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A B S T R A C T

COVID-19 quickly became a global pandemic after only four months of its first detection. It is crucial to
detect this disease as soon as possible to decrease its spread. The use of chest X-ray (CXR) images became
an effective screening strategy, complementary to the reverse transcription-polymerase chain reaction (RT-
PCR). Convolutional neural networks (CNNs) are often used for automatic image classification and they can
be very useful in CXR diagnostics. In this paper, 21 different CNN architectures are tested and compared in the
task of identifying COVID-19 in CXR images. They were applied to the COVIDx8B dataset, a large COVID-19
dataset with 16,352 CXR images coming from patients of at least 51 countries. Ensembles of CNNs were also
employed and they showed better efficacy than individual instances. The best individual CNN instance results
were achieved by DenseNet169, with an accuracy of 98.15% and an F1 score of 98.12%. These were further
increased to 99.25% and 99.24%, respectively, through an ensemble with five instances of DenseNet169. These
results are higher than those obtained in recent works using the same dataset.
1. Introduction

COVID-19 is an infectious disease caused by the Severe Acute
Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) (Khan et al., 2021).
It quickly became a global pandemic in less than four months after
its first detection in December 2019 in Wuhan, China (Monshi, Poon,
Chung, & Monshi, 2021). As of February 2022, it has over 434 million
confirmed cases and almost 6 million deaths reported to World Health
Organization (World Health Organization, 2022). Early detection of
positive COVID-19 cases is critical for avoiding the virus’s spread.

The most common technique for diagnosing COVID-19 is known
as transcriptase-polymerase chain reaction (RT-PCR). It detects SARS-
CoV-2 through collected respiratory specimens of nasopharyngeal or
oropharyngeal swabs. However, RT-PCR testing is expensive, time-
consuming, and shows poor sensitivity (Monshi et al., 2021; Mostafiz
et al., 2020), especially in the first days of exposure to the virus (Long
et al., 2020). Up to 54% of COVID-19 patients may have an initial
negative RT-PCR result (Arevalo-Rodriguez et al., 2020).

Patients that receive a false negative diagnosis may contact and
infect other people before they are tested again. Therefore, it is impor-
tant to have alternative methods to detect the disease, such as Chest
X-ray (CXR) images. CXR equipment is widely available in hospitals

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

E-mail address: fabricio.breve@unesp.br.
1 Scripts to build the COVIDx8B dataset are available at https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md.

and CXR images are cheap and fast to acquire. They can be inspected
by radiologists to find visual indicators of the virus (Feng, Liu, Lv, &
Zhong, 2020).

In the past decade, the rise of deep learning methods (Goodfellow,
Bengio, & Courville, 2016; LeCun, Bengio, & Hinton, 2015; Schmid-
huber, 2015), especially the convolutional neural networks (CNNs),
were responsible for many advances in automatic image classifica-
tion (Krizhevsky, Sutskever, & Hinton, 2012). CXR diagnostic using
deep learning methods is a mechanism that can be explored to surpass
the limitations of RT-PCR insufficient test kits, waiting time of test
results, and test costs (Mostafiz et al., 2020).

Many studies concerning the application of CNNs to COVID-19
diagnostic on CXR images were published since the last year (Abbas,
Abdelsamea, & Gaber, 2021; Alawad, Alburaidi, Alzahrani, & Alflaj,
2021; Chhikara, Gupta, Singh, & Bhatia, 2021; Heidari et al., 2020;
Hira, Bai, & Hira, 2021; Ismael & Şengür, 2021; Jia, Lam, & Xu, 2021;
Karthik, Menaka, & M., 2021; Khan et al., 2021; Mohammad Shorfuz-
zaman, 2020; Monshi et al., 2021; Mostafiz et al., 2020; Narin, Kaya,
& Pamuk, 2021; Nigam et al., 2021). However, most of them used
relatively small and more homogeneous datasets. In this paper, the
COVIDx8B dataset1 (Zhao, Jiang, & Qiu, 2021) is used. It has 16,352
vailable online 21 May 2022
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CXR images, from which 2,358 are COVID-19 positive and the re-
maining are from both healthy and pneumonia patients. Released in
March 2021, this dataset is composed of images from six other open-
source chest radiography datasets. Therefore it is larger and more
heterogeneous than earlier available datasets. However, there are only
a few works that used this dataset so far (Dominik, 2021; Pavlova et al.,
2021; Zhao et al., 2021). A recent survey on applications of artificial
intelligence in the COVID-19 pandemic (Khan et al., 2021) reviewed
dozens of papers, including 16 papers on CNNs applied to CXR images
nd all of them used earlier available datasets which are smaller than
OVIDx8B.

In this paper, a comparison of 21 different CNN models applied
o the COVIDx8B dataset is presented, including popular architectures
uch as VGG (Simonyan & Zisserman, 2015), ResNet (He, Zhang, Ren,

Sun, 2016a), DenseNet (Huang, Liu, van der Maaten, & Weinberger,
017), and EfficientNet (Tan & Le, 2019). They were all trained in
he same conditions with the training and test subsets defined by the
ataset authors. The initial weights of all methods were defined to those
rained on the ImageNet dataset (Russakovsky et al., 2015), which is
ommonly used in transfer learning scenarios (Oquab, Bottou, Laptev,
Sivic, 2014). The accuracy, sensitivity (TPR), precision (PPV), and F1

core were evaluated using the test subset. Later, some models’ continu-
us output (before the classification layer) were combined (ensembles)
o overcome individual limitations and provide better classification
esults.

The remainder of this paper is organized as follows. Section 2
hows related work, in which CNNs were used to detect COVID-19
n CXR images. Section 3 presents the COVIDx8B dataset. Section 4
hows the CNN architectures employed in this paper. Section 5 shows
he computer simulations comparing the proposed models and other
ecent approaches from the literature for COVID-19 classification on
XR images using the same dataset. Section 6 shows the computer sim-
lations with CNN ensembles, improving the classification performance
f individual models. Finally, the conclusions are drawn in Section 7.

. Related work

Many studies have investigated the use of machine learning tech-
iques to detect COVID-19. Many of the researchers used CNN tech-
iques and CXR images and faced challenges due to the lack of available
atasets (Alawad et al., 2021). While many authors provided tables
omparing results achieved in different works, the comparisons are not
air, since the used datasets are frequently different and pose different
evels of challenge. Therefore, here the related works are described
ocusing on what architectures have been used to handle the problem
f COVID-19 detection on CXR images and the size of the evaluated
atasets.

Nigam et al. (2021) used VGG16, DenseNet121, Xception, NASNet,
nd EfficientNet in a dataset with 16,634 images. Though this dataset is
lightly larger than COVIDx8B, unfortunately, the authors did not make
t publicly available. The highest accuracy was 93.48% obtained with
fficientNetB7.

Ismael and Şengür (2021) used ResNet18, ResNet50, ResNet101,
GG16, and VGG19 for deep feature extraction and support vector
achines (SVM) for CXR images classification. The highest accuracy
as 94.7% obtained with ResNet50. However, they used a small dataset
ith only 380 CXR images.

Abbas et al. (2021) validated a deep CNN called Decompose, Trans-
er, and Compose (DeTraC) for COVID-19 CXR images classification
ith 93.1% accuracy. They used a combination of two small datasets,

otaling 196 images.
Hira et al. (2021) used the AlexNet, GoogleNet, ResNet-50, Se-

esNet-50, DenseNet121, Inception V4, Inception ResNet V2, ResNeXt-
0, and Se-ResNeXt-50 architectures. Se-ResNeXt-50 achieved the high-
st classification accuracy of 99.32%. They used a combination of four
atasets, totaling 8,830 CXR images.
2

Alawad et al. (2021) used VGG16 both as a stand-alone classifier
nd as a feature extractor for SVM, Random-Forests (RF), and Extreme-
radient-Boosting (XGBoost) classifiers. VGG-16 and VGG16+SVM
odels provide the best performance with 99.82% accuracy. They used
combination of five datasets, totaling 7,329 CXR images.

Narin et al. (2021) used ResNet50, ResNet101, ResNet152, In-
eptionV3, and Inception-ResNetV2. ResNet50 achieved the highest
lassification performance with 96.1%, 99.5%, and 99.7% accuracy on
hree different datasets, totaling 7,406 CXR images.

Monshi et al. (2021) focused on data augmentation and CNN hy-
erparameters optimization, increasing VGG19 and ResNet50 accuracy.
hey also proposed CovidXrayNet, a model based on EfficientNet-B0,
hich achieved an accuracy of 95.82% on an earlier version of the
OVIDx dataset with 15,496 CXR images.

Heidari et al. (2020) focused on preprocessing algorithms to im-
rove the performance of VGG16. They used a dataset with 8,474 CXR
mages and reached 94.5% accuracy.

Jia et al. (2021) proposed a modified MobileNet to classify CXR and
T images. They applied their method to a CXR dataset with 7,592 CXR

mages and achieved 99.3% accuracy. They also applied it to an earlier
ersion of COVIDx with 13,975 CXR images, achieving 95.0% accuracy.

Karthik et al. (2021) proposed a custom CNN architecture which
hey called Channel-Shuffled Dual-Branched (CSDB). They achieved an
ccuracy of 99.80% on a combination of seven datasets, totaling 15,265
mages.

Mostafiz et al. (2020) used a hybridization of CNN (ResNet50) and
iscrete wavelet transform (DWT) features. The random forest-based
agging approach was used for classification. They combined different
atasets and used data augmentation techniques to produce a total of
809 CXR images and achieved 98.5% accuracy.

Mohammad Shorfuzzaman (2020) used VGG16, ResNet50V2, Xcep-
tion, MobileNet, and DenseNet121 in a transfer learning scenario. They
collected CXR images from different sources to compose a dataset
with 678 images. The best accuracy (98.15%) was achieved with
ResNet50V2. They also made an ensemble of the four best models
(ResNet50V2, Xception, MobileNet, and DenseNet121) with the final
output obtained by majority voting, raising the accuracy to 99.26%.

Chhikara et al. (2021) proposed a InceptionV3 based-model and
applied it to three different datasets with 11,244, 8,246, and 14,486
CXR images, respectively. The model has reached an accuracy of 97.7%,
84.95%, and 97.03% on the mentioned datasets, respectively.

Pavlova et al. (2021) proposed the COVIDx8B dataset, which they
claim is the largest and most diverse COVID-19 CXR dataset in open
access form, and the COVID-Net CXR-2 model, a CNN specially tailored
for COVID-19 detection on CXR images using machine-driven design,
which achieved an accuracy of 95.5%.

Zhao et al. (2021) used ResNet50V2 to classify the COVIDx8B
dataset with an accuracy of 96.5% in the best scenario.

Dominik (2021) proposed a lightweight architecture called BaseNet
and achieved an accuracy of 95.50% on COVIDx8B. He also used an en-
semble composed of BaseNet, VGG16, VGG19, ResNet50, DenseNet121,
and Xception to achieve 97.75% accuracy. It was further increased to
99.25% using an optimal classification threshold.

3. Dataset

Most of the early research regarding COVID-19 detection on CXR
images suffered from the lack of available datasets (Alawad et al.,
2021). The authors would frequently combine different smaller data-
sets, so fairly comparing the results was impossible. COVIDx8B is
a large and heterogeneous COVID-19 CXR benchmark dataset with
16,352 CXR images coming from patients of at least 51 countries
(Pavlova et al., 2021). It is constructed with images extracted from six
open-source chest radiography datasets, which are shown in Table 1.
Notice that the sum of the images in the source datasets is much larger
than the size of COVIDx8B since not all of them were selected by the
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Fig. 1. Examples of CXR images from the COVIDx8B dataset. The first row shows COVID-19 negative patient cases, and the second row shows COVID-19 positive patient cases.
Table 1
List of datasets that compose the COVIDx8B benchmark dataset.

Source dataset Size Reference

Covid-chestxray-dataset 950 Cohen et al.
(2020)

COVID-19 Chest X-ray Dataset Initiative 55 Chung
(2020b)

Actualmed COVID-19 Chest X-ray Dataset Initiative 238 Chung
(2020a)

COVID-19 Radiography Database-Version 3 21,165 Chowdhury
et al. (2020),
Rahman
et al. (2021)

RSNA Pneumonia Detection Challenge 29,684 Wang et al.
(2017)

RSNA International COVID-19 Open Radiology
Database (RICORD)

1,257 Tsai et al.
(2021)

authors. Example images from the COVIDx8B dataset are shown in
Fig. 1.

Though COVIDx8B does not include information on patients’ demo-
graphics, half of their source datasets do. The covid-chestxray-dataset
has 559 registers from male patients and 311 registers from female pa-
tients. The average age is 54 years old. The COVID-19 positive registers
are from 346 male and 175 female patients, with an average age of 56
years old. The Fig. 1 COVID-19 Chest X-ray Dataset Initiative has only
55 registers, most of them do not indicate sex. Among the remaining,
there are 11 male patients and 11 female patients. Only 21 patients have
their exact age registered and the average is 52 years old. All patients
with the exact age described are COVID-19 positive or unlabeled.
The RSNA International COVID-19 Open Radiology Database (RICORD)
only has COVID-19 positive cases. They come from 645 male and 353
female patients, with an average age of 56 years old.

Four of the source datasets have both COVID-19 positive and nega-
tive cases. The RSNA Pneumonia Detection Challenge has only COVID-
19 negative cases (non-COVID pneumonia, normal, etc.) and The RSNA
International COVID-19 Open Radiology Database (RICORD) has only
COVID-19 positive cases.

COVID8xB training subset is composed of 15,952 images, from
which 2,158 are COVID-19 positive and 13,794 are COVID-19 negative.
The negative group also includes images of patients with non-COVID-19
3

pneumonia, which poses a major challenge as it is usually difficult to
distinguish between COVID-19 and non-COVID19 pneumonia. The test
subset has 200 COVID-19 positive images from 178 different patients
and 200 COVID-19 negative images. In the negative group, 100 images
are from healthy patients. The other 100 images are from non-COVID
pneumonia patients. The test images were randomly selected from
international patient groups curated by the Radiological Society of
North America (RSNA) (Tsai et al., 2021; Wang et al., 2017). The
images were annotated by an international group of scientists and
radiologists from different institutes around the world. The test set was
selected in such a way to ensure no patient overlap between training
and test sets (Pavlova et al., 2021).

4. CNN architectures

This section presents the CNN architectures explored in this work.
It also describes the layers added to complete the models and perform
the CXR images classification. Table 2 shows the 21 tested architectures,
some of their characteristics, and their respective literature references.

The output of the last convolutional layer of the original CNN is fed
to a global average pooling layer. Following, there is a dense layer with
256 neurons using ReLU (Rectified Linear Unit) activation function, a
dropout layer with a 20% rate, and a softmax classification layer. This
proposed architecture is illustrated in Fig. 2, where 𝑥 indicates the
horizontal and vertical input size of the CNN (image size), while 𝑤,
𝑦, and 𝑧 indicate the size of the CNN output in its last convolutional
layer. These values depend on the original CNN architecture and they
are indicated in Table 2. The table also shows the number of trainable
parameters in each CNN architecture, including both their original
layers and the dense layers added for COVID-19 classification.

5. CNN comparison

In this section, the computer simulations comparing the CNN mod-
els applied to the COVIDx8B dataset are presented. All simulations were
performed using Python and TensorFlow in three desktop computers
with NVIDIA GeForce GPU boards: GTX 970, GTX 1080, and RTX 2060
SUPER, respectively.2

2 The source code is available at https://github.com/fbreve/covid-cnn.

https://github.com/fbreve/covid-cnn
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Table 2
CNN architectures, some of their characteristics, and their references.

Model Input Image Resolution Output of Last Conv.
Layer

Trainable Parameters Reference

DenseNet121 224 × 224 7 × 7 × 1024 7, 216, 770 Huang et al. (2017)

DenseNet169 224 × 224 7 × 7 × 1664 12, 911, 234 Huang et al. (2017)

DenseNet201 224 × 224 7 × 7 × 1920 18, 585, 218 Huang et al. (2017)

EfficientNetB0 224 × 224 7 × 7 × 1280 4, 335, 998 Tan and Le (2019)

EfficientNetB1 240 × 240 8 × 8 × 1280 6, 841, 634 Tan and Le (2019)

EfficientNetB2 260 × 260 9 × 9 × 1408 8, 062, 212 Tan and Le (2019)

EfficientNetB3 300 × 300 10 × 10 × 1536 11, 090, 218 Tan and Le (2019)

InceptionResNetV2 299 × 299 8 × 8 × 1536 54, 670, 178 Szegedy, Ioffe,
Vanhoucke, and Alemi
(2017)

InceptionV3 299 × 299 8 × 8 × 2048 22, 293, 410 Szegedy, Vanhoucke,
Ioffe, Shlens, and
Wojna (2016)

MobileNet 224 × 224 7 × 7 × 1024 3, 469, 890 Howard et al. (2017)

MobileNetV2 224 × 224 7 × 7 × 1280 2, 552, 322 Sandler, Howard, Zhu,
Zhmoginov, and Chen
(2018)

NASNetMobile 224 × 224 7 × 7 × 1056 4, 504, 084 Zoph, Vasudevan,
Shlens, and Le (2018)

ResNet101 224 × 224 7 × 7 × 2048 43, 077, 890 He et al. (2016a)

ResNet101V2 224 × 224 7 × 7 × 2048 43, 053, 954 He, Zhang, Ren, and
Sun (2016b)

ResNet152 224 × 224 7 × 7 × 2048 58, 744, 578 He et al. (2016a)

ResNet152V2 224 × 224 7 × 7 × 2048 58, 712, 962 He et al. (2016b)

ResNet50 224 × 224 7 × 7 × 2048 24, 059, 650 He et al. (2016a)

ResNet50V2 224 × 224 7 × 7 × 2048 24, 044, 418 He et al. (2016b)

VGG16 224 × 224 7 × 7 × 512 14, 846, 530 Simonyan and
Zisserman (2015)

VGG19 224 × 224 7 × 7 × 512 20, 156, 226 Simonyan and
Zisserman (2015)

Xception 299 × 299 10 × 10 × 2048 21, 332, 010 Chollet (2017)
Fig. 2. The proposed CNN Transfer Learning architecture.
4

t

No pre-processing was applied, except for those steps pre-defined by
each CNN architecture, which is basically resizing the image to the CNN
input size and normalizing the input range. In all tested scenarios, each
CNN had its weights initially set to those pre-trained on the Imagenet
dataset (Russakovsky et al., 2015), which has millions of images and
hundreds of classes. This dataset is frequently used in transfer learning
scenarios.

The training phase was conducted using the Adam optimizer
(Kingma & Ba, 2014). The learning rate was set to 10−5 for the original
CNN layers and 10−3 for the dense layers proposed in this work. The
idea is to allow bigger weight changes in the classification layers, which
need to be trained from scratch, while only fine-tuning the CNN layers,
taking advantage of the weights previously learned from the Imagenet
dataset.

From the training subset, 20% of the images are randomly taken
to compose the validation subset, using stratification to keep the same
classes proportion. Since the training subset is unbalanced, different
class weights were defined for each class: 0.5782 and 3.6960 for neg-
ative and positive classes, respectively. These values were calculated
based on TensorFlow documentation3:

𝑤𝑖 =
1
𝑐𝑖

× 𝑡
2

(1)

where 𝑤𝑖 is the class 𝑖 weight, 𝑐𝑖 is the amount of examples belonging
to class 𝑖, and 𝑡 is the total amount of examples.

All models were trained for up to 50 epochs. An early stopping crite-
rion was set to interrupt the training phase if the loss on the validation

3 TensorFlow documentation on class weights is available at https://www.
ensorflow.org/tutorials/structured_data/imbalanced_data.

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
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Table 3
Comparison of 21 different CNN models applied to the COVIDx8B dataset. Each model is executed five times. The highest values for each
measure are highlighted in bold.

Model ACC TPR PPV F1

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DenseNet169 0.9815 0.0056 0.9700 0.0138 0.9930 0.0075 0.9812 0.0058

