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Machine learning phenomics 
(MLP) combining deep learning 
with time‑lapse‑microscopy 
for monitoring colorectal 
adenocarcinoma cells gene 
expression and drug‑response
M. D’Orazio1,2, M. Murdocca3, A. Mencattini1,2*, P. Casti1,2, J. Filippi1,2, G. Antonelli1,2, 
D. Di Giuseppe1,2, M. C. Comes1,2, C. Di Natale1, F. Sangiuolo3 & E. Martinelli1,2

High-throughput phenotyping is becoming increasingly available thanks to analytical and 
bioinformatics approaches that enable the use of very high-dimensional data and to the availability 
of dynamic models that link phenomena across levels: from genes to cells, from cells to organs, and 
through the whole organism. The combination of phenomics, deep learning, and machine learning 
represents a strong potential for the phenotypical investigation, leading the way to a more embracing 
approach, called machine learning phenomics (MLP). In particular, in this work we present a novel MLP 
platform for phenomics investigation of cancer-cells response to therapy, exploiting and combining 
the potential of time-lapse microscopy for cell behavior data acquisition and robust deep learning 
software architectures for the latent phenotypes extraction. A two-step proof of concepts is designed. 
First, we demonstrate a strict correlation among gene expression and cell phenotype with the aim 
to identify new biomarkers and targets for tailored therapy in human colorectal cancer onset and 
progression. Experiments were conducted on human colorectal adenocarcinoma cells (DLD-1) and 
their profile was compared with an isogenic line in which the expression of LOX-1 transcript was 
knocked down. In addition, we also evaluate the phenotypic impact of the administration of different 
doses of an antineoplastic drug over DLD-1 cells. Under the omics paradigm, proteomics results are 
used to confirm the findings of the experiments.

A major inhibition to successful cancer treatment is the widespread heterogeneity in tumour cell populations, at 
the patient as well as at the cell level1. Cancer cells vary in their response to therapy, in the development of drug 
tolerance, survival and metastatic potential. The evolution of multidrug-resistant genotype has been noted in sub-
sets of hematologic and solid tumours including breast, ovarian, lung, and lower gastrointestinal tract cancers1. 
Such heterogeneity explains why personalized therapies based on tumours molecular phenotyping have acquired 
great interest, with the final aim to perform genome disease stratification and identify specific treatments for each 
detected disease subcategory2. However, the great spatio-temporal complexity of the molecular phenomena, the 
gene redundancy and pathways functional overlaps, makes it arduous identifying the inter-relationships among 
specific genetic/epigenetic traits and cancer phenotypes3,4.

Moving from a large-scale population genomics investigation to a focused phenomics approach, it is then 
possible to identify physiologically relevant measures of disease risk using a smaller subset of patients and to 
derive clinically meaningful and translational insights on disease aetiology5,6. Such an approach is particularly 
powerful to account for potential modifiers of disease risk (e.g., microenvironment, microbiome, family history, 
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longitudinal follow-up, etc.). Although analyses of genomic data have been successful at uncovering biologi-
cal phenomena, they are—in most cases—supplementing rather than supplanting phenotypic information7. 
Phenotyping investigation (phenomics in what follows) is therefore crucial to address exceptional responders in 
cancer realm or rare diseases8.

In the present work, we claim to integrate phenotype disease manifestations (so called observational traits) 
with physiologic, multi-omic, and imaging data9,10 (see Fig. 1). Challenging is therefore to quantitatively under-
stand phenotypic characteristics, such as health, disease and evolutionary behaviour of cells, organs, and indi-
viduals at small-scale levels11. Phenotypic variation is produced through a complex set of interactions between 
genotype and environment and such a ‘Genotype–Phenotype’ (GP) map is inaccessible without the detailed 
phenotypic data that allow these interactions to be studied. Fortunately, time is ripe for phenomics paradigm 
application: technologies for high-throughput phenotyping are becoming increasingly available12; analytical and 
bioinformatics approaches that enable the use of very high-dimensional data are advancing rapidly13; dynamic 
models that link phenomena across levels from genes to cells, to organs and through the whole organism are in 
reach. Figure 1 represents some investigation tools nowadays available for each omic scenario, going from DNA 
and RNA-Seq microarray for genotype investigation to gas chromatography mass spectrometry (GC–MS) for 
proteomics/metabolomics and finally, at larger scale, morphodynamic (phenotype) analysis through time-lapse 
microscopy.

The common denominator of cancer cell heterogeneity to drug response relies on the cell-to-cell variability 
even between genetically identical cells14, caused by epigenetic differences, cellular microenvironment, differ-
ences in protein expression, and asymmetric cell division15,16. This variability has been shown to influence and 
determine cellular decision-making and has been studied in various contexts, including cancer drug resistance14, 
pluripotency of stem cells17, and microbial infection18. Relevantly, studies have indicated that biological systems 
have evolved to exploit cell-to-cell variability in a sort of survival/adaptation task19,20.

To reveal variability in cellular signalling and exploit it to the aim of disease reaction understanding and 
control, measurements at the single-cell level21 (generally indicating the fact that phenotype information are 
extracted from each cell along time) as well as at a subgroups of cells are required22.

Existing experimental techniques comprise live-cell imaging using fluorescent markers23 or mass24 and flow 
cytometry25, and fluorescence label-free time-lapse microscopy26,27. The data provide different types of informa-
tion about the cells, going from kinematics characteristics of individual cells trajectories to cell morphometric 
states classification20.

Figure 1.   A layout of the genomics-phenomics axis. The cell behavior may be investigated at different scales: 
from the DNA microarray analysis for genomics, through proteomics and metabolomics by gas chromatography 
mass spectrometry, until a microscale analysis for phenomics using optical imaging acquisition.
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Phenomics may enlarge the plethora of cell analyses by suggesting more and more aspects of cell dynamics to 
be investigated. Cell dynamic characteristics (kinematics, morphodynamics exploited along each cell trajectory) 
contain several coded information useful to extract not only individual cell activities information but also the 
likelihood of entire population behaviour. On the other hand, the complexity of such phenotypical information 
may confound the extraction of the so-called latent factors for the final understanding of the population drug 
reaction mechanism (resistance, efficacy, abnormal response), to the ultimate task of targeting and optimize the 
treatment for a subclass of individuals.

Keeping this in mind, in this work we present a novel platform for phenomics investigation of cancer cells 
response to therapy, exploiting and combining the potential of time-lapse microscopy for cell behaviour data-
acquisition and robust deep learning software architectures for the latent phenotypes extraction28.

A two-steps proof of concepts is designed to illustrate some of the possible phenomics insights revealed by 
the proposed platform.

