Table 2.
AUROC – value (95% CI) | Sensitivity – % (95% CI); no | Specificity – % (95% CI); no | Negative predictive value – % (95% CI); no | Positive predictive value – % (95% CI); no | |
---|---|---|---|---|---|
Clinical routine |
0.95 (0.93 – 0.97) |
100 (97.1 – 100), 126 of 126 |
35.6 (29.7 – 41.9), 88 of 247 |
100 (95.9 – 100), 88 of 88 |
44.2 (38.6 – 50.2), 126 of 285 |
US expert 1 |
0.82 (0.77 – 0.87) |
88.1 (81.1 – 93.2) 111 of 126 |
49.4 (43.0 – 55.8), 122 of 247 |
89.1 (82.6 – 93.7), 122 of 137 |
47.0 (40.5 – 53.6), 111 of 236 |
US expert 2 |
0.82 (0.77 – 0.87) |
96.0 (91.0 – 98.7), 121 of 126 |
24.3 (19.1 – 30.1), 60 of 247 |
92.3 (83.0 – 97.5), 60 of 65 |
39.3 (33.8 – 45.0), 121 of 308 |
US expert 3 |
0.84 (0.79 – 0.89) |
91.3 (84.9 – 95.6), 115 of 126 |
31.2 (25.4 – 37.4), 77 of 247 |
87.5 (78.7 – 93.6), 77 of 88 |
40.4 (34.6 – 46.3), 115 of 285 |
Unimodal ultrasound ML algorithms* | |||||
Logistic regression with elastic net penalty |
0.83 (0.78 – 0.87) |
100 (97.1 – 100), 126 of 126 |
9.3 (6.0 – 13.6), 23 of 247 |
100 (85.2 – 100), 23 of 23 |
36.0 (31.0 – 41.3), 126 of 350 |
XGBoost tree |
0.82 (0.77 – 0.86) |
100 (97.1 – 100), 126 of 126 |
18.2 (13.6 – 23.6), 45 of 247 |
100 (92.1 – 100), 45 of 45 |
38.4 (33.1 – 43.9), 126 of 328 |
Multi-modal ultrasound ML algorithms** | |||||
Logistic regression with elastic net penalty |
0.90 (0.87 – 0.93) |
100 (97.1 – 100), 126 of 126 |
27.1 (21.7 – 33.1), 67 of 247 |
100 (94.6—100), 67 of 67 |
41.2 (35.6 – 46.9), (126 of 306) |
XGBoost tree |
0.89 (0.85 – 0.92) |
100 (97.1 – 100), 126 of 126 |
19.0 (14.3 – 24.5), 47 of 247 |
100 (92.5 – 100), 47 of 47 |
38.7 (33.3 – 44.2), 126 of 326 |
* Trained on ultrasound features
** Trained on ultrasound features as well as patient age and palpability
AUROC, area under the receiver operating characteristic curve; CI, confidence interval; ML, machine learning; US, ultrasound