EfficientNetB2 0.9760 0.0049 0.9600 0.0141 0.9918 0.0051 0.9756 0.0052

InceptionResNetV2 0.9755 0.0099 0.9590 0.0246 0.9919 0.0051 0.9749 0.0106

InceptionV3 0.9750 0.0065 0.9520 0.0144 0.9979 0.0041 0.9744 0.0069

MobileNet 0.9710 0.0060 0.9430 0.0136 0.9990 0.0021 0.9701 0.0064

EfficientNetB0 0.9705 0.0051 0.9510 0.0086 0.9896 0.0033 0.9699 0.0053

EfficientNetB3 0.9700 0.0163 0.9470 0.0337 0.9927 0.0051 0.9690 0.0177

DenseNet201 0.9695 0.0176 0.9400 0.0342 0.9989 0.0022 0.9683 0.0186

ResNet152V2 0.9695 0.0244 0.9420 0.0510 0.9970 0.0040 0.9679 0.0268

ResNet152 0.9660 0.0223 0.9370 0.0443 0.9947 0.0033 0.9644 0.0243

DenseNet121 0.9630 0.0053 0.9270 0.0103 0.9989 0.0022 0.9616 0.0057

Xception 0.9615 0.0077 0.9230 0.0154 1.0000 0.0000 0.9599 0.0083

VGG19 0.9580 0.0198 0.9170 0.0385 0.9989 0.0023 0.9558 0.0216

EfficientNetB1 0.9570 0.0224 0.9240 0.0413 0.9892 0.0075 0.9551 0.0242

ResNet50 0.9545 0.0172 0.9090 0.0344 1.0000 0.0000 0.9520 0.0192

VGG16 0.9525 0.0123 0.9090 0.0282 0.9958 0.0052 0.9501 0.0138

ResNet101V2 0.9530 0.0302 0.9100 0.0643 0.9959 0.0050 0.9497 0.0342

MobileNetV2 0.9485 0.0172 0.9030 0.0359 0.9935 0.0019 0.9457 0.0190

ResNet101 0.9410 0.0170 0.8830 0.0333 0.9988 0.0023 0.9370 0.0190

ResNet50V2 0.9280 0.0075 0.8590 0.0153 0.9966 0.0046 0.9226 0.0087

NASNetMobile 0.8530 0.0653 0.7090 0.1317 0.9960 0.0034 0.8212 0.0918

Average 0.9569 0.0162 0.9178 0.0334 0.9957 0.0036 0.9536 0.0187
set did not decrease during the last 10 epochs. The final weights are
lways restored to those adjusted in the epoch that achieved the lowest
alidation loss.

For each CNN model, the training phase was performed five times
ith different training/validation splits, generating five instances with
ifferent adjusted weights. The same five training/validation splits
ere used for all models. Each instance was evaluated on the test subset
nd the following measures were obtained: accuracy (ACC), sensitivity
TPR), precision (PPV), and F1 score. The results are shown in Table 3.
ach value is the average of the measures obtained on the five different
nstances of each model. The standard deviation is also presented.
esults of the same evaluation applied to the training and validation
ubsets are available in Appendix.

It is worth noticing that most related work only shows the results
f a single execution on each tested CNN architecture. This may lead
o wrong conclusions as there is always some expected variance on
ultiple executions of neural networks, which are stochastic by nature.

DenseNet169 achieved the highest accuracy (98.15%), TPR (97.
0%), and F1 score (98.12%) among all the tested models. The high-
st PPV (100%) was achieved by Xception and ResNet50 models.
fficientNetB2 achieved the second-best accuracy, PPV, and F1 score.

Compared to other recent approaches applied to the same dataset,
enseNet169, EfficientNetB2, and InceptionResNetV2 achieved the best
ccuracy, TPR, and F1 score, as shown in Table 4. It is worth noticing
hat EfficientNetB2 has less trainable parameters (8.06 million) than
ll the other architectures in this comparison, including the Covid-Net
XR-2 (9.2 million), which was specially tailored for the COVIDx8B
ataset.

There are some common characteristics among the two best-
erforming CNN architectures. DenseNet and EfficientNet are newer
pproaches (2017 and 2019, respectively) than VGG (2015) and ResNet
2016). DenseNet and EfficientNet also focus on architecture efficiency
o use less trainable parameters than the earlier approaches. In this
ase, the strategy used in these newer models was more suitable
5

or these types of CXR images. Unfortunately, many related works
Table 4
Comparison of the best four models tested in this paper (in italic) with other recently
proposed models applied to the COVIDx8B dataset. The highest values for each measure
are highlighted in bold. The results obtained by other authors were compiled from the
respective cited references.

Model ACC TPR PPV F1 Source

DenseNet169 0.9815 0.9700 0.9930 0.9812 this paper

EfficientNetB2 0.9760 0.9600 0.9918 0.9756 this paper

InceptionResNetV2 0.9755 0.9590 0.9919 0.9749 this paper

InceptionV3 0.9750 0.9520 0.9979 0.9744 this paper

VGG16 (ImageNet) 0.9750 0.9500 1.0000 0.9744 Dominik (2021)

Covid-Net 0.9400 0.9350 1.0000 0.9664 Pavlova et al. (2021)

DenseNet121 (ChestXray) 0.9650 0.9350 0.9947 0.9639 Dominik (2021)

ResNet50V2 (Bit-M) 0.9650 0.9300 1.0000 0.9637 Zhao et al. (2021)

Covid-Net CXR-2 0.9630 0.9550 0.9700 0.9624 Pavlova et al. (2021)

VGG19 (ImageNet) 0.9625 0.9250 1.0000 0.9610 Dominik (2021)

ResNet-50 (ImageNet) 0.9575 0.9200 0.9946 0.9558 Dominik (2021)

DenseNet121 (ImageNet) 0.9575 0.9150 1.0000 0.9556 Dominik (2021)

Xception (ImageNet) 0.9550 0.9100 1.0000 0.9529 Dominik (2021)

ResNet50V2 (Bit-S) 0.9480 0.8950 1.0000 0.9446 Zhao et al. (2021)

ResNet50V2 (Random) 0.9280 0.8550 1.0000 0.9218 Zhao et al. (2021)

ResNet50 0.9050 0.8850 0.9220 0.9031 Pavlova et al. (2021)

compared fewer and/or earlier models only. Therefore, future studies
should consider a wider variety of models to verify if this tendency
confirms. In particular, from the related work section, only Nigam et al.
(2021) and Monshi et al. (2021) explored EfficientNet, but they also
reported good results with it, showing this is a promising architecture
for CXR images.

Table 5 compares results reported in individual papers described in
Section 2, where the authors are motivated to use a setup such their

algorithm is the best performing, with the best result found in this paper
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Table 5
Comparison of different CNN-based models applied to different COVID-19 datasets
found in individual papers and the best result by an individual CNN model applied
to the COVIDx8B dataset in this paper.

