Skip to main content
. 2022 Feb 17;32(6):4101–4115. doi: 10.1007/s00330-021-08519-z

Table 2.

Diagnostic performance of routine clinical breast diagnosis, the three ultrasound experts, the unimodal ultrasound machine learning algorithms, and the multi-modal ultrasound machine learning algorithms in the validation set

AUROC – value (95% CI) Sensitivity – % (95% CI); no Specificity – % (95% CI); no Negative predictive value – % (95% CI); no Positive predictive value – % (95% CI); no
Clinical routine

0.95

(0.93 – 0.97)

100

(97.1 – 100),

126 of 126

35.6

(29.7 – 41.9),

88 of 247

100

(95.9 – 100),

88 of 88

44.2

(38.6 – 50.2),

126 of 285

US expert 1

0.82

(0.77 – 0.87)

88.1

(81.1 – 93.2)

111 of 126

49.4

(43.0 – 55.8),

122 of 247

89.1

(82.6 – 93.7),

122 of 137

47.0

(40.5 – 53.6),

111 of 236

US expert 2

0.82

(0.77 – 0.87)

96.0

(91.0 – 98.7),

121 of 126

24.3

(19.1 – 30.1),

60 of 247

92.3

(83.0 – 97.5),

60 of 65

39.3

(33.8 – 45.0),

121 of 308

US expert 3

0.84

(0.79 – 0.89)

91.3

(84.9 – 95.6),

115 of 126

31.2

(25.4 – 37.4),

77 of 247

87.5

(78.7 – 93.6),

77 of 88

40.4

(34.6 – 46.3),

115 of 285

Unimodal ultrasound ML algorithms*
Logistic regression with elastic net penalty

0.83

(0.78 – 0.87)

100

(97.1 – 100),

126 of 126

9.3

(6.0 – 13.6),

23 of 247

100

(85.2 – 100),

23 of 23

36.0

(31.0 – 41.3),

126 of 350

XGBoost tree

0.82

(0.77 – 0.86)

100

(97.1 – 100),

126 of 126

18.2

(13.6 – 23.6),

45 of 247

100

(92.1 – 100),

45 of 45

38.4

(33.1 – 43.9),

126 of 328

Multi-modal ultrasound ML algorithms**
Logistic regression with elastic net penalty

0.90

(0.87 – 0.93)

100

(97.1 – 100),

126 of 126

27.1

(21.7 – 33.1),

67 of 247

100

(94.6—100),

67 of 67

41.2

(35.6 – 46.9),

(126 of 306)

XGBoost tree

0.89

(0.85 – 0.92)

100

(97.1 – 100),

126 of 126

19.0

(14.3 – 24.5),

47 of 247

100

(92.5 – 100),

47 of 47

38.7

(33.3 – 44.2),

126 of 326

* Trained on ultrasound features

** Trained on ultrasound features as well as patient age and palpability

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; ML, machine learning; US, ultrasound