First, we demonstrate a strict correlation among gene expression and cell phenotype conducting experiments 
on the human colorectal adenocarcinoma cells (DLD-1) and comparing its profile with an isogenic line in which 
the expression of LOX-1 transcript is down modulated by using siRNA approach29. The identification of new bio-
markers and targets for tailored therapy in human colorectal cancer (CRC) onset and progression is an interesting 
challenge. CRC tissue produces an excess of ox-LDL, suggesting a close correlation between lipid dysfunction 
and malignant transformation. Lectin-like oxidized LDL receptor-1 (LOX-1) is involved in several mechanisms 
closely linked to tumorigenesis30–32. In our previous publications29,33, we designed and built a cell line in which 
in vitro expression of LOX-1 is stably knockdown by siRNA and we called them LOX- 1RNAi DLD-1. Specifically, 
we used a shRNA-expressing lentiviral vector targeting the mRNA encoded by the orl1 gene. In these cells the 
modulation of LOX-1 leads to an impaired proliferation rate, affecting cell growth and tumorigenicity. Thus, in 
this work we do not have a mutated versus a wild type cells, but the in vitro experiments just compare DLD-1 
versus LOX- 1RNAi DLD-1 having an identical genetic background, except for LOX-1 expression. Moreover, a 
drug was used able to inhibit VEGF, also demonstrating that VEGF and LOX-1 are mutually regulated.

This fact motivated the interest in this case study as a proof of concept of the existence and the importance of 
the genomics-phenomics relationship. In addition, we demonstrated the existence of a proteomics-phenomics 
(PP) axis by administering over DLD-1 cells different doses of Bevacizumab, a well-known antineoplastic drug. 
Such a drug is a Vascular Epithelial Grow Factor (VEGF) specific antibody. Bevacizumab selectively binds 
VEGF preventing it from binding its receptors. There is a strict correlation between LOX-1 and VEGF: when 
overexpressed LOX-1 determine the upregulation of VEGF expression inducing the neoangiogenic process in 
many tumours34,35. VEGF targeted therapies, such as bevacizumab, decrease the concentration of VEGF hence 
exerting effects on vasculature, inhibiting new vessel growth and regrading newly formed vessels, as well as 
directly on cells (cytostatic effect)36–38.

In the two aforementioned studies, we depict biological scenarios in which by varying the expression level of 
a single transcript (LOX-1 and VEGF) within the same genetic background we tried to measure the correspond-
ing phenotypic variation, reconstituting the bridge of the GP and of the PP association. The two case studies are 
interconnected since LOX-1 and VEGF are tightly and mutually linked.

These preliminary case studies are also used as a proof of concept of the possibility to recreate the GP and the 
PP association from phenomics in the simpler environment of the 2D culturing examination. Under the omics 
paradigm, proteomics results are used to confirm the findings of the experiments. Notably, we found that cells 
with similar expression of LOX-1 and VEGF share the same observable phenotype.

The combination of phenomics, deep learning, and machine learning represents a strong potential for phe-
notypical investigation overcoming the need to define hand-crafted descriptors, although highly meaningful, 
leading the way to a more embracing phenomics approach, called Machine Learning Phenomics (MLP). MLP 
avoids the need to define specific descriptors focusing the analysis on a detailed aspects (e.g., cell kinematics, 
cell death events, etc.) but rather to extract a high-level time-varying phenotypical representation, at single-cell 
level, for the duration of the experiment. Such a high-level encoding, endorsed by transfer learning procedure39,40, 
allows solving the curse of dimensionality problem and reaching a strong generalizability ability. At the same 
time, the proposed MLP platform introduces, for the first time, the possibility to conduct continuous pheno-
typical investigation along time, revealing not only gene and drug-related cell state fate but also the signalling 
pathway along the response processes. This aspect is, to author’s opinion, crucial for a further advance in cell 
phenomics investigation, featuring the possibility to redefine personalized drug treatment protocols not only 
in concentration and cocktail formulation, but also in relation to drug timing. Drug dosing and timing are still 
partially undiscovered aspects that may play a crucial role in pharmacokinetics paradigms toward a more precise 
understanding of drug resistance phenomena and abnormal drug responses mechanism, with the aim to optimize 
the cancer treatment long-term effects, also in relation to the genotype41.

Results
Experimental set‑up.  We evaluated our approach on two different studies:

•	 Case study 1. The phenomics representation evidenced comparing colorectal adenocarcinoma DLD-1 cells 
versus the same cell line in which only LOX-1 mRNA expression has been in vitro downmodulated by a 
siRNA approach.

•	 Case study 2. The recognition of phenotype patterns of dose-mediated effects of drug administered to DLD-1 
cells (Bevacizumab at two different concentrations, 125 µg/ml and 250 µg/ml), versus DLD-1 in which no 
drug has been added.
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For both scenarios, phenotype responses are collected by using deep transfer learning, namely by using 
pretrained deep learning networks with the aim to convert images (region of interest containing a cell along its 
trajectory) into numerical descriptors. The variation of the descriptors along the trajectory is then quantified by 
computing the standard deviation of the descriptors over time. In this way, the method is automatically capable to 
characterize phenotype variations over time and use them to construct a MLP model for the task of classification. 
We compared our approach against another benchmark method involving the construction of a classification 
model over standard morphological phenotypical descriptors (perimeter, area, eccentricity and solidity of cell 
shape) and cell texture features (Haralick features42). Additional comparative approaches will be also presented 
with the aim to demonstrate the effectiveness of the algorithm blocks designed (e.g., background subtraction, 
the role of deep features with respect to standard object segmentation, etc.) in relation to an increased algorithm 
robustness to luminance variations for example. Experiments were conducted in a 2D microenvironment using 
label-free time lapse microscopy in the brightfield. Video are acquired at a frame rate of 1 frame per minute and 
at a spatial resolution of 0.33 μm per pixels. The total duration of each experiment was 12 h.

Experimental results.  Case study 1.  Performance of classification.  In case study 1, we were involved in 
the task of discriminating phenotype variations in DLD-1 cells with respect to DLD-1 in which LOX-1 expres-
sion has been reduced (later simply LOX1 inhibited), demonstrating the existence of a strict correlation among 
gene expression and cell phenotype in this biological system. In the considered experiment, cells naturally tended 
to group in clusters. We postulated that cells of the same cluster behad in a sort of cooperative way that may be 
revealed by computing the majority voting over the class labels assigned to the tracks of the same cluster. Clusters 
are automatically identified by implementing the procedures described in43. In particular, to demonstrate such 
an assumption, we compare the results achieved by the Support Vector Machine (SVM)44 classification model, 
built over descriptors of each single track, with those achieved using voting at the cluster level. Further details of 
the classification models settings can be found in the Method section.

Results have been evaluated by computing the unbalanced accuracy of classification calculated on half-
experiment-out cross-validation. We divided each video into two identical partitions (left and right). Clusters 
belonging to one of the two partitions were used in test in each running whereas the remaining partitions were 
used as training set. For this reason, we referred to this kind of cross-validation as “half-experiment out”.

In order to demonstrate the generalizability of the approach, we compare the accuracy results obtained by 
using the four different networks: AlexNET45, GoogleNET46, ResNET10147, and NasNETLarge48. Table 1 lists 
the accuracy values.

It is important to observe that the four networks obtain almost the same results, with a maximum variation 
in the mean accuracy value of 2.89%, at single-track level. Such an invariance gives strength to the approach 
and demonstrates its generalizability. In light of this, more specific results in terms of confusion matrices can be 
found in Fig. 2 only for RESNET101 network and the SVM classifier.

As it can be seen, out of 35 clusters (956 tracks) with DLD-1 cells, 28 are recognized as DLD-1 whilst only 
7 are as assigned to LOX1 inhibited. On the contrary, out of the 63 clusters belonging to LOX1 inhibited (862 
single tracks), 51 are recognized as LOX1 inhibited whilst only 12 are assigned to DLD-1 class.

Comparison with traditional morphological features.  In order to appreciate the fundamental role of the 
dynamic features extracted and to demonstrate their discrimination ability in terms of classification accuracies, 
we perform a comparative test: in particular, we considered the results obtained by constructing the classifica-
tion model over the standard morphological descriptors (perimeter, area, eccentricity and solidity of cell shape) 
and the cell texture features (Haralick features42), mentioned in the Introduction. All the extracted descriptors 
are coded by computing five statistics over the trajectory: mean, standard deviation, skewness, kurtosis and 
signal Shannon Entropy. In order to extract such morphological descriptors, we needed to segment cells in each 
ROI. Segmentation was carried out using supervised approach based on semantic segmentation (SS) by Deeplab 
v3 + architecture49. Such architecture used a pretrained CNN network, RESNET101, and performed retraining of 
the labelling step using a given amount of images with assigned ground truth segmentation. The augmentation 
technique was used to enlarge the dataset for training, by shifting and rotation. In this way, SS can be adapted to 
whichever number of output levels (more than two) in presence of multi-labels images. In our application, we 
trained SS on a binary problem of segmenting cells over a dark background. After each cell shape is estimated, 
morphological parameters are extracted along with texture parameters computed in the cell region. Such fea-
tures are then used to construct a unique classification model.

With the aim to compare results obtained by different classification model we compare here four distinct 
well-known classifiers: Support Vector Machine (SVM)44, Random Forest (RF)50, K-nearest neighbor (KNN)51, 
and Linear Discriminant Analysis (LDA)52. Details on the model settings can be found in the Method section.

Table 1.   Accuracy values of classification using four deep learning network and SVM classification model.

DLD-1 versus LOX1 inhibited ALEXNET GOOGLENET RESNET101 NASNETLARGE

Single-track level 72.83 ± 5.22% 71.55 ± 4.85% 74.00 ± 4.37% 74.44 ± 4.40%

Single-cluster level 70.00 ± 7.73% 79.52 ± 7.48% 80.48 ± 6.59% 82.38 ± 5.66%
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Accuracy results obtained are reported in Table 2 and compared with those achieved exploiting the pro-
posed MLP approach. The proposed method outperforms the traditional one by 9.48% in mean Accuracy at 
the single-track.

Relevance of the background suppression step.  Background suppression is fundamental when using transfer 
learning procedures. In fact, if from one hand transfer learning exploitation allows achieving more generaliz-
able and robust results, on the other hand, it may suffer from macroscopic luminance variation in the acquired 
videos. Being already trained on a very large dataset of highly informative images, the pretrained network may 
be unable to discriminate background luminance from low contrast cells. Therefore, such approach may be at 
risk of biasing due to the presence of macroscopic differences between different experiments. Being not yet fully 
addressed in the literature, we strongly believe that this aspect will represent a hot topic towards a more realistic 
and reliable use of transfer learning.

To demonstrate the relevance of using background suppression, we performed a sensitivity analysis by pre-
liminarily changing the background luminance conditions applying biasing in the testing ROIs. Such procedure 
allows verifying the effect of such modifications on the final accuracy of classification results comparing Back-
ground Suppression procedure with the No Preprocessing condition. Table 3 summarizes the results obtained by 
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Figure 2.   Confusion matrices of the classification task in case study 1 using RESNET101 and SVM classifier. 
Single-track results (left) and cluster results (right). Third column represents in turn from top to bottom: ratio of 
DLD1 correctly recognized, ratio of LOX1 inhibited correctly detected, unbalanced accuracy (ratio of the sum of 
true positives and true negatives over the total number of instances).

Table 2.   Accuracy values of four classification models (SVM, RF, LDA, and KNN) built on shape and texture 
descriptors, compared with the results obtained using RESNET101 transfer learning descriptors.

DLD-1 versus LOX1 inhibited

SVM

Shape & texture descriptors RESNET101

Single-track level 64.52 ± 6.73% 74.00 ± 4.37%

Cluster Level 73.49 ± 9.20% 80.48 ± 6.59%

RF

Shape & texture descriptors RESNET101

Single-track level 62.89 ± 4.56% 72.06 ± 5.16%

Cluster level 66.51 ± 10.02% 78.73 ± 5.67%

LDA

Shape & texture descriptors RESNET101

Single-track level 66.96 ± 11.18% 73.36 ± 6.77%

Cluster level 66.51 ± 12.31% 76.35 ± 8.15%

KNN

Shape & texture descriptors RESNET101

Single-track level 61.11 ± 7.98% 68.49 ± 6.36%

Cluster level 70.63 ± 6.36% 72.22 ± 5.94%
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applying a fixed increasing biasing to the original testing ROIs equal to values 0.3 (second column) corresponding 
to the 30% of the dynamic range, and equal to 0.5 (third column) corresponding to the 50% of the dynamic range.

It is important to observe that the exploitation of background suppression procedure allows maintaining 
accuracy values stable in presence of biases. On the contrary, even if the use of standard procedure (No Pre-
processing) seems to increase the accuracy values in absence or in presence of small bias, it is evident that if bias 
increases, the performance unacceptably get worse (56.92% vs 74.03%). This fact motivates the importance of 
applying a preprocessing step based on background suppression.

Case Study 2.  In this case study, we evaluated the phenotype effects of dose-dependent administering of the 
VEGF inhibition drug, i.e. Bevacizumab. More specifically, we consider a three class problem in which we have 
DLD-1 cells, DLD-1 cells treated with 125 μg/ml and DLD-1 cells treated with 250 μg/ml. This case study dem-
onstrates the existence of the PP axis. Table 4 lists the accuracy values of classification for the three-class prob-
lem, by using the four networks as shown in Table 1.

