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Abstract
Blood clot formation induced by dysfunctional coagulation is a frequent complication of coronavirus disease 2019 (COVID-
19) and a high-risk factor for severe illness and death. Neutrophil extracellular traps (NETs) are implicated in COVID-
19-induced immunothrombosis. Furthermore, human cathelicidin, a NET component, can perturb the interaction between 
the SARS-CoV-2 spike protein and its ACE2 receptor, which mediates viral entry into cells. At present, however, the levels 
of cathelicidin antimicrobial peptides after SARS-CoV-2 infection and their role in COVID-19 thrombosis formation remain 
unclear. In the current study, we analyzed coagulation function and found a decrease in thrombin time but an increase in 
fibrinogen level, prothrombin time, and activated partial thromboplastin time in COVID-19 patients. In addition, the catheli-
cidin antimicrobial peptide LL-37 was upregulated by the spike protein and significantly elevated in the plasma of patients. 
Furthermore, LL-37 levels were negatively correlated with thrombin time but positively correlated with fibrinogen level. 
In addition to platelet activation, cathelicidin peptides enhanced the activity of coagulation factors, such as factor Xa (FXa) 
and thrombin, which may induce hypercoagulation in diseases with high cathelicidin peptide levels. Injection of cathelici-
din peptides promoted the formation of thrombosis, whereas deletion of cathelicidin inhibited thrombosis in vivo. These 
results suggest that cathelicidin antimicrobial peptide LL-37 is elevated during SARS-CoV-2 infection, which may induce 
hypercoagulation in COVID-19 patients by activating coagulation factors.

Keywords  LL-37 · SARS-CoV-2 · Hypercoagulation · Coagulation factors · COVID-19

Cellular and Molecular Life Sciences

Zilei Duan, Juan Zhang, Xue Chen and Ming Liu contributed 
equally to this work.

 *	 Yaxiong Li 
	 yxyayy@163.com

 *	 Guohong Deng 
	 gh_deng@hotmail.com

 *	 Ren Lai 
	 rlai@mail.kiz.ac.cn

1	 Southern Marine Science and Engineering Guangdong 
Laboratory (Guangzhou), Guangzhou 511458, China

2	 Present Address: Key Laboratory of Animal Models 
and Human Disease Mechanisms of Chinese Academy 
of Sciences/Key Laboratory of Bioactive Peptides of Yunnan 
Province, KIZ‑CUHK Joint Laboratory of Bioresources 
and Molecular Research in Common Diseases, Sino‑African 
Joint Research Center, Center for Biosafety Mega‑Science, 
Kunming Institute of Zoology, Kunming 650223, Yunnan, 
China

3	 Southwest Hospital, Third Military Medical University 
(Army Medical University, 29 Gaotanyan Street, Shapingba, 
Chongqing 400038, China

4	 Department of Cardiovascular Surgery, Yan’an Affiliated 
Hospital of Kunming Medical University, Kunming 650041, 
Yunnan, China

5	 Department of Laboratory Diagnosis, Chongqing Public 
Health Medical Center, Public Health Hospital of Southwest 
University, 109 Baoyu Rd. Shapingba, Chongqing 400038, 
China

http://orcid.org/0000-0002-3123-2336
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04309-y&domain=pdf


	 Z. Duan et al.

1 3

309  Page 2 of 14

Introduction

SARS-CoV-2 is the causative pathogen of coronavirus 
disease 2019 (COVID-19), a potentially life-threatening 
multi-organ disease that continues to impact the human 
population on a global scale. Accumulating evidence 
indicates that frequent thromboembolic complications 
affecting the venous and arterial vascular systems are an 
important risk factor in patients with COVID-19 [1–10]. 
Vascular complications caused by dysfunctional coagula-
tion include venous thromboembolism (VTE), a composite 
of deep vein thrombosis (DVT) and pulmonary embolism 
(PE) [11–16]. Current evidence suggests that the incidence 
of thrombotic complications in COVID-19 patients admit-
ted to intensive care units (ICUs) is between 16 and 49% 
[6–8, 10–12, 15]. Small thrombi have also been observed 
in the pulmonary arterioles of COVID-19 patients during 
autopsy [17, 18]. Basic characteristics of hypercoagula-
tion, including d-dimers and fibrinogen elevation, platelet 
activation, and platelet-monocyte aggregate formation, 
are also found in critically ill COVID-19 patients, and is 
known as a coagulation storm [6–8, 16, 19–23]. The pro-
phylactic use of low-molecular weight heparin (LMWH) 
is recommended in all hospitalized patients for anti-
thrombosis, unless contraindicated [1, 11, 20]. Despite 
the presence of hypercoagulation, unexplained prolonga-
tion of activated partial thromboplastin time (APTT) and 
prothrombin time (PT) has also been reported in COVID-
19 patients [24, 25]. At present, however, the factors that 
induce the above hematological findings in COVID-19 
remain elusive.