Reference Architecture Dataset Size Accuracy

Alawad et al. (2021) VGG16 7,329 99.82%

Karthik et al. (2021) CSDB 15,265 99.80%

Hira et al. (2021) Se-ResNeXt-50 8,830 99.32%

Jia et al. (2021) MobileNet 7,592 99.30%

Mostafiz et al. (2020) ResNet50 4,809 98.50%

Narin et al. (2021) ResNet50 7.406 98.43%

this paper DenseNet169 16,352 98.15%

Chhikara et al. (2021) InceptionV3 11,244 97.70%

Chhikara et al. (2021) InceptionV3 14,486 97.03%

Monshi et al. (2021) EfficientNetB0 15,496 95.82%

Jia et al. (2021) MobileNet 13.975 95,00%

Ismael and Şengür (2021) ResNet50 380 94.70%

Heidari et al. (2020) VGG16 8,474 94.50%

Nigam et al. (2021) EfficientNetB7 16,634 93.48%

Abbas et al. (2021) DeTrac 196 93.10%

Chhikara et al. (2021) InceptionV3 8,246 84.95%

for an individual CNN architecture, in which there is no motivation to
implement optimizations to boost any particular architecture. Despite
that, the best result from this paper is still in the top half of the best
accuracy ranking. For each paper, the CNN architecture used and the
dataset size are provided for reference.

6. CNN ensembles

This section presents the computer simulations with ensembles of
different CNN models and ensembles of multiple instances of the same
model. All the ensembles experiments used the output of the last dense
layer, just before the softmax activation function. Therefore, for each
image, each model will output two continuous values, which can be
interpreted as the probability of each class. Then, the output of the
ensemble will be the average of its members’ output. The same weights
trained for the experiments in Section 5 were used for the experiments
in this section.

In the first ensemble experiment, the two models that achieved
the best individual F1 score (DenseNet169 and EfficientNetB2) were
combined in the first ensemble configuration. The second ensemble
configuration adds the third-best model (InceptionResNetV2). The third
ensemble configuration adds the fourth-best model (InceptionV3) and
so on, with up to seven models. Then, in the last ensemble con-
figuration, all the 21 models are combined. In this first experiment,
only one instance of each model composes each ensemble, thus there
are five ensembles for each configuration. Table 6 shows the average
and standard deviation of the measures obtained for each ensemble
configuration.

The best accuracy, TPR, and F1 score were achieved when the
three best models were combined (DenseNet169, EfficientNetB2, and
InceptionResNetV2). All the ensembles, except for the one with the best
two models, achieved a PPV of 100%. Except for the ensemble of all
models, all the other ensembles achieved higher accuracy, TPR, and F1
scores than the best individual model.

For the second ensembles experiment, the five instances of each
model are combined to form an ensemble. It is expected that five
instances, even if they are from the same model, will improve the
measures by alleviating the randomness effects of the training.

Table 7 shows the measures obtained with these ensembles for each
model. It also shows the gain obtained by the ensemble when compared
to the average of the single instances. All the models had gained with
6

the ensembles. The highest measures were obtained by DenseNet169,
with an F1 score of 99.24% and an accuracy of 99.25%. This is the same
accuracy obtained by Dominik (2021) using an ensemble of multiple
models and an optimized threshold. To the best of my knowledge, this
is the highest accuracy achieved in this dataset at the time this paper
is being written.

For the third and last ensembles experiment, the first experiment
is repeated, but now using all the five instances of each model in the
ensemble. Table 8 shows the measures obtained with each ensemble
and the gain obtained by these ensembles when compared to the
ensembles which used only a single instance of each model. In this case,
there were only small differences and some of them were negative.
Therefore, the best ensemble overall is still the one with multiple
instances of DenseNet169.

7. Conclusions

In this paper, 21 different CNN architectures are applied to the
detection of COVID-19 on CXR images. The comparison was performed
using the COVIDx8B, a large and heterogeneous COVID-19 CXR images
dataset, which is composed of six open-source CXR datasets. The train-
ing was repeated five times for each model, with different training and
validation splits to get more reliable results, while most related works
tested fewer models and performed only a single execution for each
one.

CNN ensembles were also explored in this work, combining both dif-
ferent models and multiple instances of the same model. DenseNet169
achieved the best results regarding the accuracy and the F1 score, both
as a single instance and with an ensemble of five instances. The clas-
sification accuracies were 98.15% and 99.25% for the single instance
and the ensemble, respectively, while the F1 scores were 98.12% and
99.24%, also respectively. These results are better than those achieved
in recent works where the same dataset was used.

The simulations performed for this paper add more evidence of
the efficacy of CNNs in the detection of COVID-19 on CXR images,
which is very important to assist in quick diagnostics and to avoid
the spread of the disease. Moreover, these experiments may also guide
future research as they tested a large amount of CNN architectures and
identified which of them produces the best results for this particular
task.
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ppendix. Classification results in training, validation, and test
ubsets

This appendix shows the classification results obtained by the in-
ividual CNN classifiers, with the same weights learned in Section 5
xperiment when applied to the training, validation, and test subsets
ndividually. All results are the average of the five executions, with
ifferent training/validation splits. Tables A.9, A.10, A.11, A.12 show
he results of accuracy (ACC), sensitivity (TPR), precision (PPV), and
1 score, respectively.

These results show that accuracy and sensitivity are a little higher
n the training and validation subsets than in the test subset for all the
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Table 6
Ensembles of CNN models applied to the COVIDx8B dataset. Each ensemble configuration is executed five times with different instances of the
models. The highest values for each measure are highlighted in bold.

