features in the support

with features outside the support. Our experiments show that ABESS often returns “nan”

values for its coefficients, thus in its current form was not able to be included in our

experiments. Another work is L0Learn (Hazimeh and Mazumder, 2020; Dedieu et al., 2021),

which exhaustively tries replacing every feature in the support with better features.

To the best of our knowledge, our work is the first where quadratic cuts (or exponential loss)

and dynamic ordering have been used for sparse classification.

9 CONCLUSION

We have shown substantial speedups over other techniques for best subset search for

probabilistic models with high-quality solutions. Our advances are due to several key ideas:

(1) the use of cutting planes and quadratic cuts to form lower bounds, telling us when

exploring a feature further is not worthwhile, (2) the use of the exponential loss, which has

Liu et al. Page 12

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

an analytical form, obviating the manipulations needed for logistic loss, (3) the use of a

priority queue with a useful ordering function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We acknowledge support from the U.S. National Institutes of Health under NIDA grant DA054994-01, and the
National Science Foundation under grant DGE-2022040. We also acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References

Bahmani Sohail, Raj Bhiksha, and Boufounos Petros T. Greedy sparsity-constrained optimization.
Journal of Machine Learning Research, 14 (Mar):807–841, 2013.

Beck Amir and Eldar Yonina C. Sparsity constrained nonlinear optimization: Optimality conditions
and algorithms. SIAM Journal on Optimization, 23(3): 1480–1509, 2013.

Bertsekas Dimitri P. Nonlinear programming. Journal of the Operational Research Society, 48(3):334–
334, 1997.

Bertsimas Dimitris and King Angela. Logistic regression: From art to science. Statistical Science,
pages 367–384, 2017.

Bertsimas Dimitris, Pauphilet Jean, and Van Parys Bart. Sparse classification: a scalable discrete
optimization perspective. Machine Learning, 110(11):3177–3209, 2021.

Blumensath Thomas and Davies Mike E. Iterative hard thresholding for compressed sensing. Applied
and Computational Harmonic Analysis, 27(3):265–274, 2009.

Breheny Patrick and Huang Jian. Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection. Annals of Applied Statistics, 5(1):232–253, 2011.
[PubMed: 22081779]

Chen Chaofan, Lin Kangcheng, Rudin Cynthia, Shaposhnik Yaron, Wang Sijia, and Wang Tong.
A holistic approach to interpretability in financial lending: Models, visualizations, and summary-
explanations. Decision Support Systems, page 113647, 2021.

Daubechies Ingrid, Defrise Michel, and De Mol Christine. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):1413–
1457, 2004.

Dedieu Antoine, Hazimeh Hussein, and Mazumder Rahul. Learning sparse classifiers: Continuous and
mixed integer optimization perspectives. Journal of Machine Learning Research, 22(135):1–47,
2021.

Del Moral Pierre, Doucet Arnaud, and Jasra Ajay. Sequential monte carlo samplers. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

Dempster Arthur P, Laird Nan M, and Rubin Donald B. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22,
1977.

Elenberg Ethan R, Khanna Rajiv, Dimakis Alexandros G, and Negahban Sahand. Restricted strong
convexity implies weak submodularity. The Annals of Statistics, 46(6B):3539–3568, 2018.

Ertekin Şeyda and Rudin Cynthia. On equivalence relationships between classification and ranking
algorithms. Journal of Machine Learning Research, 12:2905–2929, 2011.

FICO, Google, Imperial College London, MIT, University of Oxford, UC Irvine, and UC
Berkeley. Explainable Machine Learning Challenge. https://community.fico.com/s/explainable-
machine-learning-challenge, 2018.

Liu et al. Page 13

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge

Freund Yoav and Schapire Robert E. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Friedman Jerome, Hastie Trevor, and Tibshirani Robert. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. [PubMed:
20808728]

Friedman Jerome H. Greedy function approximation: a gradient boosting machine. Annals of
Statistics, pages 1189–1232, 2001.

Gilmore Paul C and Gomory Ralph E. A linear programming approach to the cutting-stock problem.
Operations Research, 9(6):849–859, 1961.

Gilmore Paul C and Gomory Ralph E. A linear programming approach to the cutting stock problem—
part ii. Operations Research, 11(6):863–888, 1963.

Hastie Trevor J and Tibshirani Robert J. Generalized additive models. Routledge, 2017.

Hazimeh Hussein and Mazumder Rahul. Fast best subset selection: Coordinate descent and local
combinatorial optimization algorithms. Operations Research, 68(5):1517–1537, 2020.

Kelley James E Jr. The cutting-plane method for solving convex programs. Journal of the Society for
Industrial and Applied Mathematics, 8(4):703–712, 1960.

Kirkpatrick Scott, Gelatt C Daniel, and Vecchi Mario P. Optimization by simulated annealing. Science,
220(4598):671–680, 1983. [PubMed: 17813860]

Land Ailsa H and Doig Alison G. An automatic method for solving discrete programming problems.
In 50 Years of Integer Programming 1958–2008, pages 105–132. Springer, 2010.

Larson J, Mattu S, Kirchner L, and Angwin J. How we analyzed the COMPAS recidivism algorithm.
ProPublica, 2016.

Lou Yin, Bien Jacob, Caruana Rich, and Gehrke Johannes. Sparse partially linear additive models.
Journal of Computational and Graphical Statistics, 25(4):1126–1140, 2016.

Lozano Aurelie, Swirszcz Grzegorz, and Abe Naoki. Group orthogonal matching pursuit for logistic
regression. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 452–460, 2011.

Metropolis Nicholas, Rosenbluth Arianna W, Rosenbluth Marshall N, Teller Augusta H, and Teller
Edward. Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953.