Circulating markers of neutrophil extracellular traps 
(NETs), such as nucleosomal citrullinated histone H3 
(H3Cit-DNA), cell-free DNA (cfDNA), and neutrophil 
elastase (NE), are increased in COVID-19 patients and 
NETs are known to contribute to immunothrombosis in 
COVID-19 acute respiratory distress syndrome [26–28]. 
Cathelicidin antimicrobial peptides, components of NETs 
[29], are reported to perturb the interaction between 
SARS-CoV-2 spike protein and its ACE2 receptor [30], 
which may inhibit viral infection. However, the levels 
of cathelicidin antimicrobial peptides and their role in 
the thrombosis formation in COVID-19 patients remain 
unclear.

Cathelicidins, which belong to the family of host defense 
peptides, play an important role in innate immunity [31]. 
They exhibit a broad-spectrum effect against pathogens via 
direct microbicidal and immunomodulatory activities [32]. 
LL-37 is the only human member of the cathelicidin anti-
microbial peptide family and is derived from human catheli-
cidin antimicrobial protein 18 (hCAP18) by the cleavage of 
proteinase 3 [33]. Although cathelicidins have mostly been 

studied with respect to their antibacterial and immunomodu-
latory activity, elevated levels are reported to aggravate dis-
eases, such as psoriasis [34], atherosclerosis [35] and ulcera-
tive colitis [36], by induction of inflammation. Cathelicidins 
may initiate and propagate thrombosis by activating platelets 
[37, 38]; however, their role in coagulation cascade activa-
tion remains unclear.

Here, we investigated the role of LL-37 in COVID-19 
patient coagulopathy. Results showed that increased LL-37 
was correlated with COVID-19-related coagulation dys-
function. LL-37 may potentiate the activity of coagulation 
factors, such as FXa and thrombin, thereby contributing to 
hypercoagulation in COVID-19.

Methods

Experimental ethics

All human specimens and clinical information were col-
lected with informed consent of the patients prior to the 
study from the Chongqing Public Health Medical Center 
(CPHMC) and Department of Infectious Diseases, South-
west Hospital, Third Military Medical University (Army 
Medial University). Patients with laboratory-confirmed 
COVID-19 (n = 62) and age- and sex-matched healthy 
controls (HCs, n = 21) were included in this study. For the 
measurement of LL-37, thrombin time (TT), fibrinogen, 
prothrombin time (PT) and activated partial thromboplas-
tin time (APTT), numbers of each group indicated in the 
text. COVID-19 patients were divided into mild or moder-
ate (MM, n = 40) and severe or critical (SC, n = 22) groups 
according to the Chinese Clinical Guidance for COVID-
19 Pneumonia Diagnosis and Treatment (6th edition). 
Briefly, patients with mild or moderate (MM) disease 
were defined based on the following clinical symptoms: 
(1) Mild clinical symptoms, with no sign of pneumonia 
on chest imaging; (2) Fever and respiratory symptoms, 
with signs of pneumonia through radiological assessment. 
Patients with severe or critical (SC) disease were defined 
based on the following clinical symptoms: (1) Shortness of 
breath, respiratory rate (RR) ≥ 30 times/min, oxygen satu-
ration ≤ 93% at rest, alveolar oxygen partial pressure/frac-
tion of inspiration O2 (PaO2/FiO2) ≤ 300 mmHg; (2) Res-
piratory failure requiring mechanical ventilation, shock, 
combined with other organ failure needed ICU monitoring 
and treatment. Determination of LL-37 in the plasma of 
COVID-19 patients and HCs was approved by the Ethics 
Committee of Chongqing Public Health Medical Center 
(2020-002-01-KY, 2020-003-01-KY). The study and all 
animal experiments were approved by the Institutional 
Review Board and Animal Care and Use Committee at 
Kunming Institute of Zoology (SMKX-20201021-15).
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Reagents

Reagents were purchased from Sigma-Aldrich or indicated 
suppliers. Anti-β-actin mouse (sc-47778) and anti-LL-37 
mouse monoclonal antibodies (sc-166770) were purchased 
from Santa Cruz Biotechnology. Anti-cathelicidin rabbit 
monoclonal antibodies (ab207758) were purchased from 
Abcam. Peroxidase-AffiniPure goat anti-rabbit IgG (111-
035-003), peroxidase-AffiniPure goat anti-mouse IgG 
(115-035-003), and fluorescein (FITC)-AffiniPure don-
key anti-mouse IgG (715-095-151) were purchased from 
Jackson ImmunoResearch Laboratories. The SARS-CoV-2 
spike protein (Z03481) was purchased from GenScript. 
Human alpha thrombin (HT 1002a) and human factor 
Xa (HFXa 1011) were purchased from Enzyme Research 
Laboratories.

