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Abstract

We present fast classification techniques for sparse generalized linear and additive models. These 

techniques can handle thousands of features and thousands of observations in minutes, even in the 

presence of many highly correlated features. For fast sparse logistic regression, our computational 

speed-up over other best-subset search techniques owes to linear and quadratic surrogate cuts for 

the logistic loss that allow us to efficiently screen features for elimination, as well as use of a 

priority queue that favors a more uniform exploration of features. As an alternative to the logistic 

loss, we propose the exponential loss, which permits an analytical solution to the line search at 

each iteration. Our algorithms are generally 2 to 5 times faster than previous approaches. They 

produce interpretable models that have accuracy comparable to black box models on challenging 

datasets.

1 INTRODUCTION

Our goal is to produce sparse generalized linear models or sparse generalized additive 

models from large datasets in under a minute, even in the presence of highly-correlated 

features. Specifically, our interest is in the following problem:

min
w

∑
i = 1

n
ℓ w, xi, yi + λ0 w

0
(1)

with the logistic loss

ℓ w, xi, yi = log 1 + e−yi wTxi

or the exponential loss

jiachang.liu@duke.edu . 

Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS) 2022, Valencia, Spain. PMLR: 
Volume 151. Copyright 2022 by the author(s).

Code Availability
Implementations of the fast sparse classification method discussed in this paper are available at https://github.com/jiachangliu/
fastSparse.

HHS Public Access
Author manuscript
Proc Mach Learn Res. Author manuscript; available in PMC 2022 May 20.

Published in final edited form as:
Proc Mach Learn Res. 2022 March ; 151: 9304–9333.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jiachangliu/fastSparse
https://github.com/jiachangliu/fastSparse


ℓ w, xi, yi = e−yi wTxi

where xi ∈ ℝp is the i-th observation, and yi ∈ {−1, 1} is the label of the i-th data sample. 

The logistic loss tends to yield nicely calibrated probability estimates, which explains its 

broad appeal. The exponential loss, used in boosting, has been overlooked as an approach 

to sparse additive modeling, but like logistic regression, it also yields direct probability 

estimates. It has the advantage of analytical solutions for line search, dramatically improving 

convergence rates.

A small ℓ2 regularization is used with the logistic loss to speed up convergence, as discussed 

later:

min
w

∑
i = 1

n
ℓ w, xi, yi + λ0 w

0
+ λ2 w

2

2
. (2)

We do not include ℓ1: since we are looking for very sparse and accurate models, 

ℓ1 regularization would degrade the quality of the solution compared to true sparsity 

regularization with ℓ0. The ℓ0 penalty term makes Problems (1) or (2) NP-hard.

Problems (1) or (2) can produce generalized additive models (Lou et al., 2016; Hastie 

and Tibshirani, 2017; Nori et al., 2019; Rudin et al., 2022) through a transformation of 

the input variables, replacing each continuous feature x·,j with a set of dummy variables 

x ⋅ , j, θ = 1[x ⋅ , j ≥ θ], for θ set to be each realized value of feature j in the dataset. Then, 

solving (1) or (2) yields a generalized additive model where component function j is a sum 

of the weighted dummy variables for feature j. This transformation yields a large feature set 

with many correlated features, but the approaches provided here can handle such sizes.

There are at least two general approaches for tackling these problem (besides relaxing the 

ℓ0 term to ℓ1 and suffering the associated bias). The first uses call-backs to a mathematical 

programming solver, such as a mixed-integer programming (MIP) solver (Sato et al., 2016; 

Ustun and Rudin, 2017; Sato et al., 2017; Bertsimas and King, 2017; Bertsimas et al., 2021; 

Ustun and Rudin, 2019). This approach can solve the problem exactly. However, it cannot 

handle large feature spaces or highly-correlated features. A solver might take several days or 

run out of memory on even a modestly-sized problem. The second approach to Problems (1) 

or (2) is to use coordinate descent with local swap operations for best subset search, similar 

to simulated annealing, Metropolis-Hastings, or other MCMC methods (Metropolis et al., 

1953; Kirkpatrick et al., 1983; Del Moral et al., 2006). Our approach is of this second type, 

though it is important to note that a solution from our method could be used as a warm-start 

for one of the MIP solvers; a better warm-start is the key to finding optimal solutions faster 

with MIP.