Nori Harsha, Jenkins Samuel, Koch Paul, and Caruana Rich. Interpretml: A unified framework for
machine learning interpretability. arXiv preprint arXiv:1909.09223, 2019.

Patrascu Andrei and Necoara Ion. Random coordinate descent methods for ℓ0 regularized convex
optimization. IEEE Transactions on Automatic Control, 60 (7):1811–1824, 2015.

Platt John. Sequential minimal optimization: A fast algorithm for training support vector machines.
Technical Report MSR-TR-98–14, April 21 1998.

Rudin Cynthia, Chen Chaofan, Chen Zhi, Huang Haiyang, Semenova Lesia, and Zhong Chudi.
Interpretable machine learning: Fundamental principles and 10 grand challenges. Statistics
Surveys, 16:1–85, 2022.

Sakaue Shinsaku and Marumo Naoki. Best-first search algorithm for non-convex sparse minimization.
arXiv preprint arXiv:1910.01296, 2019.

Sato Toshiki, Takano Yuichi, Miyashiro Ryuhei, and Yoshise Akiko. Feature subset selection for
logistic regression via mixed integer optimization. Computational Optimization and Applications,
64(3):865–880, 2016.

Sato Toshiki, Takano Yuichi, and Miyashiro Ryuhei. Piecewise-linear approximation for feature subset
selection in a sequential logit model. Journal of the Operations Research Society of Japan,
60(1):1–14, 2017.

Schapire Robert E and Freund Yoav. Boosting: Foundations and algorithms. Kybernetes, 2013.

Tibshirani Robert. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Tollenaar Nikolaj and Van der Heijden PGM. Which method predicts recidivism best?: a comparison
of statistical, machine learning and data mining predictive models. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 176(2):565–584, 2013.

Liu et al. Page 14

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ustun Berk and Rudin Cynthia. Optimized risk scores. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1125–1134, 2017.

Ustun Berk and Rudin Cynthia. Learning optimized risk scores. J. Mach. Learn. Res, 20:150–1, 2019.

Wolsey Laurence A and Nemhauser George L. Integer and Combinatorial Optimization, volume 55.
John Wiley & Sons, 1999.

Zhang Yanhang, Zhu Junxian, Zhu Jin, and Wang Xueqin. Certifiably polynomial algorithm for best
group subset selection. arXiv preprint arXiv:2104.12576, 2021. Code version: December 8, 2021.

Zhou Shenglong, Xiu Naihua, and Qi Hou-Duo. Global and quadratic convergence of newton hard-
thresholding pursuit. J. Mach. Learn. Res, 22(12): 1–45, 2021.

Zhu Junxian, Wen Canhong, Zhu Jin, Zhang Heping, and Wang Xueqin. A polynomial algorithm for
best-subset selection problem. Proceedings of the National Academy of Sciences, 117(52):33117–
33123, 2020.

Liu et al. Page 15

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
(a) We repeatedly apply coordinate descent until convergence to get the optimal coefficient

(shown by the red star) and then calculate the loss. (b) We calculate a lower bound of the

optimal loss by constructing two cutting planes. We can rule out the new feature if the lower

bound of the loss from the cutting planes is larger than the best current loss. (c) Quadratic

cuts (in red) form the lower bound instead and are tighter.

Liu et al. Page 16

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Sequential Ordering vs. Dynamic Ordering. Upper: We check each feature sequentially.

Whenever we find a better feature, we always start from the beginning to find the next

possible swap. Lower: We order the list, checking the feature that has failed the least amount

of times first. We hold off checking less promising features until the end, saving substantial

computational time.

Liu et al. Page 17

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Computational times of different methods. “Exp” stands for exponential loss, “LogReg”

stands for logistic loss, “LinCut” stands for linear cuts, and “Quad” stands for quadratic

cuts. Note that there is no ℓ2 penalty for the exponential loss. Our Exp-L0 method is
generally about 4 times faster than L0Learn. Note that the AUC axes indicate practically

similar performance for these particular methods; the training time is what differentiates the

methods. Additionally, when the ℓ2 penalty increases from λ2 = 1e − 05 to λ2 = 0.001, there

is a computational speedup from using the linear cut to the quadratic cut due to the tighter

lower bound.

Liu et al. Page 18

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Results from all 5 datasets (each dataset generated by a different random seed) and

parameter choices on highly correlated synthetic datasets. The parentheses contain the best

Recovery-F1 scores averaged over all 5 datasets. MCP is shown with γ fixed at 1.5 and

25, and all other choices for γ lie between the shown regions. Our methods and L0Learn

outperfom MCP and LASSO in terms of the AUC (left and middle), and better recover

the true support (right). L0Learn’s performance heavily overlaps with our methods. Our

methods have a computational advantage over L0Learn as shown in the last section.

Liu et al. Page 19

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Results from all folds and parameter choices on real datasets: COMPAS and

NETHERLANDS. We can see from the first and second columns (training and test

accuracies) that MCP and LASSO do not perform well. Our methods and L0Learn

(overlapping) outperform all other methods. Our methods are more computationally efficient

than L0Learn.

Liu et al. Page 20

Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	INTRODUCTION
	BACKGROUND
	OVERVIEW OF FAST SPARSE LOGISTIC REGRESSION
	SURROGATE QUADRATIC CUTS
	FAST SPARSE CLASSIFICATION WITH EXPONENTIAL LOSS
	DYNAMIC FEATURE ORDERING
	EXPERIMENTS
	Computational Efficiency
	Solution Quality
	Synthetic Data:
	Real Datasets:

	RELATED WORK
	Mixed Integer Optimization.
	Gradient-based Heuristic Methods.
	Local Feature Swaps.

	CONCLUSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:

