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Abstract

The NusG protein family is structurally and functionally conserved in all

domains of life. Its members directly bind RNA polymerases and regulate tran-

scription processivity and termination. RfaH, a divergent sub-family in its evo-

lutionary history, is known for displaying distinct features than those in NusG

proteins, which allows them to regulate the expression of virulence factors in

enterobacteria in a DNA sequence-dependent manner. A striking feature is its

structural interconversion between an active fold, which is the canonical NusG

three-dimensional structure, and an autoinhibited fold, which is distinctively

novel. How this novel fold is encoded within RfaH sequence to encode a meta-

morphic protein remains elusive. In this work, we used publicly available

genomic RfaH protein sequences to construct a complete multiple sequence

alignment, which was further augmented with metagenomic sequences and

curated by predicting their secondary structure propensities using JPred.

Coevolving pairs of residues were calculated from these sequences using

plmDCA and GREMLIN, which allowed us to detect the enrichment of key

metamorphic contacts after sequence filtering. Finally, we combined our

coevolutionary predictions with molecular dynamics to demonstrate that these

interactions are sufficient to predict the structures of both native folds, where

coevolutionary-derived non-native contacts may play a key role in achieving

the compact RfaH novel fold. All in all, emergent coevolutionary signals found

within RfaH sequences encode the autoinhibited and active folds of this pro-

tein, shedding light on the key interactions responsible for the action of this

metamorphic protein.
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1 | INTRODUCTION

Protein evolution is at the cornerstone of organism adap-
tation and gain of function. It diversifies proteins into
entire families, whose members can branch out into pro-
teins carrying distinct functions than their predecessors.
This is the case of RfaH, a transcription and virulence
factor in enterobacteria that evolved from a highly con-
served family of transcription regulators called NusG.1

This protein family is universally conserved in all
domains of life, regulating transcription by directly bind-
ing to RNA polymerase (RNAP),2 and an ancestor of this
protein family is thought to have been present in the last
universal common ancestor (LUCA).3

In Escherichia coli, NusG is an essential protein that
regulates virtually all transcription processes.3 Mean-
while, its RfaH paralog is quite unique as it regulates
transcription in a sequence-dependent manner.4 RfaH,
unlike NusG, is not directly recruited to RNAP, but to
the entire ops-paused transcription elongation complex

(TEC),5 with the ops (operon polarity suppressor)
corresponding to a DNA sequence commonly found in
pathogenicity islands and xenogenes incorporated by
enterobacteria.1

This striking feature of RfaH is achieved by its three-
dimensional structure, which differs from that of the
canonical NusG fold. As in NusG, it consists of an N-
terminal domain (NTD) comprising an hydrophobic
depression that binds RNAP, but that in RfaH is blocked
by its own C-terminal domain (CTD) folded as an
α-helical hairpin, constituting an autoinhibited state
(αRfaH).6 Notably, when RfaH encounters the ops-
paused TEC, it binds to it and relieves itself from auto-
inhibition, upon which the released CTD refolds into a
β-barrel (βRfaH) in a process that is known as fold-
switching7 (Figure 1).

It is estimated that between 0.5% and 4% of proteins
whose structures are deposited in the PDB are likely to
exhibit fold-switching, or metamorphic, behavior.8

Among them, RfaH is one of the most studied cases due

FIGURE 1 Summary of the research and methods used in this work. (a) NusG, a non-metamorphic protein, evolved into its paralog

