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ABSTRACT
◥

Glioblastoma is the most prevalent primary malignant brain
tumor in adults and is characterized by poor prognosis and uni-
versal tumor recurrence. Effective glioblastoma treatments are
lacking, in part due to somatic mutations and epigenetic repro-
gramming that alter gene expression and confer drug resistance. To
investigate recurrently dysregulated genes in glioblastoma, we
interrogated allele-specific expression (ASE), the difference in
expression between two alleles of a gene, in glioblastoma stem cells
(GSC) derived from 43 patients. A total of 118 genes were found
with recurrent ASE preferentially in GSCs compared with normal
tissues. These genes were enriched for apoptotic regulators, includ-
ing schlafen family member 11 (SLFN11). Loss of SLFN11 gene

expression was associated with aberrant promoter methylation and
conferred resistance to chemotherapy and PARP inhibition. Con-
versely, low SLFN11 expression rendered GSCs susceptible to the
oncolytic flavivirus Zika. This discovery effort based upon ASE
revealed novel points of vulnerability in GSCs, suggesting a poten-
tial alternative treatment strategy for chemotherapy-resistant
glioblastoma.

Significance: Assessing allele-specific expression reveals genes
with recurrent cis-regulatory changes that are enriched in glioblas-
toma stem cells, including SLFN11, whichmodulates chemotherapy
resistance and susceptibility to the oncolytic Zika virus.

Introduction
Glioblastoma ranks among the most lethal of human malignan-

cies with current therapies only offering palliation (1). Reasons for
treatment failure are myriad, with tumor heterogeneity at the
genetic and transcriptional levels contributing to the malignancy
of glioblastoma (2, 3). Glioblastoma displays a functional cellular
hierarchy with stem-like, self-renewing glioblastoma stem cells

(GSC) residing at the apex (4, 5). GSCs contribute to resistance
to chemotherapy and radiotherapy, neoangiogenesis, invasion into
normal brain, and escape from the immune system (6–8). There-
fore, targeting GSCs may improve current glioblastoma manage-
ment and extend the lives of patients.

Although glioblastoma is one of the most deeply characterized solid
tumors, precisionmedicine has not significantly benefitedmost neuro-
oncology patients. Most studies and targeted therapeutic strategies
have thus far focused on protein-coding mutations. However, many
important mutations lie in noncoding DNA where they function by
perturbing gene regulation. Noncoding mutations likely help drive
glioblastoma tumorigenesis and drug resistance but are more chal-
lenging to identify and impact gene regulation in many different ways.
Gene dysregulation can be caused by copy-number alterations (CNA;
refs. 9, 10), as well as by mutations that affect splice sequences (11),
untranslated regions (UTR; ref. 12), insulators (13, 14), promo-
ters (15, 16), and enhancers (12, 17). Moreover, genes are often
regulated by multiple enhancers, which can be located hundreds of
kilobases away from their targets (18). Regulatory mutations are,
therefore, diverse and frequently spread over very large regions of
the genome. As a result, standard recurrence analyses that identify
driver mutations in coding sequences are unlikely detect many impor-
tant regulatory mutations in cancer genomes. Alternate approaches to
discover regulatory mutations can by stymied by the myriad of
noncoding mutations whose function is difficult to predict from
sequence alone. Rather than relying on interpretation of noncoding
mutations, unbiased identification of genes with altered regulation can
pinpoint functionally important genes that are unlikely to be discov-
ered through other methods.

Here, we leveraged allele-specific expression (ASE) as a new
approach to interrogate recurrently dysregulated genes in glioblasto-
ma. ASE is the difference in expression between two alleles of a gene
and can be estimated frommapped RNA sequencing (RNA-seq) reads
that overlap heterozygous variants within exons (19, 20). Specifically,

1Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla,
California. 2Division of Regenerative Medicine, Department of Medicine, Uni-
versity of California, SanDiego, SanDiego, California. 3Department of Pathology,
Case Western Reserve University, Cleveland, Ohio. 4Department of Molecular
Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve
University, Cleveland, Ohio. 5UPMC Hillman Cancer Center, Pittsburgh,
Pennsylvania; Department of Neurology, University of Pittsburgh, Pittsburgh,
Pennsylvania. 6Herbert Irving Comprehensive Cancer Center, Columbia
University Medical Center, Irving Cancer Research Center, New York, New York.
7Skaggs School of Pharmacy and Pharmaceutical Sciences, University of
California, San Diego, La Jolla, California. 8Center for Discovery and Innovation
in Parasitic Diseases, University of California, San Diego, La Jolla, California.
9Department of Cellular and Molecular Medicine, University of California, San
Diego, La Jolla, California.

A. Sen and B.C. Prager contributed equally to this work.

Corresponding Authors: GrahamMcVicker, Salk Institute for Biological Studies,
10010 N Torrey Pines Road, La Jolla, CA 92037. Phone: 858-453-4100, ext 2052;
E-mail: gmcvicker@salk.edu; and Jeremy N. Rich, UPMC Cancer Pavilion, 5150
Centre Avenue, 5th Floor, Pittsburgh, PA 15232. Phone: 412-623-3364; E-mail:
richjn@upmc.edu

Cancer Res 2022;82:377–90

doi: 10.1158/0008-5472.CAN-21-0810

This open access article is distributed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

�2021 TheAuthors; Published by the American Association for Cancer Research

AACRJournals.org | 377

http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-21-0810&domain=pdf&date_stamp=2022-10-29
http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-21-0810&domain=pdf&date_stamp=2022-10-29


by counting the number of RNA-seq reads that contain the reference or
alternate allele, the relative expression of each copy of the gene can be
measured. Unlike standard RNA-seq expression levels, ASE is partic-
ularly sensitive to cis-acting mutations because it is generally unaf-
fected by trans-acting or environmental effects that impact both alleles
equally. Heterozygous sites within a gene’s exons are required to obtain
a readout of ASE; however, these heterozygous sites are not necessarily
the cause of a gene’s ASE. For example, the effect of a distal cis-
regulatory mutation on gene expression can be measured using
heterozygous variants within a gene, even when the distal mutation
has not been directly observed by sequencing. Thus, amajor advantage
of ASE is that it can identify genes that are dysregulated by cis-acting
regulatory mutations, even when the specific identities of the regula-
tory mutations are unknown. However, ASE is not solely caused by
somatic mutations and can also result from common germline poly-
morphisms (21), imprinting (22), or random monoallelic expres-
sion (23). Therefore, to discover genes that are dysregulated by cis-
acting factors such as regulatory mutations in cancer, the frequency of
ASE in disease samples must be compared with a panel of normal
samples. This approach has recently been used to identify new
pathogenic genetic variants in muscle disease (20) and oncogenic
mutations in T cell–acute lymphoblastic leukemia that would be
difficult to identify using traditional techniques (14).

Based on this background, we hypothesized that a discovery effort
based upon ASE could reveal novel points of fragility in the most
resistant tumor cells, the GSCs. GSCs maintained in serum-free
conditions maintain both genetic and transcriptional signatures found
in the tumors from which they were derived, while removing the
contaminating nontransformed cells that complicate genetic discov-
ery. Here, we interrogated ASE in 43 patient-derived GSCs and
compare the frequency of ASE to normal tissues to reveal novel
dysregulated molecular targets that promote drug resistance and
confer therapeutic vulnerabilities.

Materials and Methods
Derivation and maintenance of GSCs

Glioblastoma samples were obtained from surgical resection from
patients at Duke University or Case Western Reserve University with
informed consent in accordance with the Cleveland Clinic Institu-
tional Review Board-approved protocol 090401. Prior to use, all
samples were reviewed and verified by a neuropathologist. All patient
studies were conducted in accordancewith theDeclaration ofHelsinki.
GSC23 was acquired via a material transfer agreement from The
University of Texas MD Anderson Cancer Center (Houston, TX).
GSCs were cultured in Neurobasal media (Invitrogen) supplemented
with B27 without vitamin A (Invitrogen), EGF, and bFGF (20 ng/mL
each; R&D Systems), sodium pyruvate, and glutamax. Short tandem
repeat analyses were performed to authenticate the identity of each
tumor model used in this article both annually and prior to high-
throughput sequencing. Cells were stored at �160�C when not being
cultured. To minimize cell culture–based artifacts, patient-derived
xenografts were produced and propagated as a renewable source of
tumor cells for study. Cultured cells underwent PCR testing for
mycoplasma routinely every 6 months, and all RNA-seq data were
evaluated for mycoplasma content during quality control.

Variant calling
Exome-seq reads were aligned to the GRCh37 (hg19) assembly of

the reference genome using BWA-MEM with default parameters.
Mapped reads were filtered for mapping quality score ≥ 30 and

duplicate reads were removed using samtools (1.9, RRID:
SCR_00215; ref. 24). Genotypes were generated for each individual
using GATK’s HaplotypeCaller and jointly processed using the
GenotypeGVCFs function in GATK (4.1.1, RRID:SCR_001876).
Following genotyping, single-nucleotide variants (SNV) were
extracted and filtered using the variant quality score recalibration
(VQSR) method in GATK.

RNA-seq alignment and processing
RNA-seq reads were aligned end-to-end to the GRCh37 (or hg19)

assembly of the reference genome using STAR (2.5.3a, RRID:
SCR_004463). Mapped reads were filtered using mapping quality
score ≥ 20 and duplicate reads were removed using samtools (1.9).
Read counts for GENCODE (v28) genes were computed using Fea-
tureCounts (1.6.3, RRID:SCR_012919; ref. 25) and fragments per
kilobase per million (FPKM) values were estimated using DESeq2
(1.14.1; ref. 26). For downstream analysis, the FPKM values were
quantile normalized, and then converted to z-scores by mean-
centering and standardizing across samples.

Estimating allele-specific expression
RNA-seq read alignments were corrected for mapping bias and

allele-specific read counts at heterozygous positions were collected
using WASP (27). Heterozygous sites covered by at least 10 RNA-seq
reads were retained for allele-specific expression analysis.

Misclassification of heterozygous sites can occur due to incorrect
genotyping. To control for genotyping errors, we calculate the geno-
typing error rate, eG, directly from genotype quality scores (GQ) from
GATK:

�G ¼ 10
�GQ
10

Incorrect allele-specific read counts can be caused by sequencing
errors in RNA-seq reads. To control for sequencing errors, we
approximate the sequencing error rate, eS, using the count of “other”
reads, which do not match reference or alternate allele. To account for
the fact that only 2/3 of sequencing errors will be observed in the
“other” reads and the other 1/3 will match the alternate or reference
allele, we scale the sequencing error rate estimate, by 3/2, such that

�S ¼ 3
2

Pk¼1
n XOPk¼1

n XO þ XR þ XAð Þ
;

where XO is the other read count,XR is the read count for the reference
allele, and XA is the read count for the alternate allele.

Next, we assume a heterozygous site is equally likely to be mis-
classified as homozygous reference or alternate. Thus, conditional
upon a genotyping error having occurred, we define the likelihood at
site i as

L XR;i; nij�S; d; dGE ¼ 1
� �

¼ 0:5 � PBB XR;i; nijp ¼ �S
3
; d

� �
þ 0:5 � PBB XA;i; nijp ¼ �S

3
; d

� �

and conditional on no genotyping error, the likelihood is

L XR;i; nija; d; dGE ¼ 0
� � ¼ PBB XR;i; nijp ¼ 0:5þ a

� �
;

where PBB is the Beta binomial probability distribution function, ni
is the total count of reads matching the reference or alternative allele
i.e., ni ¼ XR,i þ XA,i at heterozygous site i, p is the reference allele

proportion (
XR;i
ni
), a is the allelic imbalance parameter defined over
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the range [�0.5, 0.5], d is the dispersion parameter, and dGE is an
indicator variable that is 1 when a genotyping error has occurred
and 0 otherwise. We estimate d by maximum likelihood over all
heterozygous sites overlapping exons (setting a to 0).

Finally, a single gene might contain multiple heterozygous sites
that need to be combined to estimate the allele imbalance for a gene.
We define the likelihood of the read counts for the first heterozygous
site within a gene as

L XR;1; n1ja; d; �S; �G
� � ¼ �G � L XR;i; nij�S; d; dGE ¼ 1

� �

þ 1� �Gð Þ � L XR;i; nija; d; dGE ¼ 0
� �

For subsequent heterozygous sites in the same gene, we do not
know the phase of the alleles with respect to the first heterozygous
site. We assume that the reference and alternative alleles are equally
likely to be on the same haplotype as the reference allele at the first
site. Thus, the combined likelihood of all sites within a gene is then
defined as

L XR; nja; dð Þ ¼ L XR;1; n1ja; d; �S; �G
� �

þ
Ym
i¼2

0:5 � L XR;i; nija; d; �S; �G
� �þ0:5 � L XR;i; nij � a; d; �S; �G

� ���

We estimate a for each gene by maximum likelihood under the
alternative model of allele imbalance. Then we use a likelihood ratio
test to compare the alternative model to the null model of no allele
imbalance (i.e., with a fixed to a ¼ 0). We correct the P values from
the likelihood ratio test for multiple testing using the Benjamini–
Hochberg method. To make it clear we are referring to allele
imbalance in RNA-seq reads, we refer to a as aRNA in the rest of
the manuscript.

Enrichment compared with a normal whole-blood and brain
tissues from GTEx

To generate a reference profile of ASE in normal samples, we
obtained RNA-seq data for 369 whole blood and 216 brain samples
distributed across 13 brain regions from the GTEx consortium (19)
and analyzed these data using our ASE algorithm described in the
previous section. To discover genes that were enriched for ASE in
GSCs, we compared the frequency of samples with significant ASE
for each gene between GSCs and whole blood using Fisher exact test
(FET) and adjusted the resulting P values using the Benjamini–
Hochberg procedure. We only analyzed genes that were testable for
ASE (i.e., had ≥ 1 heterozygous site with ≥10 reads) in both GSCs
and whole-blood tissues. For further analysis of ASE frequency for
individual genes, we also compared estimated allele imbalance from
our model (aRNA) among whole blood, 13 brain tissues, and GSCs.
Manhattan plots for enriched genes were generated using ggbio
(1.30). Gene ontology enrichment analysis for genes showing
recurrent ASE in GSCs was carried out using topGO (2.34,
RRID:SCR_014798; ref. 28).

Association between DNA methylation and gene expression
We downloaded precomputed genome-wide methylation data

for 43 GSCs from Gene Expression Omnibus (GSE119774, RRID:
SCR_005012; ref. 29). These methylation data were generated using
the Illumina Infinium Epic Methylation Array. In this assay, DNA
methylation levels at CpG sites are represented by b, which is the ratio
of the methylated (C) to unmethylated (T) signal. We annotated the
CpG probe positions based on GENCODE (v28, RRID:SCR_014966)

genes and computed the mean b values for promoter regions (i.e., 1 kb
upstream to 500 bp downstream of annotated transcription start sites;
bpromoter). To discover ASE genes thatmay be dysregulated by aberrant
DNA methylation, we computed Spearman rank correlation between
bpromoter and normalized gene expression. We corrected correlation P
values for multiple testing using the Benjamini–Hochberg procedure.
For this analysis, we only considered genes with ≥ 3 CpG probes
mapping to their promoter regions.

Analysis of H3K27ac chromatin immunoprecipitation and
sequencing data

We downloaded H3K27ac chromatin immunoprecipitation and
sequencing (ChIP-seq) data for 35 GSCs from Gene Expression
Omnibus (GSE119755, RRID:SCR_005012; ref. 29). ChIP-seq reads
were aligned to the GRCh37 (hg19) assembly of the reference genome
using BWA-MEM with default parameters. The mapped reads were
filtered using mapping quality score of ≥20, and duplicate reads were
removed using samtools (1.9). H3K27ac peaks were called using
MACS2 in paired-end mode with custom parameters (–nomodel
–extsize 200 –qvalue 0.05; ref. 30). To generate a unified set of test
regions, we divided the genome in 1 kb nonoverlapping genomic bins
and kept the bins that overlapped MACS2.0 peaks in at least one
GSC. We recounted the reads mapping to these genomic bins using
exomeCopy (1.28.0, RRID:SCR_001276) and calculated FPKM
using DESeq2 (1.22.2, RRID:SCR_000154; ref. 26). FPKM measure-
ments were quantile normalized and mean-centered for downstream
analysis.

The 1 kb genomic bins generated from H3K27ac ChIP-seq peaks
were annotated using the ChIPSeeker (1.18.0) package. To discover
cis-regulatory elements (CRE), we selected all distal intergenic and
intronic genomic bins located within 100 kb of promoters (i.e., 1 kb
upstream and 500 bp downstream of transcription start sites) of ASE
genes. We performed a Spearman correlation analysis between nor-
malized coverage for bins and normalized expression for genes to
identify CREs. We corrected the P values for multiple testing using the
Benjamini–Hochberg procedure.

Quantitative RT-PCR
TRIzol reagent (Sigma-Aldrich) was used to isolate total cellular

RNA from cell pellets, and the qScript cDNA Synthesis Kit (Quanta
BioSciences) was used for reverse transcription. Quantitative real-time
PCR was performed using SYBR-Green PCR Master Mix (Thermo
Fisher Scientific) on an Applied Biosystems 7900HT cycler.

Western blotting
Cells were collected and lysed in RIPA buffer (50mmol/L Tris-HCl,

pH 7.5; 150mmol/L NaCl; 0.5%NP-40; 50mmol/L NaF with protease
inhibitors) and incubated on ice for 30 minutes. Lysates were cen-
trifuged at 4�C for 15 minutes at 14,000 rpm, supernatant was
collected, and protein concentration was confirmed using a Pierce
BCA protein assay kit (Thermo Scientific, cat #23225). Equal amounts
of protein samples were mixed with SDS Laemmli loading buffer,
boiled for 10 minutes, electrophoresed using NuPAGE Bis-Tris gels
and transferred onto PVDFmembranes. Membranes were blocked for
1 hour with TBS-T plus 5% nonfat drymilk, then incubated in primary
antibodies overnight at 4�C. Blots were washed 3 times for 5 minutes
each with TBS-T and then incubated in TBS-T plus 5%milk for 1 hour
with appropriate secondary antibodies. Blots were imaged using Bio-
Rad Image Lab software and processed using Adobe Illustrator (RRID:
SCR_010279) to create the figures. The following antibodies were used
forWestern blot: SLFN11 (Santa Cruz Biotechnology; cat #SC-374339,

Allele-Specific Expression in Glioblastoma

AACRJournals.org Cancer Res; 82(3) February 1, 2022 379



RRID:AB_10989536) and HRP-conjugated GAPDH (Proteintech; cat
#HRP-60004, RRID:AB_2737588).

Lentiviral transduction
Lentiviral constructs expressing shRNAs directed against SLFN11

(Sigma TRCN, TRCN0000152057) or a nontargeting control shRNA
(TRCN0000231489) with no targets in the human genome were
obtained from Sigma-Aldrich. The SLFN11 expression vector was
obtained from VectorBuilder along with an empty vector control with
the same lentiviral backbone. 293T cells (ECACC; cat #12022001,
RRID:CVCL_0063) were used to generate lentiviral particles by
cotransfection of packaging vectors psPAX2 (RRID:Addgene_12260)
and pMD2.G (RRID:Addgene_12259) using a standard PEI transfec-
tion method in DMEM plus 1% penicillin/streptomycin. GSCs were
transduced with the lentiviral constructs, and selection was started
48 hours later using 1 mg/mL of puromycin for 72 hours, at which
times, cells were assayed for SLFN11 expression.

In vitro treatment and cell viability
For in vitro cell viability assays, 2,000 cells/well for individual or

5,000 cells/well for combinatorial drug studies were plated in a 96-well
plate. Cells were then treated 24 hours later with temozolomide
(Selleck Chem; cat #S1237), olaparib (Selleck Chem; #S1060), both
drugs, or DMSO at an equivalent percent volume to the highest drug
concentration. Cell viability was assayed 4 days later following a
12-hour incubation with alamarBlue (Thermo Fisher; cat #DAL1025)
and detected using a fluorescence-based plate reader. For Zika virus
studies, 5,000 cells/well were infected with Dakar 41519 strain ZIKV at
amultiplicity of infection of 5 (MOI¼ 5; ref. 31). Viability was assayed
at 3 days of post infection using CellTiter-Glo according to the
manufacturer’s instructions.

Statistical analysis
Tests for ASE were performed using likelihood ratio tests as

described above. Frequencies of samples with significant ASE were
compared using FET, as described above. For analysis of all in vitro
data, comparisons between more than two samples were performed
using ANOVA followed by Tukey HSD or using Student t test. The
number of replicates and specific statistical tests used are indicated in
the figure legends.

Data availability statement
RNA-seq (GSE119834), H3K27ac ChIP-seq (GSE119755), and

human methylation 450K array data (GSE119774) for GSCs used in
the paper were previously published and can be downloaded from
GEO (GSE119776; ref. 29).

Results
Glioblastoma target gene discovery leveraging recurrent allele-
specific expression

To discover genes with ASE, we implemented a statistical model to
estimate allele imbalance for every gene (Fig. 1A). Our systematic
methodology utilizes RNA-seq reads overlapping heterozygous sites
and reduces false positives by accounting for technical sources of
variation, including sequencing errors, genotyping errors, and over-
dispersion of RNA-seq read counts. We quantified ASE with RNA
allelic imbalance (aRNA), which is the difference between the reference
allele proportion and the expected value of 0.5. We applied our model
to RNA-seq data from 43 patient-derived GSCs representing a diverse
population of patients (age, biological sex, etc.) and tumor features

(genetics, transcriptional subgroups, etc.) that we previously
reported (29). We identified 5,808 genes with significant ASE in at
least one GSC under a false discovery rate (FDR) of 10% (Supple-
mentary Table S1). ASEwas restricted to a single sample formost genes
(3,948 out of 5,808). However, 1,860 genes showed ASE in 2 or more
GSCs, and 298 genes showed highly recurrent ASE that was present in
5 or more GSCs (Fig. 1B).

To discover genes that showed recurrent ASE specific to GSCs
relative to normal tissues, we compared the frequency of ASE for each
gene in GSCs to both normal whole-blood and normal brain samples
from the Genotype Tissue Expression (GTEx) project using the FET.
Whole blood has, by far, the largest number of samples in GTEx, so we
used it as the initial reference tissue; however, we performed subse-
quent comparisonswithASE in 13 different brain tissues to account for
tissue-specific imprinting, as described below. Under an FDR of 10%,
118 genes displayed significantly enriched ASE in GSCs (Supplemen-
tary Table S2). To illustrate the power of this approach, we examined
the ASE patterns of the noncoding RNA geneH19, which ismaternally
imprinted (32), and RHOB, which is important for glioblastoma
tumorigenesis (33, 34). Imprinting causes loss of expression of the
allele inherited fromone parent, and as expected for an imprinted gene,
H19 showed ASE in almost all normal and tumor samples (Fig. 1C,
top). In contrast, ASE of RHOB was restricted to GSCs (Fig. 1C,
bottom).

Recurrent ASE in cancer genomes can be caused by frequent CNAs
or loss-of-heterozygosity. In the presence of large CNAs, many genes
are expected to exhibit ASE, but these geneswould be clustered into the
genomic regions that undergo frequent CNAs. However, in our data
set, recurrent ASE genes were distributed throughout the genome,
suggesting that their dysregulation was not due to large-scale CNAs,
but was instead caused by localized cis-regulatory mutations or
epigenetic changes (Supplementary Fig. S1A).

To examine the biological function of the 118 genes with recurrent
ASE in GSCs, we performed Gene Ontology (GO) enrichment anal-
ysis, revealing overrepresentation of recurrent ASE genes involved in
regulation of cell cycle and apoptosis (FDR ≤ 5%). Twenty-eight genes
with recurrent ASE were associated with the Biological Process GO
category “programmed cell death,” whereas only 13 genes were
expected by chance (Fig. 1D). These genes included the kinase
IP6K2 (35, 36), which exhibited a marked enrichment of ASE in GSCs
compared with both whole-blood (FET P ¼ 0.001; FDR-adjusted P ¼
0.06) and brain tissues from GTEx (Supplementary Fig. S1B and
Supplementary Table S2).

Allele-specific gene expression is associated with H3K27ac
marks at distal regulatory elements

Cis-acting pathogenic variants impact gene expression by dis-
rupting regulatory sequences, such as enhancers (17, 37). To
illuminate the cis-acting mechanisms that underlie ASE in GSCs,
we tested whether the expression of the 118 ASE genes was
associated with the activity of nearby CREs. We identified putative
CREs within 100 kb of the ASE gene promoters using histone H3
lysine 27 acetyl (H3K27ac) chromatin immunoprecipitation fol-
lowed by deep sequencing (ChIP-seq) data that we previously
generated for the GSCs (29). We divided the genome into 1 kb
genomic bins and labeled bins that overlapped H3K27ac peaks in at
least one GSC as putative CREs.

To connect CREs with genes, we correlated normalized H3K27ac
levels with gene expression, focusing on distal intergenic and intronic
elements. We used gene expression rather than ASE for this purpose,
because ASE can only be estimated in samples that carry at least one
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heterozygous SNP within exons. Furthermore, ASE does not detect
regulatory changes that affect both alleles equally. Of the 118 ASE
genes, 56 had a significant Spearman rank correlation with the activity
of a distal CRE (FDR≤ 5%). Inmany cases, a single gene was associated
with the activity of multiple CREs, such that 227 CRE bins were
associated with the expression of these 56 genes (Supplementary
Table S3). Thus, gene expression of many ASE genes was associated
with activity levels of distal regulatory elements, as measured by
H3K27ac, suggesting that cis-acting mutations within these CREs are
a plausible and potentially common mechanism for the dysregulation
of these genes in glioblastoma.

One example of an ASE gene that is associated with multiple
CREs is NOTCH1. ASE of NOTCH1 was enriched in GSCs com-
pared with both whole-blood (FET P ¼ 5.09e�5; FDR-adjusted
P ¼ 0.0094) and brain samples, and we observed extreme biases
in reference and alternate allele proportions at all heterozygous
sites (Fig. 2A and B). NOTCH1 gene expression correlated with
H3K27ac levels of 29 nearby CREs (Fig. 2C and D; Supplementary
Table S3). To confirm that these CREs were more strongly asso-
ciated with NOTCH1 expression than expected by chance, we
created an empirical null distribution for each CRE by correlating
H3K27ac levels with the expression of 1,000 randomly selected
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genes. Using these null distributions, 75% (22 out of 29) CREs
remained significantly correlated with NOTCH1 gene expression
(empirical P ≤ 5%). These regions may contain cis-regulatory
noncoding mutations that lead to NOTCH1 gene dysregulation
and may be excellent targets for future regulatory screens dissecting
the regulation of NOTCH1 expression in GSCs.

Promoter methylation is associated with the expression of ASE
genes

Aberrant DNA methylation of gene promoters is associated with
widespread gene expression changes and chemotherapy resistance in
brain tumors. In gliomas, MGMT CpG-rich promoter methylation is
associated with decreased expression and improved response to
temozolomide (TMZ) treatment (38). To determine whether genes
with recurrent ASE were associated with aberrant DNA methylation,
we analyzed the CpG methylome of the GSCs (29). We estimated the
promoter methylation of the 118 ASE genes (bpromoter) and computed
Spearman rank correlations with normalized gene expression. We
identified 30 genes that displayed correlation between promoter

methylation and gene expression at FDR ≤ 10% (Supplementary
Table S4), of which, 16 overlapped with the 56 genes identified above
with correlated gene expression and H3K27ac levels at CREs. Thus,
70 of the 118 ASE genes were associated with promoter methyla-
tion, CRE activity or both, suggesting possible mechanisms for their
dysregulation.

SLFN11 promoter methylation associates with its gene
expression

One of the 30 genes with correlated gene expression and promoter
methylation was SLFN11 (rho ¼ �0.68, FDR corrected P ¼ 0.0001;
Fig. 3A–C). SLFN11 is notable because it inhibits DNA replication and
promotes cell death in response to DNA damage (39, 40). Loss of
SLFN11 causes resistance to poly ADP ribose polymerase (PARP)
inhibitors in small cell lung cancer, suggesting that it may be an
important marker of chemotherapy resistance (41). ASE of SLFN11
was highly enriched in GSCs with 4 out of 10 testable GSCs exhibiting
ASE, compared with 0 out of 159 testable normal whole blood
tissues from GTEx (FET P ¼ 6.4e�6; FDR-adjusted P ¼ 2.2e�3;
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Figure 2.