There are two main steps per iteration in these types of algorithms: (i) coordinate descent 

steps involving a line search along the objective function, often using a local surrogate 
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function, and (ii) local swaps, where the support set (the set of features permitted to have 

nonzero coefficients) changes over iterations. Our work advances both of these steps over 

previous work. For (i), we show that a natural surrogate for the logistic loss used in previous 

work leads to inefficiency, in that its step sizes are provably too conservative. We propose a 

more aggressive step. This opens up the possibility of using cutting planes or quadratic cuts. 

Cuts often help us rapidly prune the search space: by comparing the lower bound from the 

cuts with the current best loss, we are often able to prove that there is no possible step size 

we could take that would reduce our objective, in which case we will try a more promising 

direction in the search space. The ℓ2 penalty term permits us to use quadratic cuts. When 

we do not want the ℓ2 term (i.e., λ2 = 0), we can use cutting planes. For (ii), we find that 

the order in which we evaluate features plays an important role, which has been previously 

overlooked. We use a priority queue to dynamically manage the order of evaluating features. 

The priority queue discourages us from checking features that are unlikely to change the 

model’s support set, making the process of finding high-quality solutions more efficient.

In addition, for (i), improving the speed of the coordinate descent steps, we propose to 

use the exponential loss, which has a major advantage over the logistic loss in that the 

line search taken at each coordinate descent iteration has an analytical solution. Another 

appealing property of the exponential loss is that its probabilistic interpretation is extremely 

similar to that of logistic regression. Also, minimizing the exponential loss is known to 

provably maximize a proxy for the Area Under the ROC Curve (Ertekin and Rudin, 2011), 

making it an ideal choice for this problem.

Our contributions are:

1. We prove that previous work on surrogate loss optimization yields step sizes that 

are too conservative (Theorem 4.1).

2. When λ2 = 0, we propose a linear cutting plane algorithm that prunes the search 

space by efficiently determining whether adding a feature could potentially 

reduce the objective.

3. With a small amount of ℓ2 regularization, we propose a quadratic cut algorithm 

giving a tighter lower bound than the linear cutting plane algorithm.

4. We propose a method using the exponential loss, which is cleaner and simpler.

5. For more efficient best subset search, we use a priority queue to dynamically 

manage the order of checking features.

Our algorithms provide a dramatic improvement over previous approaches, often achieving 

the same results in less than half the time, and are able to produce models for thousands of 

features and observations in seconds. For instance, on the challenging FICO dataset from the 

2018 Explainable Machine Learning Challenge, which, after the transformation to dummy 

variables, has 1,917 dummy features and 10K observations, we produce a generalized 

additive model of 19 total dummy variables, with performance comparable to black-box 

performance, in under 5 seconds.
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2 BACKGROUND

Coordinate descent is popular in machine learning. Other techniques that use variations of it 

include AdaBoost (Freund and Schapire, 1997) and Sequential Minimal Optimization used 

for support vector machines (Platt, 1998). Surrogate functions are also common, e.g., they 

are used by Expectation Maximization (Dempster et al., 1977). We begin with background, 

following Patrascu and Necoara (2015) and Dedieu et al. (2021).

The loss function in Problem (2) can be rewritten as:

ℒ(w) = G(w) + λ0 w 0,

with G(w) = ∑i = 1
n log 1 + exp −yi xiTw + λ2 w 2

2.

Let us optimize ℒ(w) along coordinate j starting at point wt at iteration t. Let ∇jG(wt) denote 

the j-th component of the gradient of G(wt), and let Lj be the Lipschitz constant for ∇jG(wt). 