RfaH, whose fold-switch is characterized to take place between an autoinhibited fold (αRfaH) that has interdomain contacts at the

hydrophobic patch (yellow) and an active fold that does not establish interdomain contacts (βRfaH). We hypothesized that the emergence of

these intradomain and interdomain contacts can be inferred via coevolutionary analysis. (b) By constructing a metagenomic-enriched

multiple sequence alignment (MSA) of RfaH and filtering out non-metamorphic sequences based on secondary structure predictions, we

inferred a contact map of coevolving residue pairs that we used to predict the structures of the autoinhibited and active states of RfaH

through molecular dynamics using two different pipelines, namely DCA/SBM and GREMLIN/AWSEM-ER, which capture the distinctive

features of RfaH folding.
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to its dramatic all α-helix (αCTD) to all β-strand (βCTD)
conversion of a whole domain. Computational
approaches have sought to determine the fold-switching
mechanism of this protein,9–15 and experimental struc-
tural work has been performed to characterize its binding
to the TEC.6,16 Recent reports suggest that during evolu-
tion, protein metamorphosis emerges as the connecting
path between two distinct folds.17 Nevertheless, the fold-
switching process of RfaH is key for its function, as it
allows RfaH to become active upon specific recognition
of a DNA sequence while avoiding its spurious binding to
RNAP.16

Experimental and computational approaches have
shown that interdomain contacts formed between the
CTD and the RNAP-binding interface of the NTD are
essential for the formation of the autoinhibited state of
RfaH. Particularly, the electrostatic interaction E48-R138
is responsible for stabilizing the α-folded state, as its dis-
ruption leads to roughly equally populated βRfaH and
αRfaH in solution.7 Furthermore, removal of inter-
domain contacts in coarse-grained simulations of the
full-length protein is enough to give rise to βRfaH.11,18

Consequently, the autoinhibiting interdomain interac-
tions, absent in the RfaH paralog NusG, are essential to
stabilize the novel αRfaH fold, giving rise to its structural
duality.

We sought to determine if intradomain and inter-
domain interactions stabilizing both RfaH folds can be
inferred from the coevolutionary analysis of their amino
acid sequences, and further evaluate their sufficiency to
encode both RfaH folds via molecular dynamics
(MD) that explicitly incorporate this information. Coevo-
lutionary inference methods, such as direct coupling
analysis (DCA)19 and generative regularized models of
proteins (GREMLIN),20 have been developed for the sta-
tistical analysis of large multiple protein sequence align-
ments in two essential terms: sequence conservation and
correlated mutations. Given that spatially proximate resi-
dues in the native state of a given protein family tend to
coevolve,21 these methods have been widely successful in
inferring the structural proximity of coevolving residue
pairs that are fundamental for folding, function, and
dynamics from sequence information alone.22,23

In this work, RfaH sequences deposited in the Inter-
pro database24 were used to predict coevolutionary con-
tacts with pyDCA25 and GREMLIN20 (Figure 1). The
number of RfaH sequences was further increased by con-
structing a hidden Markov model (HMM) profile to use
as input for a subsequent search of RfaH sequences in
the metagenomic database metaclust.26 Finally, in line
with recent works,27 all sequences were filtered using sec-
ondary structure prediction in JPred28 to select only
metamorphic candidates. This metamorphic enrichment

protocol yielded an alignment of 3,570 nonredundant
sequences that display four coevolving pairs of residues
involved in interdomain interactions in the experimen-
tally solved structure of αRfaH.

The inferred contacts for RfaH were used as restraints
for protein structure prediction in simulations based on
coevolutionary structure-based models (SBMs)29 and
coarse-grained force fields,30 whose final configurations
largely reproduced the experimentally solved structures
of both RfaH folds and the NTD-CTD binding of αRfaH.
Furthermore, choosing subsets of coevolutionary interac-
tions to guide these simulations led to the observation
that contacts between residue pairs not observed in the
crystallographic structure of RfaH, that is, non-native
contacts, are important to reach a compact native state
having the correct topology and that CTD compactness is
essential for forming the autoinhibiting interface
of RfaH.

In summary, our results effectively demonstrate that
coevolutionary signals encode the metamorphic behavior
of RfaH, replicating the distinct features of the active and
autoinhibited folds that are essential for the biological
function of this transcription factor.