Again the four networks show similar results, with a maximum variation in mean accuracy of 4.18%. In 
addition, Fig. 3 illustrates the confusion matrices for the three-class problem only for RESNET101 network and 
SVM classifier.

The accuracies obtained with traditional shape and texture features are compared with the performances of 
the proposed MLP approach (Table 5), by implementing the four classification models described above. In this 
case study the proposed method outperforms the traditional one by 16.17% in accuracy at the single-track level.

As for case study 1, we present the results achieved by applying biasing to the image of an increasing level in 
the pixel intensity of the ROIs in test. Table 6 lists the accuracy results for these comparative experiments. This 
case study confirms the necessity of the proposed preprocessing.

Table 3.   Accuracy classification results for No Bias condition (first column), bias value equal to 0.3 (second 
column), bias value equal to 0.5 (third column), using RESNET101 and SVM classifier.

RESNET101

No Bias Bias in test = 0.3 Bias in test = 0.5

No Preprocessing Background Suppression No Preprocessing Background Suppression No Preprocessing Background Suppression

DLD-1 versus LOX1 
inhibited 79.63 ± 3.75% 74.00 ± 4.37% 78.22 ± 6.91% 74.16 ± 4.41% 56.92 ± 6.47% 74.03 ± 5.08%

Table 4.   Accuracy values of classification using four deep learning networks and SVM classifier.

DLD-1 versus DLD-1 125 µg/ml versus DLD-1 250 µg/ml ALEXNET GOOGLENET RESNET101 NASNETLARGE

Single-track level 76.17 ± 3.47% 76.06 ± 4.09% 77.88 ± 3.41% 73.70 ± 3.80%

Single-cluster level 86.77 ± 4.64% 84.42 ± 5.36% 84.03 ± 3.73% 81.78 ± 5.19%
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Figure 3.   Confusion matrices of the classification task in case study 2. Single cell results (left) and cluster 
results (right). Third column represents in turn from top to bottom: ratio of DLD1 correctly recognized, ratio 
of Bevacizumab 125 μg/ml correctly detected, ratio of Bevacizumab 250 μg/ml correctly detected, unbalanced 
accuracy (ratio of the sum of true instances over the total number of instances).
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Comparison with single‑time point analysis.  The proposed approach used a single-cell strategy during the 
data collection step (cell tracking, transfer learning in a crop around the cell along the track, etc.). In addition, 
the information extracted along the track are then combined using higher order descriptors such as standard 
deviation in order to capture the dynamic of the feature along the track and use this information as a signature of 
the cell behavior. Classification accuracy is then evaluated at single-track level (one track corresponds to a data) 
or using a majority voting of the labels assigned to all the tracks of the same cluster (cluster level). Such promis-
ing results have to be compared with those achieved by considering each cell time point as a data. We refer to 
this approach as single-time point level analysis. Table 7 lists the results achieved by the three approaches. It is 
straightforward to note that performance results collected at single-time point are very low and not comparable 
with those achieved by the proposed strategy.

Table 5.   Accuracy values of four classification models (SVM, RF, LDA, and KNN) built on shape and texture 
descriptors, compared with the results obtained using RESNET101 transfer learning descriptors.

DLD-1 versus DLD-1 125 μg/ml versus DLD-1 250 μg/ml

SVM

Shape & texture descriptors RESNET101

Single-track level 61.71 ± 4.33% 77.88 ± 3.41%

Cluster level 64.46 ± 7.08% 84.03 ± 3.73%

RF

Shape & texture descriptors RESNET101

Single-track level 53.81 ± 4.24% 72.80 ± 4.46%

Cluster level 56.08 ± 8.19% 80.07 ± 6.17%

LDA

Shape & texture descriptors RESNET101

Single-track level 55.15 ± 8.22% 74.34 ± 4.92%

Cluster level 53.84 ± 12.51% 86.51 ± 6.56%

KNN

Shape & texture descriptors RESNET101

Single-track level 51.04 ± 6.66% 70.52 ± 4.41%

Cluster level 52.52 ± 11.67% 81.61 ± 5.42%

Table 6.   Accuracy classification results for No Bias condition, bias value equal to 0.3 (secondo column), bias 
value equal to 0.5 (third column), using RESNET101 and SVM classifier.

RESNET101

No bias Bias in test = 0.3 Bias in test = 0.5

No preprocessing Background suppression No preprocessing Background suppression No preprocessing Background suppression

DLD-1 versus DLD-1 
125 µg/ml versus DLD-1 
250 µg/ml

75.55 ± 4.09% 77.88 ± 3.41% 65.29 ± 5.88% 77.90 ± 3.69% 49.23 ± 8.70% 76.70 ± 3.74%

Table 7.   Accuracy values of the SVM classification model at single-time point level obtained using 
RESNET101 transfer learning descriptors and compared with those achieved by the proposed cooperative 
strategies (i.e., single-track and cluster level).

DLD-1 versus LOX1 inhibited RESNET101

Single-time point level 64.15 ± 0.60%

Single-track level 74.00 ± 4.37%

Cluster level 80.48 ± 6.59%

DLD-1 versus DLD-1 125 µg/ml versus DLD-1 250 µg/ml RESNET101

Single-time point level 64.94 ± 0.62%

Single-track level 77.88 ± 3.41%

Cluster level 84.03 ± 3.73%
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Discussion
Comparative phenomics and proteomics results.  We proposed a new fully automated platform that 
is able to extract significant information about the dynamic of the cell morphological phenotype. The whole 
process is done without the need to train any Deep Neural Network architecture and hence it is a ready to use 
tool for biologists and clinicians.

We showed that our method is able to discriminate phenotypic characteristics of cells related to downregula-
tion of LOX-1 receptor (gene expression pathway) or to dose-dependent drug administration (drug effects path-
way), outperforming other benchmark methods with good accuracy independently from the network chosen.

To better emphasize the underlying molecular phenomena, we analyzed the expression of VEGF-A and of 
LOX-1 transcripts by Real-Time qPCR (Fig. 4).

The analysis evidenced a statistically significant reduction of LOX-1 and VEGF-A mRNA in DLD-1 cells in 
which LOX-1 expression was stably down modulated (DLD-1#5) compared to DLD-1scramble, in which LOX-1 
is expressed (P < 0.05).

After treating cells with Bevacizumab (a monoclonal antibody against VEGFA) for 24 h, as expected we found 
that VEGF-A levels were significantly decreased at transcriptional level, especially using a concentration of 250 
ug/ml. We found also downregulation of LOX-1 in cells treated with Bevacizumab. This finding suggests that a 
bidirectional link exists between the expression of VEGF and LOX-1.