For any d ∈ ℝ:

∇jG wt + ejd − ∇jG wt ≤ Lj d

where ej is a vector with all components equal to 0 except for the j-th component, which is 

equal to 1. A surrogate upper bound on G(wt + ejd) is thus:

G wt + ejd ≤ G wt + d∇jG wt + 1
2Ljd2 . (3)

Instead of minimizing the original loss function with respect to coordinate j (as would be 

typical in coordinate descent), we can minimize this quadratic upper bound with the new 

coefficient wj
t + 1 = wjt + d:

wj
t + 1 ∈ arg min

u
G wt + u − wjt ∇jG wt + 1

2Lj u − wjt
2 + λ01u ≠ 0 .

Following previous work (Dedieu et al., 2021), we have an analytical solution for the above 

problem:

wj
t + 1 = T (j, w) = c, if  c ≥ 2λ0

Lj + 2λ2
0, otherwise 

(4)

where c = Lj/ Lj + 2λj wjt − ∇jG wt /Lj .

If a solution cannot be improved by coordinate descent using this surrogate and thresholding 

function, we say this solution is surrogate 1-OPT, meaning that no single coordinate can be 

changed to improve the objective when using this surrogate for the line search.
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As discussed earlier, local swap, add, and remove operations are useful for best subset 

search and other local search problems. These govern the support of the coefficient vector, 

determining which coefficients are permitted to be nonzero. We use S to denote the 

support of the feature vector; that is, the set of features that are permitted to have nonzero 

coefficients. We can swap some features in the current support, denoted by S1 ⊆ S, for 

other features not in the support, denoted by S2 ⊆ Sc. After each swap, we optimize the 

coefficients that are permitted to be nonzero.

To reduce computational cost, while evaluating a possible swap, we use an approximate 

evaluation procedure where we update only the coefficients of the swapped features and 

keep coefficients of other unswapped features fixed. If such a swap leads to a better loss, 

we add S2 to the support, remove S1 from the support, and update all coefficients for the 

features in the new support. We will focus on single feature swaps (i.e. |S1| = |S2| = 1) in 

this work. If no allowed swap appears to improve the loss, then we call the solution a swap 
1-OPT solution.

3 OVERVIEW OF FAST SPARSE LOGISTIC REGRESSION

Let us focus on the logistic loss. Given an initial solution, we optimize one feature’s 

coefficient at a time, and swap features within the support set to improve the solution. Our 

technique evaluates whether it could be worthwhile to swap two features. It is based on a 

theorem showing that thresholding from (4) yields step sizes that are too conservative. Using 

this information, we develop an algorithm that uses quadratic cuts. Typically, cutting planes 

(Kelley, 1960) are used in mathematical programming solvers, whereas here, we use cuts as 

part of efficient feature elimination within coordinate descent. Our second technique uses 

a priority queue to manage the search order for pairs of features to swap. At each outer 

iteration, we drop a feature j in the support and at each inner iteration, we evaluate adding a 

feature j′. The full pseudocode is in Appendix B. The main steps are:

1. Remove and find alternatives. According to the priority queue, try removing 

feature j from the current support. Find J′ features outside the support as 

alternatives for feature j. These alternative features are picked according to 

orthogonal matching pursuit (Lozano et al., 2011). For each feature j′ ∈ J′, we 

evaluate whether it is worthwhile to include it in our support as a replacement of 

feature j. This is done using the following procedures.

2. Aggressive step. Given a new feature j′ that we may want to include in our 

support, we wish to find two values on opposite sides of the optimal coefficient 

wj′*. However, at current value wj′, the thresholding results stay on a single 

side of the optimal value (as we will prove in Theorem 4.1). Thus, we take an 

aggressive step by going double the distance suggested by thresholding, or triple 

the distance if necessary. If this triple-sized step does not get to the opposite side 

of wj′*, we iteratively apply thresholding (4) to get a near-optimal coefficient and 

move to Step 6.

3. Binary search. Suppose we have found two values a and b on opposite sides 

of wj′*. We then perform one binary search step to get a point closer to wj′* by 
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setting c to be the midpoint, c = 1
2 (a + b). If c is on the same side of a, we replace 

a with c; if not, we replace b with c. We use quadratic cuts (via the Quadratic Cut 
Bound, Theorem 4.3) at points a and b to obtain a lower bound on the objective 

for the optimal coefficient of the feature. In the case of no ℓ2 regularization, we 

use cutting planes instead. More detail on this is in the next section.

4. Eliminate. If the lower bound is larger than the current best loss we have 

encountered so far, the new feature can be eliminated from consideration; we do 

not add this feature into our support. We move onto the next possible feature and 

start again from Step 2.

5. Line search. If the lower bound is smaller than the current best loss we have 

encountered, then feature j′ could lead to a better solution. Therefore, we 

iteratively use thresholding (4) to obtain a near-optimal coefficient for the line 

search. (Alternatively, we could continue binary search for the minimum.)

6. Complete the step. We then calculate the loss with respect to this near-optimal 

coefficient for the line search. If the loss is higher than the current best loss, we 

eliminate this feature and move to the next best alternative feature; if the loss is 

lower, we add this new feature j′ into the support to make up for the removed 

feature j and optimize all of the coefficients, completing a successful swap step.

7. Update priority queue. If no alternative feature can replace feature j, we add 

feature j back into the support and rate feature j less promising in our priority 

queue. This allows us to explore features that have a better chance of being 

swapped with an alternative feature next time.

4 SURROGATE QUADRATIC CUTS

Let us provide the theorem motivating our coordinate descent method for the logistic loss, 

which shows that the step sizes from thresholding in (4) are too conservative. Recall that 

thresholding is derived by minimizing a quadratic upper bound of the loss function. The 

coefficient of the quadratic function is the Lipschitz constant, which defines the maximum 

curvature the loss function can achieve. These connections imply:

Theorem 4.1. (Thresholding is too conservative.) Let wt be the current solution at iteration 

t, wjt be the coefficient for the j-th feature, and let wj* be the optimal value on the j-th 

coefficient while keeping all other coefficients fixed to their values at time t. Furthermore, 

let wt + 1 = wt + ej T j, wt − wjt , where ej is a vector with 1 on the j-th component and 0 

otherwise and T (j, wt) is the thresholding operation with the support set fixed (i.e., λ0 = 0). 
Then we have the following inequalities:

∇jG wt ∇jG wt + 1 ≥ 0, (5)

wjt − wj* wj
t + 1 − wj* ≥ 0, (6)
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and G wt ≥ G wt + 1 . (7)

This result shows that the thresholding operation will move the coefficient of the j-th feature 

closer to the optimal value wj* with a smaller loss value, as shown by (7). However, the 

coefficients before and after the thresholding operation will always remain on the same side 
of wj*, as shown by either (6) or (5). To see this, consider (6). We have two scalars of the 

same sign: wjt − wj* and wj
t + 1 − wj*. If wj

t + 1 were on the opposite side of w* than wjt, the 

product of these two scalars would instead be negative. Alternatively, by (5), if the slope of 

G at wt is negative, the slope at wt+1 is also negative, indicating that we have not yet passed 

the minimum (of our convex logistic loss). Thus, this theorem indicates that the step size 

provided by the surrogate is too conservative; the distance is always too small to reach wj*. 

Figure 1 (left) illustrates this issue. The algorithm may make several steps before becoming 

sufficiently close to wj*.

Our technique chooses an aggressive step size that takes us beyond wj*, in order to use cuts 

to produce a lower bound on the loss at w*. If the lower bound is too high, we can exclude 

the feature all together.

The first type of cut we introduce is classical cutting planes, which provide a linear lower 

bound on the loss. This can be used even if we have only ℓ0 regularization on the logistic 

loss (i.e., if λ2 in (2) is 0). With an additional ℓ2 penalty term, we can obtain a strictly 

tighter lower bound on the loss, yielding quadratic cuts. We introduce both types of cuts 

next, starting with cutting planes.

Theorem 4.2. (Classical cutting planes, not novel to this paper) Suppose f(x) is convex and 
differentiable on domain ℝ. Let α1 and α2 be slopes of tangent lines of f(x) at locations x1 

and x2. If α1α2 ≤ 0, there is a lower bound on the optimal value f(x*):

f x* ≥ α1f x2 − α2f x1 + α1α2 x1 − x2
α1 − α2

. (8)

This method originates from a first-order approximation of function f(x). Figure 1(b) shows 

linear cuts.