2 | RESULTS

2.1 | Sequence retrieval and
coevolutionary analysis

Retrieving enough sequences to predict robust evolution-
ary signals is not trivial. Research using the GREMLIN
algorithm suggests that a number of nonredundant
sequences at least 20 times the length of the protein (L) is
needed to achieve a true positive (TP) rate
(i.e., coevolving pairs forming a native contact in an
experimentally solved structure) of �0.7 for the top L/2
contact predictions.31

This is an issue for the RfaH subfamily, considering
that its most studied representative from E. coli is 162 resi-
dues long. The predicted members deposited in the Inter-
pro database24 make up nearly 3,000 sequences that,
when clustered at 90% identity to reduce redundancy,
decreases to �1,000 sequences. This is less than one third
of what is needed according to the criteria above.

Therefore, HMMER32 was used to build an HMM
profile with the nonredundant Interpro sequences, all-
owing to search for additional RfaH protein sequences in
metaclust, a large metagenomic database of 1.59 billion
sequences.26 Using several e-value cutoffs, 3 sets were
retrieved, containing 3,865 (e-value 10�30), 5,378 (e-value
10�25), and 8,516 (e-value 10�20) sequences clustered at
90% identity.
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Using pyDCA25 as a python script in Jupyter Note-
books for execution in Google Colaboratory,33 coevolu-
tionary interactions were calculated using pseudo-
likelihood maximization direct coupling analysis
(plmDCA) on MSAs generated using hmmalign from
HMMER.32 Two MSAs were analyzed: one with only
nonredundant RfaH sequences from Interpro database
(Interpro, 1,005 sequences), and another one complemen-
ted with the sequences found in metaclust (Interpro +-

MG, 5,379 sequences). Given that GREMLIN has been
shown to be more accurate than other coevolution-based
residue-residue contact prediction methods,31 we also
performed our coevolutionary analyses with this
algorithm.

Using the Interpro database alone, plmDCA correctly
predicts 17 CTD contacts below 8 Å that are formed
either in αCTD or βCTD, 1 interdomain (ID) contact
below 10 Å and 34 NTD contacts below 8 Å, reaching a
fraction of TP (with L = 162) of 0.32, whereas GREMLIN
correctly predicts 4 additional contacts for RfaH CTD and
10 additional contacts for the NTD, reaching a TP of 0.40
(Figure 2, Tables S1 and S2). The choice of 10 Å for ID
contacts was due to the observation that the average

NTD-CTD distance in randomized residue-residue pairs
is 32 Å, in contrast with CTD and NTD contacts that take
place at 10–12 Å (Figures S1 and S2).

The addition of metagenomic RfaH sequences from
metaclust led to an increase in TP up to 0.52 for plmDCA
and 0.62 for GREMLIN (Figure 2), including one addi-
tional ID contact for plmDCA (Table S1) and two addi-
tional ID contacts for GREMLIN (Table S2). Special
attention was paid to the increase in ID contacts due to
their relevance in stabilizing the autoinhibited state of
RfaH.11,18,34

In this regard, it is worth noting that although
increasing the number of metagenomic sequences
beyond those retrieved by HMM search with an e-value
of 10�30 increases the TP rate for both RfaH folds, that is,
from 0.63 to 0.71 for αRfaH and from 0.70 to 0.82 for
βRfaH, there is no increase in the number of predicted
ID contacts (Figure S3). Therefore, we opted to use this
MSA to avoid leakage of NusG sequences into our align-
ment at lower e-values, which could potentially disrupt
the coevolutionary signals between the NTD and CTD of
RfaH,22 and to reduce the computing time of coevolution-
ary contacts through the plmDCA algorithm.

In fact, addition of the metagenomic RfaH sequences
led to a 70% increase in the number of correctly predicted
NTD contacts whereas the number of CTD contacts
remained roughly the same, which could be an indication
that non-metamorphic protein sequences have leaked
into the alignment, as the NTD fold is highly conserved
throughout the NusG family.

A recent work employed a secondary structure predic-
tion approach to filter out potential non-metamorphic
RfaH homologs.27 Based on this work, we used JPred28 to
identify which protein sequences from the Interpro + MG
MSA exhibit both β-strand and α-helical propensity in a
short section of the CTD, comprising residues 126–162 in
the representative sequence of E. coli RfaH, that reports
its metamorphic duality. This filtering process led to a
third MSA containing 3,570 sequences clustered at 90%
identity (Metamorphics), a reduction of �1,000 sequences
from the starting MSA.