It has been shown that a block of VEGF causes cytostasis36. Cytostasis is linked to change in the morphological 
phenotype of cells and hence to a difference in morphostatic features37,53.

Motility is linked to the capability of cells to dynamically change the shape of their cytoplasm to crawl. This 
dynamic change can be seen in the dynamics of cell’s morphology and hence in morphodynamic features.

Phenotype features gather information from both these two phenomena (cytostasis and motility), while 
morphostatic features (shape features) gather information only from the first.

As a further proof of concept of the molecular foundation of our method, we used Principal Component 
Analysis (PCA)54 to investigate the mutual relationship between the four colorectal adenocarcinoma cell classes 
(DLD-1 scramble, LOX-1 inhibited and treated at 125 and 250 µg/ml), with particular attention to the relation 
between the LOX-1 inhibited class (DLD-1 #5) and the class treated with Bevacizumab at intermediate con-
centration (125 µg/mL). Principal Component Analysis is an unsupervised feature extraction technique able 
to project data in a low dimensional space while preserving data structure. This technique is particularly useful 
to get intuitive visualization of data. As we can see in Fig. 5A,B LOX-1 inhibited and DLD-1 treated at 125 µg/
mL are in the same region of the transformed space, as is in the LOX-1 – VEGF space. The LOX-1 inhibited 
class shows higher variance than those observed for Bevacizumab 125 µg/mL class as it was evidenced for the 
expression of VEGF and LOX-1 genes. This proves the existence of a strong link between molecular expression 
and cell’s phenotype dynamic suggesting its use in future precision medicine applications. Figure 5C,D illustrate 
analogous results achieved by using traditional shape and morphological features. The results clearly show a 
lower separation between the classes.

As it is shown in Fig. 5 (panels A and B), the distribution on the first two principal components related to 
LOX-1 inhibited is strongly overlapping the distribution related to populations treated at 125 μg/ml. This fact 
shows that cells with similar proteomics share also similar phenotypical traits. This proves the existence of 
the genomics-proteomics-phenomics axis. From methodological point of view, this indicates the fact that in 
the phenomics of the two experiments there are some common observational cell traits correlated to different 
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Figure 4.   Relative gene expression of LOX-1 and VEGF-A for the four investigated classes: Control Colorectal 
cancer cells class (DLD-1 scramble), DLD-1 with stably down modulated LOX-1 (DLD-1#5), DLD-1 treated 
with Bevacizumab at 125 and 250 µg/ml.
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genomics effects. Looking again at Fig. 1, this fact corroborates the non-uniqueness of the correlation among 
gene expression and cell phenotype that is known to be also affected by environmental interactions.

Conclusion
In the present work, we proposed a new fully automated platform that is able to extract significant information 
about the dynamic of the cell morphological phenotype and to recapitulate a strict correlation among gene 
expression and cell phenotype. Thanks to the integration of phenomics, with image analysis, deep learning, and 
machine learning, we devised a more embracing approach, called Machine Learning Phenomics (MLP). The 
effectiveness of the proposed MLP platform has been tested against the ability to discriminate phenotype char-
acteristics of cells related to downregulation of LOX-1 receptor (gene expression pathway) or to dose-dependent 
drug administration (drug effects pathway) in Colorectal Cancer Cells. The results demonstrate that the proposed 
platform outperformed other benchmark methods with good accuracy independently from the neural network 
chosen. From biological aspects, one of the potentials of the platform relies on the possibility to confirm that the 
inhibition of LOX-1 phenotypically emulates drug response. From a methodological point of view, this indicates 
the fact that in the phenomics of the two experiments there are some common observational cell traits correlated 
to different genomics effects corroborating the non-uniqueness of the genomics-phenomics axis that is known 
to be also affected by environmental interactions. The existence of a strong link between molecular and dynamic 
expression of the cellular phenotype opens the way for its use in future precision medicine applications.

Figure 5.   PCA Scores plot of the first two components obtained using: (A) Deep Features—Control DLD-1 
(red) versus treated at 250 μg/ml (blue) versus LOX1 inhibited (green). (B) Deep Features—Control DLD-1 cells 
(red) versus treated at 125 μg/ml (green) versus treated at 250 μg/ml (blue). (C) Traditional features—Control 
DLD-1 (red) versus treated at 250 μg/ml (blue) versus LOX1 inhibited (green). (D) Traditional features—
Control DLD-1 cells (red) versus treated at 125 μg/ml (green) versus treated at 250 μg/ml (blue).



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8545  | https://doi.org/10.1038/s41598-022-12364-5

www.nature.com/scientificreports/

Methods
The first step is devoted to cell localization and tracking along the video (Fig. 6A). Then, a region of interest (ROI) 
containing each cell is extracted (Fig. 6B). A background subtraction procedure is then applied to each ROI to 
assure robustness against experimental non biological sources of variation (e.g., changes in light source intensity, 
changes in focus, etc.) (Fig. 6C). Using a pretrained network, the method extract features from patches (Fig. 6D). 
After rearrangement of the extracted features in signals, the dynamics of each feature variation is extracted via 
statistics extraction (Fig. 6E). The extracted statistical descriptors are then used to train a machine learning 
algorithm in order to infer conclusions about the biological experiments and give insight of the phenomenon at 
the cell (Fig. 6F) or cluster level (Fig. 6G).

Cell‑culture.  Human colon cancer cell lines: DLD-1 (ATCC: CCL-221TM),) were used. mRNA expression 
analysis was performed on DLD-1 in which LOX-1 mRNA was stably downmodulated (LOX-1#5) as previously 
reported in29. DLD-1 scramble cells were used as control. Human colon cancer cells were grown in RPMI-1640 
(Gibco, Life Technologies Corporation, Carlsbad, CA, USA) supplemented with 15% fetal bovine serum (FBS) 
(Euroclone, Milan, IT), Glutamine (Euroclone, Milan, IT), non-essential Amino Acids (Gibco, Life Technologies 
Corporation, Carlsbad, CA, USA), Penicillin–Streptomycin (Gibco, Life Technologies Corporation, Carlsbad, 
CA, USA).Cells were seeded at the density of 50,000 cells/cm2 and incubated at 37 °C, 5% CO2 for 24 h. After-
wards bevacizumab (Sigma-Aldrich S.r.l., Milan, Italy) was added at the concentration of 125 and 250 µg for 
24 h. After this period, cells were trypsinized and collected. The experiment was performed in triplicate.