With an additional ℓ2 penalty term, we can obtain a strictly tighter lower bound on the loss 

via quadratic cuts. The ℓ2 term makes G(w) strongly convex, which means for any two points 

w and w′ in the domain:

G w′ ≥ G(w) + ∇G w T w′ − w + λ2 w′ − w 2
2 .

Using this strongly convex property, we can tighten the lower bound given in Theorem 4.2 

as follows:
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Theorem 4.3. (Quadratic Cut Bound) Suppose f(x) is strongly convex and differentiable 
over ℝ with λ2 for the coefficient of the quadratic term. Let α1 be the slope of the tangent 
line to f(x) at location x1. Then, there is a lower bound on the optimal value f(x*):

f x* ≥ ℒlow ≔ f x1 −
α1

2

4λ2
. (9)

Let α2 be the slope of the tangent line to f(x) at another location x2. If α1α2 ≤ 0, a lower 
bound on the optimal value f(x*) is as follows:

f x* ≥ ℒlow ≔ f(x) + α1 x − x1 + λ2 x − x1
2, (10)

x =
−f x1 + f x2 + α1x1 − α2x2 − λ2 x1

2 − x2
2

α1 − α2 − 2λ2 x1 − x2
.

Since this method originates from a second-order approximation of the function f(x), we 

name this bound the Quadratic Cut Bound. Either this bound or cutting planes helps us 

decide when not to include a potential feature in our support, even without knowing its 

optimal coefficient from the line search.

5 FAST SPARSE CLASSIFICATION WITH EXPONENTIAL LOSS

Let us now switch from logistic loss to the exponential loss, optimizing:

min
w

  ∑
i = 1

n
exp −yiwTxi + λ0 w

0
.

Though exponential loss typically is not used for sparse classification, it has no clear 

disadvantages over the logistic loss and even has several advantages. First we point out that 

exponential loss and logistic loss have remarkably similar probabilistic interpretations under 

the assumption that we have captured the correct set of features. While logistic regression 

estimates conditional probabilities as P logistic (y = 1 ∣ x) = ef(x)
1 + ef(x)  where f(x) = wTx, the 

exponential loss has almost the same probabilistic model: Pexp loss(y = 1 ∣ x) = e2f(x)
1 + e2f(x) . 

Thus, both loss functions are equally relevant for modeling conditional probabilities.

The main benefit of exponential loss is that it has an analytical solution for the line 
search at each iteration when features are binary (−1 and 1). This avoids the necessity 

for cutting planes, quadratic cuts, or even surrogate upper bounds. Following the derivation 

of AdaBoost as a coordinate descent method (Schapire and Freund, 2013), its line search 

solution follows the formula 1
2 ln

1 − d−
d−

, where d− indicates the weighted misclassification 

error of the feature chosen at iteration t (here we are interpreting each weak classifier as an 

individual feature, and the weak learning algorithm picks one of these features per iteration). 
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AdaBoost’s weight update step avoids calculation of the exponential loss at each iteration, 

and the full procedure is extremely efficient. (The main difference between our method and 

this reduced version of AdaBoost is that AdaBoost is not designed to yield sparse models.) 

In the following theorem, we provide a condition under which our method would decline 

to add a new feature at iteration t, because it does not provide an overall benefit to our 

objective. We use zi ∈ ℝp with zi = yixi to succinctly represent the product between yi and xi. 

The objective can be then rewritten as:

min
w

H(w) + λ0 w 0

where H(w) = 1
n ∑i = 1

n exp −wTzi .

Theorem 5.1. Let wt be the coefficient vector at iteration t, Ht ≔ H(wt) and λ0 be the 
regularization constant for the ℓ0 penalty. For the j-th coordinate, we update the coefficient 
according to:

1. Suppose wjt = 0. Let d− = ∑i:zij = − 1ci/∑i = 1
n ci, with ci = exp(−(wt)Tzi). If d− is 

within the interval:

1
2 − 1

2Ht λ0 2Ht − λ0 , 1
2 + 1

2Ht λ0 2Ht − λ0 ,

then set wj
t + 1 to 0. Otherwise set wj

t + 1 = 1
2 ln

1 − d−
d−

.