Models ACC TPR PPV F1

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Top 2 models 0.9855 0.0024 0.9730 0.0040 0.9980 0.0025 0.9853 0.0025

Top 3 models 0.9885 0.0034 0.9770 0.0068 1.0000 0.0000 0.9884 0.0035

Top 4 models 0.9870 0.0019 0.9740 0.0037 1.0000 0.0000 0.9868 0.0019

Top 5 models 0.9865 0.0020 0.9730 0.0040 1.0000 0.0000 0.9863 0.0021

Top 6 models 0.9880 0.0010 0.9760 0.0020 1.0000 0.0000 0.9879 0.0010

Top 7 models 0.9865 0.0025 0.9730 0.0051 1.0000 0.0000 0.9863 0.0026

All models 0.9775 0.0032 0.9550 0.0063 1.0000 0.0000 0.9770 0.0033
Table 7
Ensembles of CNN models applied to the COVIDx8B dataset. Each ensemble is composed of five instances of the same model, with different
training/validation splits. The highest values for each measure and the highest gains in comparison to single instances of each model are
highlighted in bold.

Models ACC TPR PPV F1

Mean Gain Mean Gain Mean Gain Mean Gain

DenseNet169 0.9925 1.12% 0.9850 1.55% 1.0000 0.70% 0.9924 1.14%

EfficientNetB2 0.9850 0.92% 0.9750 1.56% 0.9949 0.31% 0.9848 0.94%

InceptionResNetV2 0.9875 1.23% 0.9750 1.67% 1.0000 0.82% 0.9873 1.27%

InceptionV3 0.9800 0.51% 0.9600 0.84% 1.0000 0.21% 0.9796 0.53%

MobileNet 0.9825 1.18% 0.9650 2.33% 1.0000 0.10% 0.9822 1.25%

EfficientNetB0 0.9750 0.46% 0.9600 0.95% 0.9897 0.01% 0.9746 0.48%

EfficientNetB3 0.9850 1.55% 0.9750 2.96% 0.9949 0.22% 0.9848 1.63%

DenseNet201 0.9825 1.34% 0.9650 2.66% 1.0000 0.11% 0.9822 1.44%

ResNet152V2 0.9900 2.11% 0.9800 4.03% 1.0000 0.30% 0.9899 2.27%

ResNet152 0.9800 1.45% 0.9650 2.99% 0.9948 0.01% 0.9797 1.59%

DenseNet121 0.9725 0.99% 0.9450 1.94% 1.0000 0.11% 0.9717 1.05%

Xception 0.9625 0.10% 0.9250 0.22% 1.0000 0.00% 0.9610 0.11%

VGG19 0.9700 1.25% 0.9400 2.51% 1.0000 0.11% 0.9691 1.39%

EfficientNetB1 0.9725 1.62% 0.9500 2.81% 0.9948 0.57% 0.9719 1.76%

ResNet50 0.9650 1.10% 0.9300 2.31% 1.0000 0.00% 0.9637 1.23%

VGG16 0.9550 0.26% 0.9100 0.11% 1.0000 0.42% 0.9529 0.29%

ResNet101V2 0.9650 1.26% 0.9300 2.20% 1.0000 0.41% 0.9637 1.47%

MobileNetV2 0.9650 1.74% 0.9350 3.54% 0.9947 0.12% 0.9639 1.92%

ResNet101 0.9575 1.75% 0.9150 3.62% 1.0000 0.12% 0.9556 1.99%

ResNet50V2 0.9350 0.75% 0.8700 1.28% 1.0000 0.34% 0.9305 0.86%

NASNetMobile 0.8750 2.58% 0.7500 5.78% 1.0000 0.40% 0.8571 4.37%

Average 0.9683 1.20% 0.9383 2.28% 0.9983 0.26% 0.9666 1.38%
Table 8
Ensembles of CNN models applied to the COVIDx8B dataset. Each ensemble configuration has five instances of each participant model. The
highest values for each measure and the highest gains in comparison with the ensembles of single instances for each model are highlighted in
bold.

Models ACC TPR PPV F1

Mean Gain Mean Gain Mean Gain Mean Gain

Top 2 models 0.9850 −0.05% 0.9700 −0.31% 1.0000 0.20% 0.9848 −0.05%

Top 3 models 0.9875 −0.10% 0.9750 −0.20% 1.0000 0.00% 0.9873 −0.11%

Top 4 models 0.9875 0.05% 0.9750 0.10% 1.0000 0.00% 0.9873 0.05%

Top 5 models 0.9875 0.10% 0.9750 0.21% 1.0000 0.00% 0.9873 0.10%

Top 6 models 0.9875 −0.05% 0.9750 −0.10% 1.0000 0.00% 0.9873 −0.06%

Top 7 models 0.9875 0.10% 0.9750 0.21% 1.0000 0.00% 0.9873 0.10%

All models 0.9775 0.00% 0.9550 0.00% 1.0000 0.00% 0.9770 0.00%

Average 0.9857 0.01% 0.9714 −0.01% 1.0000 0.03% 0.9855 0.00%
7
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Table A.9
Classification accuracy (ACC) achieved by the CNN architectures when applied to the
train, validation, and test subsets individually.