Peptide synthesis

Peptides (LL-37: LLGDFFRKSKEKIGKEFKRIVQRIK-
DFLRNLVPRTES; Cramp: GLLRKGGEKIGEKLK-
KIGQKIKNFFQKLVPQPE; and FITC-labeled LL37 or 
FITC-labeled Cramp) were synthesized by GL Biochem 
(Shanghai, China) and their purities (> 98%) were confirmed 
by reversed phase high-performance liquid chromatography 
(RP-HPLC) and mass spectrometry.

Mice

Male C57BL/6 J mice aged 6–8 weeks were purchased from 
Beijing HFK Bio-Technology Co. Ltd. (Beijing, China). 
Cramp knockout mice (Cramp−/−) were purchased from the 
Jackson Laboratory.

Cell culture and treatment

The human lung epithelial cell line A549 was purchased 
from the Kunming Cell Bank and maintained in complete 
Dulbecco’s Modified Eagle Medium (Corning, 10-013-
CVR) supplemented with 10% fetal bovine serum, 100 U/
ml penicillin, and 100 μg/ml streptomycin (Gibco BRL, 
Gaithersburg, MD, USA) at 37 °C in 5% CO2.

To determine the effects of SARS-CoV-2 infection on 
LL-37 expression, A549 cells were stimulated with SARS-
CoV-2 (MOI: 0.01, 0.05, 0.25) for 2 h at the biosafety level-3 
laboratory of the Kunming High-level Biosafety Primate 
Research Center, Yunnan, China, with LL-37 expression 
then detected using confocal microscopy and enzyme 
linked immunosorbent assay (ELISA) after 24 h. To confirm 
whether the effects of SARS-CoV-2 on LL-37 expression 
were dependent on the spike protein, we stimulated A549 
cells with spike protein (0.4–10 μg/ml), bovine serum albu-
min (BSA, 10 μg/ml, negative control), lipopolysaccharides 

(LPS, positive control) from Escherichia coli O111:B4 
(10 μg/ml) for 24 h, then measured LL-37 expression using 
confocal microscopy and Western blot analysis.

ELISA

The levels of LL-37 in the plasma of COVID-19 patients 
and supernatant of SARS-CoV-2 stimulated A549 cells 
were analyzed using a LL-37 ELISA kit (Hycult Biotech, 
HK321-01) according to the manufacturer’s instructions. A 
binding assay between cardiolipin and LL-37 was carried 
out by ELISA according to previously described methods 
[39]. Briefly, a 96-well white plate (Corning, Kennebunk 
ME, USA) was filled with 50 μl of 50 μg/ml cardiolipin 
diluted in ethanol and evaporated at 4 °C. After washing 
with phosphate-buffered saline (PBS; pH 7.4), the wells 
were blocked with 2% BSA in PBS (1 h at room tempera-
ture). Then, 100 μl of FITC-labeled LL-37 or FITC-labeled 
Cramp (10 μg/ml) was added, followed by incubation for 
1 h at 37 °C. After washing with PBS (pH 7.4), fluorescence 
was detected using a Cytation 3 Cell Imaging Multi-Mode 
Reader (Biotek), and the binding of LL-37 with cardiolipin 
was calculated. In all assays, ethanol-treated wells were used 
as negative controls.

Western blot analysis

After stimulation with the SARS-CoV-2 spike protein 
(0.4–10 μg/ml) for 24 h, A549 cells were homogenized 
and sonicated in RIPA buffer (Sigma: 150  mM NaCl, 
1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% 
sodium dodecyl sulfate (SDS), 50 mM Tris, pH 8.0). Insolu-
ble material was removed by centrifugation (12 000 rpm, 
4 ℃, 15 min). The cell homogenates were separated by 
tricine SDS–polyacrylamide gel electrophoresis (tricine-
SDS-PAGE), then transferred to polyvinylidene difluoride 
(PVDF) membranes (Rainin, 0.22 μm). Anti-cathelicidin 
(ab207758) and anti-β-actin antibodies were used to detect 
cathelicidin and β-actin according to the manufacturer’s 
instructions.

Coagulation functional assay and enzymatic activity 
assay of coagulation factors

Coagulation function assays (TT, APTT, PT) were con-
ducted by detecting absorbance at 650 nm using the SUN-
BIO kit according to the manufacturer’s instructions. Enzy-
matic activity of coagulation factors was measured using 
chromogenic substrate. Briefly, coagulation factors (FXa, 
0.1 nM, thrombin, 10 nM) and different amounts of peptides 
(final concentrations ranging from 0.0 to 16.2 μg/ml) were 
pre-incubated for 10 min at 37 °C. After incubation, the 
reaction was initiated by the addition of 0.5 mM substrate 
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F3301 (CH3OCO-D-CHA-Gly-Arg-pNA-AcOH, Sigma) 
for FXa and H-D-Phe-Pip-Arg-pNa·2HCl (Hyphen Biomed, 
Neuville-sur-Oise, France) for thrombin, with the reaction 
monitored continuously at 405 nm.