Gene expression analysis.  Total RNAs from cells were extracted by Trizol Reagent (Invitrogen Life 
Technologies Corporation, Carlsbad, CA, USA) following manufacturer’s instructions. Treatment with DNase 
I-RNase-free (Ambion, Life Technologies Corporation, Foster City, CA, USA) was used to eliminate genomic 
DNA contamination from total RNA samples. One μg of RNA was reverse transcribed with the High-Capacity 
cDNA Archive kit (Life Technologies Corporation, Foster City, CA, USA) and used in RT-qPCR. LOX-1 and 
VEGFA mRNAs were measured by SYBR Green (Life Technologies Corporation, Foster City, CA, USA).GAPDH 
was used as reference gene. Primer sequences will be given upon request. The comparative ΔΔCt method was 
used to quantify relative gene expression levels.

Time‑lapse microscopy acquisition.  A total of eight videos were acquired with a customized small-scale 
inverted microscope whose details are described elsewhere43. An ad-hoc firmware was developed in Matlab 
2017a® to have full control on images acquisition and light exposure. Each video was recorded for 12 h at 1 frame 
per minute and a theoretical spatial resolution of 0.33 Μm/px. Two independent videos were acquired for each 
of the following experimental conditions:

Figure 6.   The figure depicts an overview of the method. (A) Cells are located and tracked. (B) Cell centered 
ROIs are extracted. (C) Background suppression is applied to the ROIs. (D) Features are extracted from the 
processed ROIs using a pretrained Deep Neural Network. (E) Starting from features signals, statistics are 
extracted in order to catch the dynamic of the phenomenon. (F) Using the statistics as features, machine 
learning model is constructed in order to have predictions at single cell level. (G) Cluster-based majority voting 
is finally exploited to summarize the cluster behaviour.
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1.	 DLD-1 Colorectal Cancer cells
2.	 DLD-1 #5
3.	 DLD-1 treated with Bevacizumab 125 μg/ml
4.	 DLD-1 treated with Bevacizumab 250 μg/ml

Cell localization and tracking.  The videos acquired are firstly processed through an already validated 
Matlab ® software tool called Cell-Hunter55–57. Cell-hunter is here adapted to the localization of a single popula-
tion. In particular, the localization step is performed by means of Circular Hough Transform (CHT)58,59 with 
radius range of [4.3–7.6] μm. Starting from a set of localized centers, a suboptimal Assignment Problem (SOAP) 
problem is solved using the Munkres’ algorithm60. Each cell is then tracked along its movement in the video.

Cell ROI extraction.  In order to achieve a local cell-centered representation of each moving cell along the 
trajectory, a Region-Of-Interest (ROI) sequence is automatically extracted by cropping the video along the tra-
jectory. Fixed dimension of 63 × 63 px (4.32e-4 mm2) for each crop has been selected according to the average 
cell radius estimated using the CHT outcome. Each ROI sequence is a signature of the cell phenotype along the 
video and is considered as the input of the machine learning algorithm.

Image preprocessing.  In brightfield microscopy, cells usually appear as dark objects in brighter (transpar-
ent) background due to the opacity of the cell cytoplasm and cell membrane. For further image-based process-
ing, each ROI is inverted in order to have a brighter object over a dark background. By indicating with IO(x,y,t) 
the generic original ROI image at time t, assuming that graylevel belong to the normalized range [0,1], the 
inverted image I(x,y,t) is obtained by applying the linear map

Then, after computing the average luminance of I
(

x, y, t
)

 , indicated with mI , the following piecewise map is 
applied for background subtraction to obtain the final image IBS

(

x, y, t
)

In this way, the new ROI image IBS
(

x, y, t
)

 presents an attenuated background and increased uniformity 
among different images and videos is achieved.

To reduce also the influence of the surrounding cells, towards an even more cell-centered analysis, a Gaussian 
windowing is applied to the ROI image IBS

(

x, y, t
)

 , resulting the new image IW
(

x, y, t
)

 , given by

where the Gaussian window Gσ

(

x, y
)

 is defined as

 where A represents a normalization factor and σ represents the standard deviation of the Gaussian function. In 
our work, σ is set to 18 px (i.e., the average radius used in the CHT) corresponding to about 5.9 μm.

To increase the image contrast along each ROI sequence and maintain the homogeneity of the images along 
the sequence, we implemented the following adaptive procedure.

First, we applied an histogram stretching procedure to IW
(

x, y, t0
)

 , where t0 indicates the time of the first 
frame of the sequence, by using the following piecewise linear map

where IE
(

x, y, t0
)

 represents the enhanced ROI image in the first frame, l1 and l2 are the 1st and the 99th quantile 
graylevels in IW

(

x, y, t0
)

.
The remaining frames IE

(

x, y, t
)

 for t > t0 are adapted to IE
(

x, y, t0
)

 by applying histogram matching with 
respect to the first frame61. That approach allows reducing unpredictable inconsistencies between consecutive 
frames that may produce biased classification results.

Deep feature extraction.  Deep Learning networks based on Convolutional Neural Networks, have been 
extensively used for several classification tasks in the context of biomedicine and biological applications. How-
ever, one of the most powerful approach within the context of DL is transfer learning, as highlighted in the Intro-
duction. Transfer Learning allows transferring the network knowledge elsewhere acquired over a pre-learning 
step, in the case study under test. In this way, we not only solve the curse of dimensionality problem by avoiding 
collecting large dataset for network training, but also strongly reduce time-consuming requirements. With the 
aim to demonstrate the robustness of the proposed platform analysis, we compared in the same method four 
distinct CNNs, namely AlexNET45, GoogleNet46, ResNet10147, and NASNetLarge48. Provided that each network 
has its own input layer size, and pooling layer dimension, Table 8 lists all the different configurations required 
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to apply each network. In addition, we also report the name of the deep layer used for transfer learning and the 
number of features extracted within.

Feature extraction and selection.  As indicated in Table 8, the number of features extracted using dis-
tinct networks is largely variable. Anyway, it is well known that, especially for highly sparse images (e.g., images 
with many dark pixels) the extracted transferred features are sparse, or zero for the entire sequence. In fact, 
features activated by the deep layers, spatially correspond to specific region of the original image. Therefore, it 
is expected that features corresponding to regions with no pixel intensity variation (i.e., no cell activity) do not 
present high activation levels. To evaluate optimal features to select, each ROI sequence is transferred to a set of 
deep feature signals, fi(t) (see Fig. 6). To obtain a descriptor related to the dynamic evolution of the cell images, 
we calculated for each deep features the relative standard deviation. We use these descriptors as input of the fea-
ture selection step. In this phase, for each training set, a subset of the initial feature set will be selected based on 
the computation of Area Under the roC (AUC) value. More specifically, features with AUC smaller than thmin or 
larger than thmax, where thmin = quantile(AUC,0.1) and thmin = quantile(AUC,0.9), will be selected.