NOTCH1 exhibits recurrent allele-specific expression and association with multiple CREs. A, ASE estimates (aRNA) of NOTCH1 in GSC and normal brain and whole-
blood samples from GTEx. B, The proportion of NOTCH1 RNA-seq reads matching the reference and alternate alleles at heterozygous sites in four GSCs with
significantNOTCH1ASE. Reads at these heterozygous variants are used to estimate ASE, but these variants are not necessarily the cause of ASE, which, for example,
may be due to unobserved cis-regulatory mutations. C, The H3K27ac profile around NOTCH1. Samples are arranged in increasing order of gene expression, with
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Supplementary Table S2). Although this gene showed enrichment of
ASE in GSCs compared with whole blood samples, we detected ASE in
a small number of normal brain tissue samples (4 out of 224; Fig. 3D).
This suggests that rare germline variants or somatic events, such as
mutations or DNA methylation, may affect SLFN11 expression in
some phenotypically normal individuals. In the four GSCs with
significant SLFN11 ASE the RNA-seq read counts show strong allelic
bias atmultiple SNVs at different locationswithin the gene, which rules
out the possibility that the observed ASE is due to genotyping errors or
read mapping artifacts that would be more likely to affect a single site
(Fig. 3E).

Based on the promotermethylation and gene expression of SLFN11,
GSCs can be divided in three distinct classes: (i) GSCs with high
methylation and low expression; (ii) GSCs with intermediate meth-
ylation and intermediate expression; and (iii) GSCs with low meth-
ylation and high expression (Fig. 3A). Four GSC samples with ASE of
SLFN11 had intermediate methylation, which is consistent with
methylation and reduced expression of one allele (Fig. 3A and B).
However, samples like GSCs 2907 and 007B had high promoter
methylation levels (>60%) and very low expression of SLFN11
(Fig. 3A). Under these circumstances, genes would not be found by
ASE because the expression of both alleles is reduced. These results
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Figure 3.

SLFN11 gene expression and allele-specific expression are correlated with promoter methylation. A, Scatterplot showing correlation between gene expression
and mean promoter methylation (bpromoter) in GSCs. Samples are blue if they have significant SLFN11 ASE, red if they do not have significant ASE, and
uncolored if ASE could not be estimated due to lack of a heterozygous variant. B, Correlation between ASE and promoter methylation or gene expression. ASE
is positively correlated with promoter methylation but negatively correlated with gene expression. C, CpG methylation around the promoter region of SLFN11.
Samples are arranged by increasing order of gene expression, with the highest expression sample at the bottom. D, Estimated ASE for SLFN11 in GSCs
compared with normal brain and whole-blood samples from GTEx. E, The proportion of SLFN11 RNA-seq reads from the reference and alternate alleles at
heterozygous sites in four GSCs with significant SLFN11 ASE.
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demonstrate that low expression of SLFN11 in GSCs is associated with
increased promoter methylation and that the samples with detectable
ASE likely have methylation of one allele, but not the other.

SLFN11 augments chemotherapy resistance in GSCs
SLFN11 regulates cellular responses to DNA damaging

agents (39, 40). Therefore, we hypothesized that SLFN11 expression
in GSCs would be associated with chemotherapeutic resistance to an
alkylating agent, TMZ, and a PARP inhibitor, olaparib. To test this
hypothesis, we utilized four patient-derived GSCs: two with high
SLFN11 expression and no evidence for ASE (839 and MNK1) and
two with low SLFN11 expression and strong ASE (2012 and 1552).We
confirmed both SLFN11 mRNA and SLFN11 protein abundance by
RT-PCR (Fig. 4A) and immunoblot (Fig. 4B). We treated cells with
drug concentrations ranging from 0 to 1,000 mmol/L for TMZ and 0 to
50 mmol/L for olaparib, then measured drug effects on cell survival to
generate a concentration–response matrix where an effect of 100%
corresponds to complete killing of all cells and 0% corresponds to no
difference in cell survival (Fig. 4C andD; Supplementary Fig. S2). We
estimated synergy between the twodrugs using SynergyFinder 2.0 (42).
Two GSCs with low expression and ASE of SLFN11 had reduced
responses to drug treatment compared the GSCs with high expression
of SLFN11. The maximum response for both ASE GSCs ranged from
40% to 50%, whereas the GSCs with high expression of SLFN11 had
responses ranging from �70% to 80% (Fig. 4D). The two ASE GSCs
also had lower drug synergy scores for the combination of the drugs
(Fig. 4E).

To directly test whether SLFN11 expression affects chemothera-
peutic drug sensitivity in GSCs, we also performed knockdown (KD)
and overexpression (OE) experiments. Specifically, we performed KD
of SLFN11 in MNK1 GSCs, which have high baseline expression of
SLFN11 (Fig. 5A), using two nonoverlapping shRNAs. After confirm-
ing shRNA-mediated knockdown of SLFN11 in MNK1 GSCs, we
measured cell survival in response to treatment with TMZ and
olaparib. SLFN11 KD in MNK1 cells reduced cell death in response
to drug treatment (Fig. 5A and B). Conversely, overexpression of
SLFN11 in 2012 GSCs, which have low baseline expression of SLFN11,
increased cell death in response to combinatorial drug treatment
(Figs. 5C andD). Knockdown and overexpression of SLFN11 similarly
changed sensitivity to single-drug treatments, although not signifi-
cantly so (0.05 < P < 0.1; Supplementary Fig. S3). Synergistic drug
response to TMZ and olaparib treatment decreased upon SLFN11 KD
and increased with OE (Fig. 5E). Thus, SLFN11 expression is causally
linked to sensitivity to the chemotherapeutic drugs TMZ and olaparib.

GSCs with low expression of SLFN11 are sensitive to Zika virus
SLFN11 may be involved in cellular response to viral infection.