To confirm the effects of cathelicidins on coagulation 
factors, we determined the role of LL-37 and Cramp on 
enzymatic activity of thrombin and FXa to their physiologi-
cal substrates (fibrinogen and prothrombin, respectively). 
Briefly, LL-37 (0–50 μg/ml) or Cramp (0–50 μg/ml) was 
incubated with thrombin (5 nM in buffer: 100 mM NaCl, 
50 mM Tris, 5 mM CaCl2, pH 8.0) and FXa (200 nM, in 
buffer: 100 mM NaCl, 50 mM Tris, 5 mM CaCl2, pH 8.0) 
for 10 min at 37 °C, respectively. Their physiological sub-
strates, i.e., fibrinogen (2 μM) and prothrombin (10 μM), 
were added and incubated for another 10, 30 min at 37 °C, 
respectively. After that, reduced loading buffer was added 
and boiled for 5 min, and the samples were analyzed by 
SDS-PAGE and stained using Coomassie Blue.

To determine the enzymatic activity of thrombin and FXa 
in plasma from Cramp knockout (Cramp−/−) and C57BL/6 J 
mice (n = 6–7 per group), thrombin and FXa chromogenic 
substrates were added to the plasma, with the reaction initi-
ated immediately and monitored continuously at 405 nm.

Surface plasmon resonance (SPR) analysis

SPR analysis was performed as described previously, with 
some modifications [40]. Briefly, thrombin and FXa were 
immobilized on the activated sensor chip CM-5 by amine 
coupling. LL-37 or Cramp in HBS-EP + running buffer was 
applied to the immobilized ligand at a flow rate of 30 μl/min 
and the real-time binding signal was recorded using BIAc-
ore 3000 (GE, USA). The equilibrium dissociation constant 
(KD) was calculated using the Langmuir model with Biacore 
evaluation software provided by the manufacturer.

FeCl3‑induced mouse thrombosis model

Male C57BL/6 mice with or without cathelicidin antimicro-
bial peptides administration and Cramp−/− mice (6–8 weeks 
old, n = 3–7 per group) were anesthetized with 2% isoflu-
rane. The left carotid artery was exposed and visualized 
through a dissecting microscope. A Doppler microvascular 
probe (RWD Life Science, Shenzhen, China) was placed on 
the exposed artery to measure vascular blood flow. Throm-
bosis was induced by directly placing a small piece of filter 
paper saturated with 20% FeCl3 on the artery for 1.5 min. 
Time to vessel occlusion was measured when blood flow was 
completely stopped.

Acute pulmonary thromboembolism in mice

LL-37 (100 μl, 30 mg/kg) or Cramp (100 μl, 30 mg/kg) in 
saline was injected into male C57BL/6 mice (6–8 weeks old, 
n = 5 per group) via the caudal vein. Control mice received 
the same volume of saline. At 10 min after the injection, the 
mice were anesthetized with pentobarbital sodium (50 mg/
kg, intraperitoneal injection). The chest cavity was then 
exposed, and the right side of the heart was perfused with 
saline to remove blood from pulmonary circulation. After 
perfusion, the whole lung was excised and fixed in 4% para-
formaldehyde dissolved in PBS at 4 °C overnight for histo-
pathological examination.

Confocal microscopy

For immunostaining, cells were fixed in 4% paraformalde-
hyde and PBS at 4 °C for 30 min and permeabilized with 
0.1% Triton X-100 in PBS for 15 min before being treated 
with 2% BSA for 1 h at 25 °C. To analyze LL-37 expres-
sion in A549 cells, samples were incubated with anti-LL-37 
mouse monoclonal antibodies (sc-166770). DAPI (1 μg/ml, 
Roche Diagnostics) was used to stain DNA. After wash-
ing with PBS, cells were incubated for 1 h at 37 °C with 
fluorescent-labeled fluorescein (FITC)-AffiniPure donkey 
anti-mouse IgG secondary antibodies (715-095-151). Cells 
were imaged using an Olympus FluoView 1000 confocal 
microscope (Olympus, Melville, NY, USA).

Statistical evaluation

Data obtained from independent experiments were presented 
as mean ± standard deviation (SD). For normal continuous 
variables, one-way analysis of variance (ANOVA) was used. 
Comparisons of more than two groups were performed using 
Kruskal–Wallis one-way ANOVA followed by Dunn’s mul-
tiple comparison test using GraphPad Prism v5. Differences 
were considered significant at p < 0.05.