Despite this important reduction in the number of
sequences, the resulting MSA almost completely repli-
cates the coevolutionary information and TP obtained
using either plmDCA or GREMLIN on the Interpro +-

MG MSA while correctly predicting an additional ID
contact (Figure 2, Tables S1 and S2). Altogether, our best
TP for L contacts (L = 162) with the highest number of
ID contacts was achieved with the Metamorphics MSA
and GREMLIN, obtaining 70 contacts for the NTD, 22 for
the CTD in either fold, and 4 ID contacts (Figure 2 and
Table S2). In comparison, a recent work on coevolution-
ary analysis on RfaH using EVcouplings35 on sequences

FIGURE 2 Summary of the coevolutionary analysis results for

the RfaH subfamily. The stacked bar graphs show the fraction of

coevolving residue pairs (L = 162) that are found forming a native

contact (Cα distance <8 Å) in the NTD, αCTD, or βCTD; an ID

contact (Cα distance <10 Å) or a non-native contact. The contact

distances are calculated based on the crystal structure of full-length

αRfaH (PDB 5OND) and the cryo-EM structure of βRfaH
(PDB 6C6S).
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collected using iterative BLAST36 and filtered by second-
ary structure propensity with JPred28 led to the prediction
of CTD and NTD contacts but did not report any cor-
rectly predicted ID contacts.27

To rationalize the successful prediction of ID contacts
in our coevolutionary analysis, we took into consider-
ation the differences between pyDCA and GREMLIN and
the increase and identity of the ID contacts predicted
upon addition of metagenomic RfaH sequences and sec-
ondary structure filtering (Table 1).

One relevant difference between both coevolution-
based methods is that pyDCA recommends using a
sequence separation for residue pairs of j > i + 3, while
the sequence separation used in GREMLIN is j > i + 2.
Setting the residue separation for plmDCA at j > i + 2
shows that most predicted contacts are false positives or
short-ranged (Figure S4). Despite this observation, one
correctly predicted ID contact (residue pair 92–146) was
retrieved from InterproMSA and two from Interpro +MG
and Metamorphics MSAs, corresponding to residue pairs
48–135 and 52–139 that are also obtained using GREM-
LIN. Thus, filtering out short-range contacts at low
sequence separation is required for predicting long-range
ID contacts in pyDCA.

Analysis of the Interpro MSA using plmDCA led to
the correct prediction of ID residue pair 92–146. The
addition of metagenomic sequences led to the disappear-
ance of the previous residue pair and the correct predic-
tion of ID residue pairs 48–135 and 52–139. Lastly, upon
filtering the sequences via Jpred, one additional ID con-
tact is correctly predicted for residue pair 52–137
(Table 1). This analysis suggests that some of the ID con-
tacts that are likely important for αRfaH may have low
DCA scores because they are buried in the dominant
coevolutionary signals of the canonical βCTD found in
both metamorphic and non-metamorphic NusG family
members.

Besides the increase in ID contacts upon enriching
the number of RfaH sequences and their subsequent fil-
tering based on secondary structure predictions, we were
also interested on the intradomain contacts predicted by
these methods, as they may be key in stabilizing each
fold. For αRfaH, it is consistently observed that both
plmDCA and GREMLIN only yield helical contacts, that
is, with sequence separations of 3 or 4 residues, and no

interhelical contacts. Meanwhile, coevolutionary contacts
in the β-folded CTD are formed between β2-β3, β3-β4,
and β4-β5 (Figure S5). It is also worth noting that most of
the helical contacts inferred for αCTD are exclusive to
this fold, that is, the interacting residue pairs are signifi-
cantly more separated in distance in the βCTD. There-
fore, these findings suggest that the helical propensity of
RfaH CTD is encoded within its sequence coevolution,
unlike the hairpin formation, which likely results from
compaction of this domain against the hydrophobic ID
surface in the NTD.