SLFN11 is upregulated following virus-induced type I interferon
response and restricts flavivirus replication in human tumor cell
lines (43–45). Oncolytic viruses that infect the central nervous system
can be leveraged to treat brain tumors (46). We recently demonstrated
that Zika virus, which is a member of the flavivirus genus of RNA
viruses, preferentially infects and kills GSCs compared with differen-
tiated tumor cells and normal neuronal cells (47). Based on this
background, we hypothesized that tumor cells with promoter meth-
ylation of SLFN11 would be more susceptible to oncolytic destruction
by Zika because they are unable to increase SLFN11 expression in
response to interferon stimulation (47). Under this hypothesis, inter-
feron exposure would induce upregulation of most interferon-
responsive genes but would fail to induce SLFN11 expression in cells
with SLFN11 promoter methylation.

To test the above hypothesis, we examined the association
between SLFN11 gene expression and type I interferon response
by analyzing gene expression data from 669 glioblastoma tumors
obtained from The Cancer Genome Atlas (48). To quantify inter-
feron response in each sample, we computed a single-sample gene
set enrichment analysis (ssGSEA) score using the interferon alpha
response hallmark gene set (49, 50). Glioblastoma had higher gene
expression of SLFN11 compared with grade II and III gliomas
(Fig. 6A), and SLFN11 gene expression correlated with the inter-
feron alpha (IFNa) ssGSEA score (R ¼ 0.4, P < 2.2e�16), con-
sistent with induction of SLFN11 expression in response to inter-
feron signaling (Fig. 6B). Glioblastomas with higher expression of
SLFN11 had gene set enrichment for activation of immune
response, complement activation, defense response to virus, and
response to interferon alpha compared with tumors with lower
SLFN11 expression (Fig. 6C). Enrichment of these immune path-
ways likely reflects the constitutive activation of autocrine inter-
feron signaling, which might facilitate immune escape for
tumors (51).

To more directly test whether interferon signaling induces SLFN11
gene expression, we treated GSCs with IFNa and measured the
expression of SLFN11 and type 1 immune response genes OAS1,
ISG20, and IFITM 8 hours after treatment. All four GSCs increased
expression of OAS1, ISG20, and IFITM following IFNa treatment,
although the level of induction in the GSC 839 was modest (2–3-fold)
compared with the other GSCs (Fig. 6D). IFNa treatment also
increased SLFN11 gene expression in MNK1 and 839 GSCs, which
have high baseline expression of SLFN11 and no ASE. However, IFNa
treatment did not increase expression of SLFN11 in 2012 and 1552
GSCs, both of which showed ASE of SLFN11 and high promoter
methylation (>25% bpromoter). These results suggest that DNA meth-
ylation of the SLFN11 promoter blocks upregulation of SLFN11 by
interferon signaling (Fig. 6D).

To determine if GSCs with promoter methylation and low expres-
sion of SLFN11weremore susceptible to killing by Zika, we treated the
same four GSCs with Zika or saline control (Fig. 6E; Supplementary
Fig. S4). GSCs with promoter methylation of SLFN11 (2012 and 1552)
displayed decreased viability following Zika infection compared with
GSCswithout promotermethylation (839 andMNK1). To directly test
whether SLFN11 expression affects susceptibility to Zika, we per-
formed SLFN11OE in 2012 GSCs (which have low baseline expression
of SLFN11) and SLFN11 KD in the 839 and MNK1 GSCs (which have
high baseline expression of SLFN11). SLFN11 OE (Fig. 5C) decreased
susceptibility to Zika (Fig. 6F), whereas KD (Fig. 5A) increased
susceptibility to Zika (Fig. 6G).

Although each Zika experiment was performed with only a single
biological replicate per GSC and more biological replicates would be
desirable, we note that experiments were performed in multiple GSCs,
and each experiment consisted of 3–10 technical replicates. Further-
more, our conclusions are supported by multiple lines of evidence.
First, Zika infection and control experiments were performed on two
GSCs with high SLFN11 expression (MNK1 and 839) and two GSCs
with low SLFN11 expression (2012 and 1552). As expected, both of the
low expression cell lines had lower viability in the presence of Zika
(Fig. 6E). Second, overexpression of SLFN11 in the 2012 GSC (with
low baseline SLFN11 expression) increased resistance to Zika (Fig. 6F).
Third, knockdown of SLFN11 in the MNK1 GSC (with high baseline
SLFN11 expression) increased susceptibility to Zika (Fig. 6G). In
combination, these results provide compelling support for the hypoth-
esis that SLFN11 expression is important for cell viability following
Zika infection.
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Discussion
ASE analysis of tumor genomes is a new approach that can discover

biomarkers and therapeutic targets by illuminating genes that are
recurrently dysregulated. ASE analysis makes it possible to prioritize

genes that are affected by cis-regulatory factors such as regulatory
mutations, evenwhen the precise identity of themutational events that
drive the transcriptional changes is unknown (52, 53). This differs
from standard differential gene expression analysis, which identifies

0

−50

−100

−150
N

or
m

al
iz

ed
 S

LF
N

11
ex

pr
es

si
on

839 MNK1 2012 1552
GSC model

No ASE
ASE

83
9

M
N

K1

20
12

15
52

ASENo ASE
A B

DC

839 2012MNK1 1552

O
la

pa
rib

 (µ
m

ol
/L

)

−30 −10 10 30

Average synergy: 9.731

100 50 100 500 1,000
0

0.5

1

5

10

50
−30 −10 10 30

Average synergy: 3.905Average synergy: 6.274 Average synergy: 5.249

0

20

40

60

80

100

Effect at 
maximum dose

83
9

M
N

K1

15
52

20
12

0

20

40

60

80

100
Maximum effect

%
 E

ffe
ct

%
 E

ffe
ct

No ASE
ASE

% Effect
80

64

48

32

16

0

839 2012

MNK1 1552

TM
Z 

(µ
m

ol
/L

) 
TM

Z 
(µ

m
ol

/L
) 

TMZ (µmol/L) TMZ (µmol/L) TMZ (µmol/L) TMZ (µmol/L) 

 

Olaparib (µmol/L) Olaparib (µmol/L)
0.50 1 5 10 50 0.50 51 10 50

1,000

500

100

50

10

0

1,000

500

100

50

10

0

E
−30 −10 10 30 −30 −10 10 30

SLFN11

GAPDH

83
9

M
N

K1

15
52

20
12

100 50 100 500 1,000 100 50 100 500 1,000 100 50 100 500 1,000

Figure 4.