Single‑cell (track) classification.  After feature selection, each cell track has been considered as a unique 
data sample, given that the observation period is such that the temporal changes occurring in the morphological 
phenomics of the cells are representative of the experimental scenario. In light of this, each cell track is individu-
ally classified by four distinct classification models: Support Vector Machine (SVM)44, Random Forest (RF)50, 
K-nearest neighbors (KNN)51, and Linear Discriminant Analysis (LDA)52. The four classification models are 
used with the following settings. SVM with linear kernel function and Iterative Single Data Algorithm (ISDA) 
for optimization. RF with hyper parameters optimized in cross-validation (i.e., number of ensembles learning 
cycles, maximum number of decision splits, learning rate used for shrinkage). LDA with the assumption of diag-
onal covariance matrix. KNN trained on a reduced set of features (2.5%) using K equal to 9 after optimization.

All the models are trained using a half-experiment out cross-validation strategy performed by splitting up 
the clusters into two partitions (left clusters and right clusters).

Cluster level classification.  As extensively studied55,62,63, clusters of cells share common pathways during 
the drug administering or in response to a given insult. In addition, it is has been also observed an intrinsic het-
erogeneity in cells response when being in the center or at the boundary of the cluster, due to different motility 
constraints or different culture media composition64. Anyhow, it is also evidenced that cluster formation gener-
ally leads to an increased metastatic ability65, supporting the assumption that there exists a dominant response 
of the entire cluster. Therefore, provided the evidence of a concerted cell intention towards metastasis formation, 
we propose here to apply a consensus strategy to the categories assigned at the single-track level, in order to 
resume a unified cluster behavior. Majority voting is therefore implemented to assign a unique class to the entire 
cluster of the testing partition.

Received: 18 June 2021; Accepted: 31 January 2022

References
	 1.	 Sarkar, S., Cohen, N., Sabhachandani, P. & Konry, T. Phenotypic drug profiling in droplet microfluidics for better targeting of 

drug-resistant tumors. Lab Chip 15(23), 4441–4450.2 (2015).
	 2.	 Yehia, L. & Eng, C. Largescale population genomics versus deep phenotyping: brute force or elegant pragmatism towards precision 

medicine. NPJ Genom. Med. 4(1), 1–2 (2019).
	 3.	 Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Investig. 

115(1), 44–55 (2005).
	 4.	 Nguyen, A., Yoshida, M., Goodarzi, H. & Tavazoie, S. F. Highly variable cancer subpopulations that exhibit enhanced transcriptome 

variability and metastatic fitness. Nat. Commun. 7(1), 1–13 (2016).
	 5.	 Yurkovich, J. T., Tian, Q., Price, N. D. & Hood, L. A systems approach to clinical oncology uses deep phenotyping to deliver per-

sonalized care. Nat. Rev. Clin. Oncol. 17(3), 183–194 (2020).
	 6.	 FitzGerald, G. et al. The future of humans as model organisms. Science 361(6402), 552–553 (2018).
	 7.	 Robinson, P. N. Deep phenotyping for precision medicine. Hum. Mutat. 33(5), 777–780 (2012).
	 8.	 Schork, N. J. Genetics of complex disease: Approaches, problems, and solutions. Am. J. Respir. Crit. Care Med. 156(4), S103–S109 

(1997).
	 9.	 Monte, A. A. et al. Improved drug therapy: Triangulating phenomics with genomics and metabolomics. Hum. Genom. 8(1), 1–9 

(2014).
	10.	 Chen, D., Chen, M., Altmann, T. & Klukas, C. Bridging genomics and phenomics. In Approaches in Integrative Bioinformatics 

299–333 (Springer, Berlin, 2014).

Table 8.   Lists of deep learning architectures selected for the test: layers used and total number of features 
extracted.

AlexNET GoogleNET ResNET101 NasNETLarge

Layer ‘pool5’ ‘pool5’ ‘pool5’ ‘average_pooling’

N. of features 9216 1024 2048 4032

Input Layer size 227 × 227 × 3 224 × 224 × 3 224 × 224 × 3 331 × 331 × 3



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8545  | https://doi.org/10.1038/s41598-022-12364-5

www.nature.com/scientificreports/

	11.	 Houle, D., Govindaraju, D. R. & Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 11(12), 855–866 (2010).
	12.	 Crane, M. M., Chung, K., Stirman, J. & Lu, H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organ-

isms. Lab Chip 10(12), 1509–1517 (2010).
	13.	 Jones, D. T. Setting the standards for machine learning in biology. Nat. Rev. Mol. Cell Biol. 20(11), 659–660 (2019).
	14.	 Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced 

apoptosis. Nature 459(7245), 428–432 (2009).
	15.	 Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: Do differences make a difference?. Cell 141(4), 559–563 (2010).
	16.	 Ebinger, S. et al. Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 30(6), 

849–862 (2016).
	17.	 Filipczyk, A. et al. Network plasticity of pluripotency transcription factors in embryonic stem cells. Nat. Cell Biol. 17(10), 1235–1246 

(2015).
	18.	 Munsky, B. & Khammash, M. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 

124(4), 044104 (2006).
	19.	 Mitchell, S. & Hoffmann, A. Identifying noise sources governing cell-to-cell variability. Curr. Opin. Syst. Biol. 8, 39–45 (2018).
	20.	 Loos, C. & Hasenauer, J. Mathematical modeling of variability in intracellular signaling. Curr. Opin. Syst. Biol. 16, 17–24 (2019).
	21.	 Gaudet, S. & Miller-Jensen, K. Redefining signaling pathways with an expanding single-cell toolbox. Trends Biotechnol. 34(6), 

458–469 (2016).
	22.	 Bazellières, E. et al. Control of cell–cell forces and collective cell dynamics by the intercellular adhesome. Nat. Cell Biol. 17(4), 

409–420 (2015).
	23.	 Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nat. Methods 8(4), S30–S35 (2011).
	24.	 Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Bio-

technol. 30(9), 858–867 (2012).
	25.	 Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell 

analyses. Microbiol. Rev. 60(4), 641–696 (1996).
	26.	 Nguyen, M. et al. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immuno-

competent tumor microenvironments. Cell Rep. 25(13), 3884–3893 (2018).
	27.	 Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350(6263), 972–978 

(2015).
	28.	 Gazestani, V. H. & Lewis, N. E. From genotype to phenotype: Augmenting deep learning with networks and systems biology. Curr. 