Results

Coagulation function in COVID‑19 patients

To assess coagulation function in COVID-19 patients, 
coagulation testing (TT, PT, APTT, fibrinogen) was per-
formed. As illustrated in Fig. 1A, B, TT (HCs vs MM vs SC: 
17.96 ± 0.98 s vs 14.60 ± 0.79 s vs 15.43 ± 1.37 s) was short-
ened and fibrinogen (HCs vs MM vs SC: 2.81 ± 0.48 g/L vs 
4.21 ± 0.83 g/L vs 4.81 ± 0.98 g/L) was increased in COVID-
19 patients compared to HCs. Both MM and SC patients 
showed significantly shortened TT and increased fibrino-
gen, suggesting hypercoagulation in COVID-19 patients. 
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However, PT showed no significant difference between 
COVID-19 patients (MM: 12.00 ± 0.80 s, SC: 12.06 ± 1.29 s) 
and HCs (11.53 ± 0.52 s) (Fig. 1C), while APTT (Fig. 1D) 
was elevated in COVID-19 patients (MM: 41.35 ± 4.48 s 
and SC: 38.70 ± 9.63 s) compared to HCs (29.44 ± 3.52 s), 
which are contradictory to the shortened TT and increased 
fibrinogen level. These results suggest that certain factors 
exist in the blood of COVID-19 patients, which could affect 
PT and APTT.

Elevated LL‑37 in plasma of COVID‑19 patients

Cathelicidin peptides increase during viral infection, which 
induces the formation of thrombosis by activating plate-
lets [37, 38]. The human cathelicidin antimicrobial peptide 
LL-37 is reported to inhibit SARS-CoV-2 infection [30]. To 
investigate the role of cathelicidin peptides in SARS-CoV-2 
infection, the level of LL-37 in the plasma of COVID-19 
patients (MM and SC) and HCs was measured. As illus-
trated in Fig. 2A, the concentration of LL-37 in the plasma 
of COVID-19 patients (140 ± 46.47  ng/ml in MM and 
147.6 ± 64.24 ng/ml in SC) was significantly higher than 
that in HCs (93.62 ± 48.14 ng/ml).

SARS‑CoV‑2 upregulates LL‑37 expression 
through the spike protein

To further investigate the association between LL-37 over-
expression and SARS-CoV-2 infection, the expression of 
hCAP18 (precursor of LL-37) in A549 cells after SARS-
CoV-2 spike protein (0.4–10 μg/ml) incubation for 24 h at 
37 ℃ was determined by Western blot analysis. From the 
results of Fig. 2B, hCAP18 expression in A549 cells sig-
nificantly increased after incubation with the spike protein. 
To further confirm the effects of the spike protein on LL-37 
expression, we stimulated A549 cells with spike protein 

(0.4–10 μg/ml), BSA (10 μg/ml, negative control), LPS 
(positive control) from Escherichia coli O111:B4 (10 μg/
ml) for 24 h, then measured LL-37 expression by confocal 
microscopy. As illustrated in Fig. 2C, BSA had no effect on 
LL-37 expression, whereas the spike protein and LPS signif-
icantly promoted LL-37 expression. Furthermore, to confirm 
the effects of SARS-CoV-2 infection on LL-37 expression, 
we stimulated A549 cells with SARS-CoV-2 (MOI: 0.01, 
0.05, 0.25) for 2 h, then detected LL-37 expression using 
confocal microscopy and ELISA after 24 h. As illustrated 
in Fig. 2D, E, SARS-CoV-2 infection significantly elevated 
LL-37 expression. Thus, these results suggest that SARS-
CoV-2 infection induced LL-37 expression through the spike 
protein.

LL‑37 is correlated with coagulation function 
in COVID‑19 patients

As LL-37 expression and coagulation function changed 
in COVID-19 patients, we investigated the correlations 
between LL-37 and TT, fibrinogen, PT, and APTT. As 
shown in Fig. 3A–D, LL-37 was negatively correlated 
with TT (Fig. 3A, R2 = 0.1082, p = 0.0045) and positively 
correlated with fibrinogen level (Fig. 3B, R2 = 0.0894, 
p = 0.0097) and APTT (Fig. 3D, R2 = 0.1046, p = 0.0053), 
but showed no correlation with PT (Fig. 3C, R2 = 0.0195, 
p = 0.2392).

LL‑37 promotes thrombosis formation 
through potentiation of coagulation factor activity

As LL-37 was correlated with TT and fibrinogen, the effects 
of LL-37 on coagulation factor activity were determined. 
Based on the chromogenic substrate assay, LL-37 enhanced 
the activity of thrombin (Fig. 4A) and FXa (Fig. 4B) in a 
dose-dependent manner. SPR was conducted to analyze 
the binding capacity of LL-37 with thrombin and FXa. As 