2. Suppose wjt ≠ 0. Let D− = ∑i:zij = − 1ci/∑i = 1
n ci, with ci = exp − wt − wjtej

Tzi . 

Let H¬j
t = H wt − wjtej . If D− is within the interval:

1
2 − 1

2H¬jt λ0 2H¬jt − λ0 , 1
2 + 1

2H¬jt λ0 2H¬jt − λ0 ,

then set wj
t + 1 to 0. Otherwise, set wj

t + 1 = 1
2 ln

1 − D−
D−

.

Another potential benefit of the exponential loss is that it is a surrogate for the AUC, i.e., 

Area Under the ROC Curve (Ertekin and Rudin, 2011). Thus, we have reason to expect good 

AUC performance when optimizing the exponential loss.

6 DYNAMIC FEATURE ORDERING

Now that we can optimize along the coordinates using either logistic loss (Sections 3 and 4) 

or exponential loss (Section 5), we discuss the important swap steps that help the algorithm 

drop features that have promising swap candidates. As stated in Section 3, after coordinate 

descent is run until a local minimum is reached, we alternate between coordinate descent 
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steps and swap steps. The technique proposed here is broadly applicable and can improve 

the speed not only for the logistic loss and the exponential loss but also for the squared loss 

in linear regression (see Appendix D.1).

We focus on the swap 1-OPT solutions (i.e., |S1| = |S2| = 1). The order of checking features 

in S1 for possible swaps is key to improving the efficiency. Instead of checking features 

in S1 sequentially based on feature indices (Dedieu et al., 2021), we dynamically order 

these features via a priority queue. We provide an example in Figure 2 to illustrate the key 

difference between the two approaches.

Suppose we have an initial solution with support on features 1, 3, 7, 9, 11, and 15, and 

features 3 and 9 are suboptimal. We can swap feature 3 with feature 5 and feature 9 with 

feature 10 to get a lower total loss. The first method checks features sequentially and always 

starts from the first index in the support after a successful swap. The algorithm terminates 

if we have checked all features without making any swaps. This method implicitly assumes 

that each feature in the support has an equal probability of having a successful swap. 

However, a feature that has not been swapped for many iterations is likely to be important 

and therefore unlikely to be swapped in the near future. It is better to check more promising 

features first.

To achieve this, we record how many times a feature has failed to swap. The features are 

ranked in ascending order of the number of failure times. Features that have never been 

checked are kept at the top of our priority queue. This local search process terminates when 

all features have been evaluated (i.e., the full priority queue) without making a successful 

swap. This accelerates the process to reach a swap 1-OPT solution.

7 EXPERIMENTS

Our evaluation answers the following questions: (1) How well do our early pruning 

technique, priority queue ordering, and proposed exponential loss perform in terms of run 

time relative to the state-of-the-art? (§7.1) (2) How well do our methods perform in terms 

of AUC, accuracy, and sparsity relative to state-of-the-art algorithms on simulated and real 

datasets? (§7.2)

We compare our methods to ℓ1 regularized logistic regression (LASSO) via the glmnet 
package (Friedman et al., 2010), MCP via the ncvreg package (Breheny and Huang, 2011), 

and L0Learn (Dedieu et al., 2021). We use the fast C++ linear algebra libraries of L0Learn 

in our implementation. For all datasets, we run 5-fold cross validation and report the mean 

and standard deviation. Appendix C presents the experimental setup, datasets, and evaluation 

metrics, and Appendix D presents additional experimental results. Our methods are denoted 

as LogRegQuad-L0 (logistic loss and quadratic cuts) and Exp-L0 (exponential loss).

7.1 Computational Efficiency

To examine the impact of the quadratic cuts and dynamic ordering, we first run our 

algorithm with only quadratic cuts and then enable dynamic ordering on the FICO dataset 

from the Explainable Machine Learning Challenge (FICO et al., 2018). We also run this 
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experiment using Exp-L0. L0Learn is used as a baseline. (MCP and LASSO use continuous 

regularization terms, which provides them with a run-time advantage, though these methods 

do not perform as well, as shown in the next subsections.) The ℓ0 parameters we used are 

{0.8, 1, 2, 3, 4, 5, 6, 7} and the ℓ2 parameters used are {0.00001, 0.001}.