Dataset/Subset Train Validation Test

DenseNet169 0.9951 0.9794 0.9815

EfficientNetB2 0.9936 0.9793 0.9760

InceptionResNetV2 0.9835 0.9681 0.9755

InceptionV3 0.9960 0.9784 0.9750

MobileNet 0.9936 0.9788 0.9710

EfficientNetB0 0.9894 0.9761 0.9705

EfficientNetB3 0.9948 0.9803 0.9700

ResNet152V2 0.9945 0.9757 0.9695

DenseNet201 0.9971 0.9816 0.9695

ResNet152 0.9923 0.9783 0.9660

DenseNet121 0.9962 0.9806 0.9630

Xception 0.9909 0.9777 0.9615

VGG19 0.9922 0.9804 0.9580

EfficientNetB1 0.9802 0.9697 0.9570

ResNet50 0.9955 0.9806 0.9545

ResNet101V2 0.9909 0.9707 0.9530

VGG16 0.9913 0.9772 0.9525

MobileNetV2 0.9987 0.9808 0.9485

ResNet101 0.9923 0.9803 0.9410

ResNet50V2 0.9859 0.9662 0.9280

NASNetMobile 0.9798 0.9660 0.8530

Table A.10
Classification sensitivity (TPR) achieved by the CNN architectures when applied to the
train, validation, and test subsets individually.

Dataset/Subset Train Validation Test

DenseNet169 0.9987 0.9611 0.9700

EfficientNetB2 0.9936 0.9662 0.9600

InceptionResNetV2 0.9830 0.9491 0.9590

InceptionV3 0.9965 0.9458 0.9520

EfficientNetB0 0.9760 0.9361 0.9510

EfficientNetB3 0.9935 0.9662 0.9470

MobileNet 0.9957 0.9440 0.9430

ResNet152V2 0.9928 0.9375 0.9420

DenseNet201 0.9964 0.9454 0.9400

ResNet152 0.9854 0.9509 0.9370

DenseNet121 0.9973 0.9421 0.9270

EfficientNetB1 0.9750 0.9505 0.9240

Xception 0.9847 0.9333 0.9230

VGG19 0.9874 0.9338 0.9170

ResNet101V2 0.9882 0.9278 0.9100

VGG16 0.9915 0.9324 0.9090

ResNet50 0.9918 0.9338 0.9090

MobileNetV2 0.9933 0.9241 0.9030

ResNet101 0.9701 0.9162 0.8830

ResNet50V2 0.9758 0.8921 0.8590

NASNetMobile 0.8874 0.8255 0.7090

architectures. On the other hand, precision is higher on the test subset
for all the architectures. Finally, the F1 score shows the closest results
in the training and test subsets. Some architectures achieved a higher
F1 score in the training subset, while others achieved a higher F1 score
in the test subset. This behavior may be related to the class imbalance,
even though class weights were used to minimize its effects. Future
work may focus on other techniques to handle class imbalance, like
8

Table A.11
Classification precision (PPV) achieved by the CNN architectures when applied to the
train, validation, and test subsets individually.

Dataset/Subset Train Validation Test

Xception 0.9502 0.9057 1.0000

ResNet50 0.9759 0.9242 1.0000

MobileNet 0.9587 0.9040 0.9990

VGG19 0.9566 0.9228 0.9989

DenseNet121 0.9754 0.9169 0.9989

DenseNet201 0.9822 0.9215 0.9989

ResNet101 0.9727 0.9366 0.9988

InceptionV3 0.9748 0.8998 0.9979

ResNet152V2 0.9682 0.8904 0.9970

ResNet50V2 0.9244 0.8630 0.9966

NASNetMobile 0.9602 0.9159 0.9960

ResNet101V2 0.9501 0.8701 0.9959

VGG16 0.9474 0.9044 0.9958

ResNet152 0.9598 0.8964 0.9947

MobileNetV2 0.9973 0.9337 0.9935

DenseNet169 0.9672 0.8946 0.9930

EfficientNetB3 0.9702 0.8977 0.9927

InceptionResNetV2 0.9077 0.8408 0.9919

EfficientNetB2 0.9631 0.8925 0.9918

EfficientNetB0 0.9486 0.8928 0.9896

EfficientNetB1 0.8924 0.8470 0.9892

Table A.12
Classification F1 score achieved by the CNN architectures when applied to the train,
validation, and test subsets individually.

Dataset/Subset Train Validation Test

DenseNet169 0.9825 0.9266 0.9812

EfficientNetB2 0.9774 0.9273 0.9756

InceptionResNetV2 0.9428 0.8905 0.9749

InceptionV3 0.9855 0.9221 0.9744

MobileNet 0.9768 0.9233 0.9701

EfficientNetB0 0.9619 0.9139 0.9699

EfficientNetB3 0.9815 0.9304 0.9690

DenseNet201 0.9892 0.9331 0.9683

ResNet152V2 0.9801 0.9128 0.9679

ResNet152 0.9722 0.9226 0.9644

DenseNet121 0.9862 0.9292 0.9616

Xception 0.9670 0.9190 0.9599

VGG19 0.9716 0.9281 0.9558

EfficientNetB1 0.9312 0.8954 0.9551

ResNet50 0.9837 0.9287 0.9520

VGG16 0.9688 0.9173 0.9501

ResNet101V2 0.9679 0.8966 0.9497

MobileNetV2 0.9953 0.9287 0.9457

ResNet101 0.9714 0.9262 0.9370

ResNet50V2 0.9493 0.8773 0.9226

NASNetMobile 0.9209 0.8675 0.8212

data augmentation. Moreover, future benchmark datasets will probably
minimize imbalance as more COVID-19 CXR images become available.
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