SLFN11 expression is associated with chemotherapeutic resistance in GSCs. A, qPCR of SLFN11 expression in GSCs without ASE of SLFN11 (839 and MNK1; red)
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Figure 5.

Knockdown and overexpression of SLFN11 modulates chemotherapeutic resistance in GSCs. A, Left, qPCR of SLFN11 expression in MNK1 GSCs transduced with a
nontargeting control shRNA (shCONT) or shRNAs targeting SLFN11 (shSLFN11.382 and shSLFN11.2648). Gene expression is plotted as 2–DDCt normalized to actin
expression. Right, Western blot of the same samples for SLFN11 and GAPDH expression. B, Cell viability of MNK1 GSCs transduced with shCONT (left), shSLFN11.382
(top right), or shSLFN11.2648 (bottom right) following treatmentwith TMZandolaparib. Cell viability relative toDMSOcontrol is annotatedon ablue–white–red scale,
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and y-axis (TMZ). C, Left, qPCR of SLFN11 expression in GSC 2012 transduced with an empty vector or an SLFN11 overexpression vector (OE). Gene expression is
plotted as 2–DDCt normalized to GAPDH expression. Right, Western blot of the same samples for SLFN11 and GAPDH expression. D, Cell viability of 2012 GSCs
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and treatment samples: ���� , P < 0.0001.
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Figure 6.

SLFN11 expression affects sensitivity of GSCs to Zika virus. A, Box plot of SLFN11 expression in The Cancer Genome Atlas database comparing grade II, III, and IV
gliomas. Boxes are notched at the median and extend from the first to third quartiles, with whiskers extending from 5% to 95%. B, Correlation of SLFN11 expression
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thousands of genes when comparing normal and tumor tissues. As
gene expression is affected by the environment and by the activity of
upstream factors, most of these differentially expressed genes are
“passengers” that are downstream of the primary events that drive
transcriptional changes. In contrast, by analyzing ASE we discover a
relatively small number (118) of candidate disease genes that are
recurrently dysregulated by cis-regulatory factors in GSCs, but not
in normal tissues.

Many of the candidate genes identified by our ASE analysis have an
established role in tumor biology. For example, IP6K2, a proapoptotic
protein kinase showed ASE almost exclusively in GSCs. IP6K2 selec-
tively binds toHSP90, which decreases its catalytic activity and inhibits
apoptosis (36). Disruption of this interaction by cisplatin and novo-
biocin, chemotherapeutic compounds that bind to the C-terminus of
HSP90, restores its catalytic function and promotes apoptosis (54).
Furthermore, knockdown of IP6K2 in colorectal cancer cells has been
demonstrated to selectively impair p53-mediated apoptosis, instead
favoring cell-cycle arrest (55). These observations from previous
studies suggest that IP6K2 may be an important tumor suppressor
in glioblastoma.

NOTCH1 also exhibited ASE that was specific to GSCs. NOTCH1
regulates neural stem cell fate during neurogenesis and high expression
of NOTCH1 has been reported in many high-grade gliomas (56–58).
Notch1 signaling promotes invasion, self-renewal, and growth of
GSCs (59, 60);NOTCH1-KD suppresses cell proliferation and induces
apoptosis (61). Furthermore, inhibition of the Notch1 signaling
pathway sensitized tumor cells to apoptosis induced by ionizing
radiation, the death ligand TRAIL (tumor necrosis factor-related
apoptosis-inducing ligand), or the Bcl-2/Bcl-XL inhibitor ABT-
737 (62). These studies suggest that NOTCH1 may help maintain the
stem cell–like behavior of GSCs and promote tumor progression. The
multiple CREs correlated with NOTCH1 expression are potentially
excellent targets for subsequent studies and cis-regulatory screens.

Recurrent ASE of SLFN11 is an important finding because this gene
has recently emerged as a biomarker of drug sensitivity in cancer (63).
We demonstrate that in GSCs, SLFN11 gene expression is associated
with DNA methylation of its promoter and its expression is required
for the antitumor activities of the DNA alkylating agent TMZ and

the replication inhibitor olaparib. The current standard of care for
glioblastoma patients is maximum safe surgical resection followed by
concurrent TMZ and radiotherapy (64). Similar to MGMT promoter
DNAmethylation, SLFN11 promotermethylationmay be a biomarker
that predicts the efficacy of DNA damaging agents, such as TMZ and
olaparib. In addition, promotermethylation and reduced expression of
SLFN11may reflect evolution of resistance to TMZwithin tumor cells.
In GSCs, SLFN11 gene expression was regulated by type 1 interferons
and frequently upregulated in high-grade tumors, alongside consti-
tutive activation of autocrine interferon signaling that facilitates
immune evasion of GBM cancer cells (51). However, in the presence
of promoter CpG methylation, SLFN11 is unresponsive to IFNa
cytokine treatment, rendering GSCs vulnerable to killing by oncolytic
viruses, such as Zika (47). Thus, tumors refractory to DNA damaging
agents may be more amenable to treatment with genetically modified
viruses. As GSCs with low SLFN11 expression are susceptible to Zika,
but resistant to chemotherapy and vice versa, the combination of
oncolytic viruses and chemotherapy may be a powerful treatment
approach (Fig. 7).

One limitation of our study is that it does not incorporate the role of
the tumor microenvironment in the model systems. Future efforts
could investigate interactions between immune cells and tumor cells to
elucidate how SLFN11 expression in tumor cells affects tumor main-
tenance and the antitumor immune responses.
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