Figure 3 shows the training time and AUC values on the FICO dataset. The methods achieve 

performance comparable with Chen et al. (2021), who reported best black-box AUC ~0.8. 

Our method using only linear cuts (purple bars) runs faster than the baseline (orange bars, 

L0Learn) for all regularization options. With ℓ2 regularization coefficient λ2 = 0.001, the 

time is reduced when we switch from using linear cuts to quadratic cuts (green bars) due to 

the tighter lower bound, as in Figure 1. The training time is further reduced by using both 

quadratic cuts and dynamic ordering (blue bars, which is LogRegQuad-L0). Exp-L0 (red 
bars) is the fastest approach. Again, this speed-up owes to the analytical line search and fast 

update.

From the four rightmost subfigures, we find that our improvement in training time does not 

negatively impact training/test AUC scores, as our methods (red and blue dots) form a “left 

frontier” with respect to the baseline L0Learn (orange dots). Results for additional datasets 

are in Appendix D.2.

7.2 Solution Quality

We next evaluate sparsity vs. performance. In addition to AUC on the datasets, we calculate 

Recovery-F1 score to measure how well we captured the ground truth support (ground 

truth coefficients w* are known for simulated datasets). Recovery-F1 score is 2PR
P + R , where 

P = supp(w) ∩ supp w* / supp(w)  is the precision and R = supp(w) ∩ supp w* / supp w*  is 

the recall. supp(·) stands for the support (indices with nonzero coefficients) of a solution. We 

can use Recovery-F1 score for synthetic data only, since we need to know w* to calculate it.

Synthetic Data: Figure 4 shows sparsity/AUC tradeoffs and sparsity/Recovery-F1 

tradeoffs on a synthetic dataset consisting of highly correlated features. Our methods are 

generally tied for the best results. LASSO (pink curves) and MCP (green curves) do not 

fully optimize the AUC, nor recover the correct support. For the full regularization path, 

the AUC’s of L0Learn and our method largely overlap. However, as demonstrated in the 

previous subsection, our method runs much more quickly than L0Learn.

Since the features for this synthetic dataset are continuous (and we chose not to binarize 

them), Exp-L0 cannot be applied; its advantage comes from exploiting its analytical line 

search for binary features.

Real Datasets: Figure 5 shows sparsity-AUC tradeoffs and sparsity-accuracy tradeoffs 

on the COMPAS and NETHERLANDS datasets. LASSO and MCP do not achieve high 

prediction accuracy on training and test sets. L0Learn and our proposed methods have 

higher AUC and accuracy. Again, while L0Learn and our methods are tied for the best 

performance (which could be the optimal possible performance for this problem), our 

methods have major advantages in speed. More results are in Appendix D.3.
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8 RELATED WORK

Mixed Integer Optimization.

There have been many approaches to finding the optimal solution to logistic regression 

either with an ℓ0 regularization or cardinality constraint (Sato et al., 2016, 2017; Ustun 

and Rudin, 2017; Bertsimas and King, 2017; Bertsimas et al., 2021; Sakaue and Marumo, 

2019; Ustun and Rudin, 2019). In general, these approaches formulate the problem as a 

mixed-integer optimization problem (see Bertsekas, 1997; Wolsey and Nemhauser, 1999). 

The problem can then be solved using branch-and-bound search (see Land and Doig, 2010) 

or cutting-plane methods (Kelley, 1960; Gilmore and Gomory, 1961, 1963). However, even 

with the recent advances in hardware and software, MIP solvers are orders of magnitude 

slower than the methods we consider here and requires relatively large ℓ2 regularization to 

work well (Bertsimas et al., 2021; Dedieu et al., 2021).

Gradient-based Heuristic Methods.