Opin. Syst. Biol. 15, 68–73 (2019).
	29.	 Murdocca, M. et al. The lectin-like oxidized LDL receptor-1: A new potential molecular target in colorectal cancer. Oncotarget 7, 

14765–14780 (2016).
	30.	 Hirsch, H. A. et al. Transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human 

diseases. Cancer Cell 13(17), 348–361 (2010).
	31.	 Khaidakov, M. et al. Oxidized LDL receptor 1 (ORL1) as a possible link between obesity dyslipidemia and cancer. PlosOne 6, 

e20277 (2011).
	32.	 Murdocca, M., et al. Sangiuolo F.LOX-1 and cancer: An indissoluble liaison. Cancer Gene Ther. https://​doi.​org/​10.​1038/​s41417-​

020-​00279-0 (2021).
	33.	 Murdocca, M. et al. Targeting LOX-1 inhibits colorectal cancer metastasis in an animal model. Front. Oncol. 9, 927 (2019).
	34.	 Balzan, S. & Lubrano, V. LOX-1 receptor: A potential link in atherosclerosis and cancer. Life Sci. 198, 79–86 (2018).
	35.	 Kanata, S. et al. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation 

of PPAR-γ. Biochem. Biophys. Res. Commun. 348(3), 1003–1010 (2006).
	36.	 Attar-Schneider, O. et al. Bevacizumab attenuates major signaling cascades and eIF4E translation initiation factor in multiple 

myeloma cells. Lab. Invest. 92(2), 178–190 (2012).
	37.	 Ellis, L. M. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. In Seminars in 

Oncology, Vol. 33, S1–S7 (WB Saunders, 2006, October).
	38.	 Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. 

Nat. Med. 10(2), 145–147 (2004).
	39.	 Dürr, O. & Sick, B. Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen. 21(9), 998–1003 

(2016).
	40.	 Wu, Z., et al. DynaMorph: Learning morphodynamic states of human cells with live imaging and sc-RNAseq. bioRxiv (2020).
	41.	 Chatterjee, N. & Bivona, T. G. Polytherapy and targeted cancer drug resistance. Trends Cancer 5(3), 170–182 (2019).
	42.	 Haralick, R. M., Shanmugam, K. & Dinstein, I. H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 

610–621 (1973).
	43.	 Di Giuseppe, D. et al. Learning cancer-related drug efficacy exploiting consensus in coordinated motility within cell clusters. IEEE 

Trans. Biomed. Eng. 66(10), 2882–2888 (2019).
	44.	 Byvatov, E. & Schneider, G. Support vector machine applications in bioinformatics. Appl. Bioinform. 2(2), 67–77 (2003).
	45.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in 

Neural Information Processing Systems (2012).
	46.	 He, K., Zhang, X, Ren, S & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 770–778 (2016).
	47.	 Bhandary, A., et al. Deep-learning framework to detect lung abnormality. Pattern Recogn. Lett. 129, 271–278 (2020).
	48.	 Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. Learning transferable architectures for scalable image recognition. In Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8697–8710) (2018).
	49.	 Chen, L.-C., et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the 

European Conference on Computer Vision (ECCV) (2018).
	50.	 Breiman, L. Random forests. Mach. Learn. 4, 5–32 (2001).
	51.	 Shakhnarovish, Darrell, & Indyk (eds.). Nearest-Neighbour Methods in Learning and Vision, (The MIT Press, 2005).
	52.	 McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recognition (Wiley, New York, 2004).
	53.	 Smalley, K. S. M. & Eisen, T. G. Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity 

to cisplatin in melanoma cells. Int. J. Cancer. 105, 165–175. https://​doi.​org/​10.​1002/​ijc.​11064 (2003).
	54.	 Maćkiewicz, A. & Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 19(3), 303–342 (1993).
	55.	 Parlato, S. et al. 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor 

cells. Sci Rep 7, 1–16. https://​doi.​org/​10.​1038/​s41598-​017-​01013-x (2017).
	56.	 Biselli, E. et al. Organs on chip approach: A tool to evaluate cancer-immune cells interactions. Sci Rep 7, 1–12. https://​doi.​org/​10.​

1038/​s41598-​017-​13070-3 (2017).
	57.	 Comes, M. C. et al. The influence of spatial and temporal resolutions on the analysis of cell–cell interaction: A systematic study 

for time-lapse microscopy applications. Sci. Rep. 9, 1–11. https://​doi.​org/​10.​1038/​s41598-​019-​42475-5 (2019).
	58.	 Eddins, S. L., Gonzalez, R. C. & Woods, R. E. Digital Image Processing using Matlab. 6–12 (Princeton Hall Pearson Education Inc., 

New Jersey, 2004).
	59.	 Davies, E. R. Machine Vision: Theory, Algorithms, Practicalities. (Elsevier, 2004).

https://doi.org/10.1038/s41417-020-00279-0
https://doi.org/10.1038/s41417-020-00279-0
https://doi.org/10.1002/ijc.11064
https://doi.org/10.1038/s41598-017-01013-x
https://doi.org/10.1038/s41598-017-13070-3
https://doi.org/10.1038/s41598-017-13070-3
https://doi.org/10.1038/s41598-019-42475-5


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8545  | https://doi.org/10.1038/s41598-022-12364-5

www.nature.com/scientificreports/

	60.	 Munkres, J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32–38 (1957).
	61.	 Mencattini, A. et al. NeuriTES. Monitoring neurite changes through transfer entropy and semantic segmentation in bright-field 

time-lapse microscopy. Patterns, 2(6), 100261 (2021).
	62.	 D’Orazio, M. et al. Deciphering cancer cell behavior from motility and shape features: Peer prediction and dynamic selection to 

support cancer diagnosis and therapy. Front. Oncol. 10, 2078 (2020).
	63.	 Milosevic, M. et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. 

Clin. Cancer Res. 18(7), 2108–2114 (2012).
	64.	 Donato, C. et al. Hypoxia triggers the intravasation of clustered circulating tumor cells. Cell Rep. 32(10), 108105 (2020).
	65.	 Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5), 1110–1122 (2014).

Author contributions
M.D.O, A.M., F.S, M.M, and E.M. designed the experiment and wrote the manuscript. M.D.O, A.M., M.C.C., 
P.C., C.D.N. and E.M. executed the data analysis. F.S. and M.M. prepared the biological samples and executed 
the biological analysis. M.D.O., D.D.G., J.F, and G.A. performed the experiments. All the authors discussed the 
results and revised the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response
	Results
	Experimental set-up. 
	Experimental results. 
	Case study 1. 
	Performance of classification. 
	Comparison with traditional morphological features. 
	Relevance of the background suppression step. 

	Case Study 2. 
	Comparison with single-time point analysis. 



	Discussion
	Comparative phenomics and proteomics results. 

	Conclusion
	Methods
	Cell-culture. 
	Gene expression analysis. 
	Time-lapse microscopy acquisition. 
	Cell localization and tracking. 
	Cell ROI extraction. 
	Image preprocessing. 
	Deep feature extraction. 
	Feature extraction and selection. 
	Single-cell (track) classification. 
	Cluster level classification. 

	References