Fig. 1   Coagulation function in COVID-19 patients. A Thrombin time 
(TT) in COVID-19 patients (mild and moderate (MM, n = 38), severe 
and critical (SC, n = 21) patients) and healthy controls (HCs, n = 14) 
was analyzed. B Fibrinogen (FIB) level in COVID-19 patients (MM, 
n = 40 and SC, n = 20) and HCs (n = 14) was analyzed. C Prothrom-

bin time (PT) in COVID-19 patients (MM, n = 40 and SC, n = 19) and 
HCs (n = 14) was analyzed. D Activated partial thromboplastin time 
(APTT) in COVID-19 patients (MM, n = 40 and SC, n = 19) and HCs 
(n = 14) was analyzed. Data are mean ± SD of at least three independ-
ent experiments. *p < 0.05, **p < 0.01, ***p < 0.001
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illustrated in Fig. S1A, S1B, LL-37 could bind to thrombin 
and FXa, with KD values of 2.64 × 10–6 M and 8.47 × 10–7 M, 
respectively. We also measured the effects of LL-37 on 
thrombin and FXa to their physiological substrates. After the 
reactions of thrombin or FXa with fibrinogen or prothrombin 

in the presence of cathelicidin peptides (0–50 μg/ml), the 
samples were separated by SDS-PAGE and analyzed using 
Coomassie Blue. Similar to the chromogenic substrate assay, 
LL-37 enhanced the activity of thrombin and FXa against 
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their physiological substrates, fibrinogen (Fig. 4C) and pro-
thrombin (Fig. 4D), respectively.

Given the effect of LL-37 on thrombin and FXa, we fur-
ther investigated the effects of cathelicidin on thrombosis 
formation in vivo. As seen in Fig. 4E, LL-37 significantly 
promoted thrombosis formation and shortened the time of 
arterial occlusion in the FeCl3-induced carotid artery throm-
bosis mouse model. LL-37 administration also induced lung 
thrombosis directly (Fig. 4G).

Cramp promotes thrombosis formation 
through promotion of coagulation factor activity

To confirm the effects of LL-37 on thrombosis formation 
through activation of coagulation factors, we detected the 
effects of Cramp (LL-37 homolog from Mus musculus) on 
coagulation factor activation. Similar to the LL-37 results, 
the chromogenic substrate assay showed that Cramp sig-
nificantly enhanced the enzymatic activity of thrombin 
(Fig. 5A) and FXa (Fig. 5B) in a dose-dependent manner. 
SPR analysis also indicated interactions of Cramp with 
thrombin (Fig. S1C) and FXa (Fig. S1D), with KD values 
of 6.78 × 10–6 M and 3.17 × 10–4 M, respectively. Based on 
the KD results, the binding capacity of LL-37 with coagula-
tion factors was higher than that of Cramp. The results of 
thrombin and FXa on their natural substrates (fibrinogen and 
prothrombin) confirmed that Cramp promoted the enzymatic 
activity of thrombin (Fig. 5C) and FXa (Fig. 5D).

Furthermore, plasma from Cramp−/− mice showed weaker 
thrombin (Fig. 5E) and FXa activity (Fig. 5F) on chromog-
enic substrates than plasma from wild-type C57BL/6 mice, 
suggesting that Cramp deletion attenuated thrombin and FXa 
activity.

Similar to the LL-37 results, Cramp administration sig-
nificantly enhanced lung thrombosis in acute pulmonary 
thromboembolism mouse model (Fig. 5G) and shortened 
the time of arterial occlusion in the FeCl3-induced carotid 
artery thrombosis mouse model (Fig. 5H). Furthermore, 

Cramp deletion was resistant to arterial occlusion in the 
FeCl3-induced carotid artery thrombosis mouse model 
(Fig. 5I).

LL‑37 and Cramp show similar effects on PT 
and APTT in COVID‑19 patients.

LL-37 and Cramp enhanced coagulation factor (thrombin 
and FXa) activity, which should shorten PT and APTT. 
However, LL-37 had no effect on PT (Fig. S2A) and pro-
longed APTT (Fig. S2B) at higher concentrations. Some-
what inconsistent with LL-37, Cramp prolonged PT (Fig. 
S2C) and APTT (Fig. S2D) in a dose-dependent manner. 
Thus, these findings were contradictory to expectation, 
but were consistent with the PT and APTT values found in 
COVID-19 patients.

Basic histone, which can induce hypercoagulation, pro-
longs PT and APTT by binding with phospholipids [41], 
suggesting that basic LL-37 or Cramp may prolong PT and 
APTT through interaction with phospholipids. Indeed, based 
on the ELISA results, LL-37 and Cramp could bind with 
cardiolipin (Fig. S3A).Furthermore, we detected the effects 
of pre-incubation with cardiolipin on cathelicidin peptide-
induced PT/APTT prolongation. LL-37 induced PT prolon-
gation tendency at concentration of 25 μM, which could be 
inhibited by pre-incubation with cardiolipin (Fig. S3B). In 
addition, LL-37-induced APTT prolongation was signifi-
cantly inhibited by cardiolipin pre-incubation (Fig. S3C). 
Similar to LL-37, pre-incubation with cardiolipin signifi-
cantly abolished Cramp-induced PT (Fig. S3D) and APTT 
(Fig. S3E) prolongation. From these results, PT/APTT pro-
longation induced by LL-37 or Cramp may be caused by 
interactions with phospholipids, which can inhibited by the 
pre-incubation with cardiolipin.