One of the most widely used methods to promote sparsity is LASSO (Tibshirani, 1996), 

which relaxes the ℓ0 penalty to ℓ1. However, ℓ1 simultaneously promotes sparsity and shrinks 

the coefficients, leading to bias. Several new methods obtain solutions under cardinality 

constraints or ℓ0 penalty terms. One method is Orthogonal Matching Pursuit (OMP) (Lozano 

et al., 2011; Elenberg et al., 2018), which greedily selects the next-best feature based on 

the current support and gradients on coefficients. Other methods include Iterative Hard 

Thresholding (IHT) (Blumensath and Davies, 2009), coordinate descent (Beck and Eldar, 

2013; Patrascu and Necoara, 2015; Dedieu et al., 2021), GraSP (Bahmani et al., 2013), and 

NHTP (Zhou et al., 2021). These methods enjoy fast computation, but their solutions suffer 

when the feature dimension is high or features are highly correlated because they can get 

stuck at local minima (Dedieu et al., 2021).

Local Feature Swaps.

Some recent work considers swapping features on a given support. One such example 

is ABESS (Zhu et al., 2020; Zhang et al., 2021), which ranks features based on their 

contribution to the loss objective. Then, they swap only unimportant features in the support 

with features outside the support. Our experiments show that ABESS often returns “nan” 

values for its coefficients, thus in its current form was not able to be included in our 

experiments. Another work is L0Learn (Hazimeh and Mazumder, 2020; Dedieu et al., 2021), 

which exhaustively tries replacing every feature in the support with better features.

To the best of our knowledge, our work is the first where quadratic cuts (or exponential loss) 

and dynamic ordering have been used for sparse classification.

9 CONCLUSION

We have shown substantial speedups over other techniques for best subset search for 

probabilistic models with high-quality solutions. Our advances are due to several key ideas: 

(1) the use of cutting planes and quadratic cuts to form lower bounds, telling us when 

exploring a feature further is not worthwhile, (2) the use of the exponential loss, which has 
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an analytical form, obviating the manipulations needed for logistic loss, (3) the use of a 

priority queue with a useful ordering function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) We repeatedly apply coordinate descent until convergence to get the optimal coefficient 

(shown by the red star) and then calculate the loss. (b) We calculate a lower bound of the 

optimal loss by constructing two cutting planes. We can rule out the new feature if the lower 

bound of the loss from the cutting planes is larger than the best current loss. (c) Quadratic 

cuts (in red) form the lower bound instead and are tighter.
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Figure 2: 
Sequential Ordering vs. Dynamic Ordering. Upper: We check each feature sequentially. 

Whenever we find a better feature, we always start from the beginning to find the next 

possible swap. Lower: We order the list, checking the feature that has failed the least amount 

of times first. We hold off checking less promising features until the end, saving substantial 

computational time.
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Figure 3: 
Computational times of different methods. “Exp” stands for exponential loss, “LogReg” 

stands for logistic loss, “LinCut” stands for linear cuts, and “Quad” stands for quadratic 

cuts. Note that there is no ℓ2 penalty for the exponential loss. Our Exp-L0 method is 
generally about 4 times faster than L0Learn. Note that the AUC axes indicate practically 

similar performance for these particular methods; the training time is what differentiates the 

methods. Additionally, when the ℓ2 penalty increases from λ2 = 1e − 05 to λ2 = 0.001, there 

is a computational speedup from using the linear cut to the quadratic cut due to the tighter 

lower bound.
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Figure 4: 
Results from all 5 datasets (each dataset generated by a different random seed) and 

parameter choices on highly correlated synthetic datasets. The parentheses contain the best 

Recovery-F1 scores averaged over all 5 datasets. MCP is shown with γ fixed at 1.5 and 

25, and all other choices for γ lie between the shown regions. Our methods and L0Learn 

outperfom MCP and LASSO in terms of the AUC (left and middle), and better recover 

the true support (right). L0Learn’s performance heavily overlaps with our methods. Our 

methods have a computational advantage over L0Learn as shown in the last section.
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Figure 5: 
Results from all folds and parameter choices on real datasets: COMPAS and 

NETHERLANDS. We can see from the first and second columns (training and test 

accuracies) that MCP and LASSO do not perform well. Our methods and L0Learn 

(overlapping) outperform all other methods. Our methods are more computationally efficient 

than L0Learn.
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