Discussion

To the best of our knowledge, this is the first study to report 
on the correlation between elevated LL-37 levels and hyper-
coagulation in COVID-19 patients. LL-37 was upregulated 
by SARS-CoV-2 infection to cause elevated concentration 
in the plasma of COVID-19 patients and showed the abil-
ity to directly activate coagulation factors. The upregula-
tion of LL-37 was associated with clinical hypercoagulation 
manifestations induced by SARS-CoV-2 infection and likely 
contributes to the hypercoagulation frequently observed in 
COVID-19 patients (Fig. 6).

Hypercoagulability has been reported as a central patho-
logical feature and clinical complication in COVID-19 [10]. 
It is likely that multiple systems contribute to thrombosis in 
COVID-19 patients, such as coagulation activation, platelet 

Fig. 2   SARS-CoV-2 spike protein upregulates LL-37 expression. 
A Amount of LL-37 in plasma of COVID-19 patients (MM, n = 38 
and SC, n = 22) and HCs (n = 21) was detected by ELISA. B hCAP18 
expression in A549 cells with spike protein (0.4, 2, 10 μg/ml) stim-
ulation for 24 h was detected by Western blot analysis. Representa-
tive images of Western blots (left) and quantification of the hCAP18 
expression (ratio of hCAP18/β-actin, right). C LL-37 expression in 
A549 cells with spike protein (0.4, 2, 10 μg/ml), bovine serum albu-
min (BSA, 10  μg/ml, negative control), lipopolysaccharides (LPS, 
positive control) from Escherichia coli O111:B4 (10  μg/ml) stimu-
lation for 24 h was detected by confocal microscopy. Representative 
images (left) and quantification results of LL-37 expression (right). 
(D) LL-37 expression in A549 cells with SARS-CoV-2 (MOI: 0.01, 
0.05, 0.25) stimulation was determined by confocal microscopy. 
The representative images (left) and the quantification results of the 
LL-37 expression (right). Scale bar: 50 μm. Data are mean ± SD of at 
least three independent experiments. **p < 0.01, ***p < 0.001

◂
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activation, hypofibrinolysis, endothelial cell dysfunction, 
inflammation, NETs, and complement [42]. Platelet acti-
vation and platelet-monocyte aggregate formation trigger 
tissue factor expression in patients with severe COVID-19 
[43]. NETs are also known to contribute to immunothrom-
bosis in COVID-19 acute respiratory distress syndrome [27]. 
Here, we showed that LL-37 induced hypercoagulability 
through enhancement of coagulation factor activity. LL-37 
has also been found to induce endothelial cell dysfunction, 
inflammation, NETs formation, platelet activation, which 
may promote thrombosis in COVID-19.

The hCAP18 protein contains a conserved cathelin-like 
domain and a highly variable C-terminal peptide (LL-37). 
The cathelin-like domain of the cathelicidin is classified 
into the same superfamily as cystatins, the cysteine pro-
tease inhibitors, and the cathelin-like domain of hCAP18 
can inhibit cathepsin L activity [44]. Although few studies 
have explored the function of the cathelicidin C-terminal 
peptide on protease activity, a recent study on cathelicidin-
MH (cath-MH) from the skin of Microhyla heymonsivogt 
frog was found to suppress coagulation by affecting enzy-
matic activities [45], inconsistent with the effects of LL-37. 
Through sequence alignment analysis, LL-37 displays low 
sequence identity with cath-MH and lacks the loop formed 
by the intramolecular disulfide bond [45], which may explain 
their discrepancy in coagulation factor activity.

Disseminated intravascular coagulopathy (DIC) has been 
reported in COVID-19 patients [46]. In addition, consistent 

with classic DIC caused by bacterial sepsis, prolonged 
APTT, thrombocytopenia, elevated D-dimer, and multi-
organ microangiopathic thrombosis have also been found 
in COVID-19 patients. The prolongation of APTT is dif-
ficult to explain, but our results suggest it may be induced 
by elevated LL-37. Notably, LL-37 activates the thrombin 
and FXa coagulation factors, leading to hypercoagulability, 
with the binding of phospholipids likely prolonging APTT.

As a major family of antimicrobial peptides, cathelicidin 
peptides are expressed over a broad range of sites during 
infection and inflammation, and are primarily generated 
by neutrophils and epithelial cells [47]. Elevated catheli-
cidins form part of the body’s defense against pathogens, 
with the antiviral activity of cathelicidin peptides reported in 
many viruses e.g., human immunodeficiency virus (HIV)-1 
[48], influenza A virus (IAV) [31, 49], respiratory syncyt-
ial virus (RSV) [47], rhinovirus (HRV) [50], vaccinia virus 
(VACV) [51], herpes simplex virus (HSV) [52], zika virus 
(ZIKV) [53], dengue virus (DENV) [54] and hepatitis C 
virus (HCV) [55]. Recently, research reported the inhibi-
tion of LL-37 on SARS-CoV-2 infection using biochemical 
and pseudovirus entry assays [30]. While, the direct effects 
of LL-37 on SARS-CoV-2 remain unclear. Here we found 
LL-37 induced hypercoagulation through the potentiation 
of coagulation factor activities, which was consistent with 
the clinical symptoms of COVID-19 patients. Moreover, 
elevated LL-37 has been found to activate platelets. There-
fore, although the elevation of LL-37 during SARS-CoV-2 

Fig. 3   Analysis of correla-
tion between LL-37 level and 
coagulation function. Correla-
tion analysis of LL-37 level and 
TT (A), fibrinogen (B), PT (C), 
and APTT (D)
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infection may be a protective mechanism of the innate 
immune system, the increase in LL-37 may also aggravate 
disease progress by inducing thrombosis, which may explain 

the controversy of vitamin D (inducer of LL-37 production) 
treatment in COVID-19 [56].

In addition to its antimicrobial activity, LL-37 also 
exhibits various biological effects, such as regulation of 

Fig. 4   Promotion of LL-37 on thrombosis formation through poten-
tiation of coagulation factor activity. LL-37 enhanced activity of 
thrombin (A, C) and FXa (B, D) on their chromogenic substrates 
(A, B) and physiological substrates (C, D). Red arrows in C and D 
indicated fibrin and thrombin, respectively. (E) LL-37 administration 
(0.4–10 mg/kg) induced thrombosis formation and shortened time of 
arterial occlusion in FeCl3-induced carotid artery thrombosis mouse 

model. Representative images of carotid artery blood flow at 0 and 
4 min (left), and statistical analysis of vascular occlusion time (right) 
of each group (blue, 0 mg/kg; red, 0.4 mg/kg; green, 2 mg/kg, purple, 
10  mg/kg). (F) LL-37 (30  mg/kg) directly induced lung thrombosis 
formation, white arrows in F indicate thrombosis in lung, scale bar: 
100  μm. Data are mean ± SD of at least three independent experi-
ments. *p < 0.05, **p < 0.01
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Fig. 5   Effects of Cramp on thrombosis formation through poten-
tiation of coagulation factor activity. Cramp potentiated activity of 
thrombin (A, C) and FXa (B, D) on their chromogenic (A, B) and 
physiological substrates (C, D). (E, F) C57BL/6 wild-type (WT) 
mouse plasma and Cramp−/− mouse plasma were added to chromo-
genic substrates of coagulation factors (E: thrombin, F: FXa), and 
absorbance at 405 nm was measured immediately for 30 min, 60 min, 
respectively. (G) Cramp (30 mg/kg) directly induced lung thrombo-
sis formation, black arrows in Figure G indicated thrombosis in lung, 
scale bar: 100 μm. (H) Cramp administration (0.4–10 mg/kg) induced 

thrombosis formation and shortened time of arterial occlusion in 
FeCl3-induced carotid artery thrombosis mouse model. Representa-
tive images of carotid artery blood flow at 0 and 4  min (left), and 
statistical analysis of vascular occlusion time (right). (I) Cramp dele-
tion inhibited FeCl3-induced carotid artery thrombosis formation and 
extended time of arterial occlusion. Representative images of carotid 
artery blood flow at 0 and 4 min (left), and the statistical analysis of 
vascular occlusion time (right). Data are mean ± SD of at least three 
independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001
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inflammation, cell proliferation and apoptosis. However, 
overexpression of LL-37 or LL-37 complexes with other 
molecules may contribute to progression of diseases. For 
example, the LL-37-DNA/RNA complex can aggravate 
psoriasis [34, 57], atherosclerosis [35, 58], ulcerative colitis 
[36], sepsis [59], thrombosis [37], and chronic obstructive 
pulmonary disease [60] through the induction of inflamma-
tion. Cytokine storms are another clinical marker of SARS-
CoV-2, which induce higher morbidity and mortality in 
COVID-19 patients [61]. Circulating cell-free DNA [62], 
cell-free mitochondrial DNA [63], and cell-free microbial 
DNA [64] are increased in SARS-CoV-2 infection and are 
associated with disease severity and mortality in COVID-19 
patients. Therefore, elevated LL-37 may induce the inflam-
mation via interactions with increased cell-free DNA of 
COVID-19 patients, thereby exacerbating disease process.

In conclusion, we observed a close correlation between 
LL-37 and the hypercoagulation frequently observed in 
COVID-19 patients. The level of LL-37 was increased in 
the plasma of COVID-19 patients with the induction of 
SARS-CoV-2 spike protein. Elevated LL-37 may contribute 
to thrombosis via potentiation of coagulation factor activ-
ity. As the results of our research, although LL-37 has been 
found to perturb SARS-CoV-2 infection, it is not suitable 
for the treatment of SARS-CoV-2 infection, especially for 
patients in hypercoagulability.
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