For both plmDCA and GREMLIN, there are about
40%–50% coevolutionary signals that do not correspond
to any known contact in αRfaH or βRfaH when using the
�3,500 sequences of the Metamorphics MSA. These
apparent non-native interactions are all significant and
contribute to a large fraction of the total predicted inter-
actions. To assess if the same rate of false positive con-
tacts is observed in the non-metamorphic NusG protein
family members, the NusG sequences deposited in
Pfam37 were clustered at 90% identity (10,593 sequences),
aligned and used as input for plmDCA (Figure S6). The
results show that out of the top L = 181 residues, 157 con-
tacts are correctly predicted, representing a TP of 0.86,
which is higher than the TP rate observed for αRfaH.
However, this TP rate is similar to the one obtained for
βRfaH (0.82) using the Interpro and metagenomic
sequences retrieved at e-value 10�20 (8,516 sequences,
Figure S3). These results suggest that it would be
required to further increase the number of true metamor-
phic RfaH sequences to overwhelm the coevolutionary
signals coming from βRfaH or non-metamorphic
homologs.

2.2 | Structure prediction through
coevolution-based MD

To determine if the coevolutionary signals identified for
RfaH are enough to correctly predict the αRfaH fold,
which is the novel topology in the NusG family, two MD
pipelines were used: Cα coarse-grained simulations using
SBMs guided by DCA-predicted RfaH contacts,22 and Cβ
coarse-grained semi-empirical simulations using
AWSEM-ER guided by GREMLIN-predicted RfaH

TABLE 1 TP ID contacts found for each dataset.

Dataset pyDCA j > i + 2 pyDCA j > i + 3 GREMLIN

Interpro V92—I146 V92—I146 P52—S139

Interpro + MG P52—S139, E48—G135 P52—S139, E48—G135 P52—S139, P52—A137, E48—G135

Metamorphics P52—S139, E48—G135 P52—S139, P52—A137, E48—G135 P52—S139, P52—A137, N53—S139, E48—G135
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contacts.30 Briefly, each coevolutionary contact is used as
a bias to guide the MD simulation to form such contact
in a simulated annealing, that is, a descending tempera-
ture gradient that allows the formation of the selected
contacts during protein folding. These coevolution-
guided MD simulations also rely on secondary structure
biases for higher accuracy. Thus, we employed the sec-
ondary structure observed in PDB 5OND and 6C6S to
model αRfaH and βRfaH, respectively.

A total of 10 simulations for αRfaH and βRfaH were
produced for each pipeline. Regardless of the MD pipe-
line and the low number of ID contacts obtained with
either coevolutionary analysis, most of the final configu-
rations of αRfaH after simulated annealing exhibit the
formation of an incipient NTD-CTD interaction in the
same location of the hydrophobic depression of the NTD
(Figures 3 and S7). For the best predicted structure,
obtained using the GREMLIN-AWSEM-ER pipeline, the
RMSD of the NTD and CTD against the experimental
structure of αRfaH reached 4.2 and 4.1 Å, respectively
(Tables S3 and S4).

Compaction of the CTD allows for the formation of
an incipient NTD-CTD interaction in 80% of the simula-
tions with the GREMLIN-AWSEM-ER pipeline and 70%
for the DCA-SBM pipeline. However, the hairpin αCTD
structure is only achieved in a few cases, supporting the
idea that NTD-CTD binding can occur even in the
absence of an αCTD with all native intrahelical contacts
formed, as observed in previous simulations using dual-
basin SBM11 and experiments using hydrogen-deuterium
exchange mass spectrometry,18 which would likely give
rise to RfaH autoinhibition.

In the case of βRfaH, it was observed that the struc-
ture of the βCTD is too distorted to be properly folded
with either MD pipeline (Tables S5 and S6), reaching
instead the folding state of a three-stranded intermediate
chaperoned by the NTD in which only strands β2, β3,
and β4 are formed and that has been described through
multiple computational approaches in previous
works.9,38,39 Also, the RMSD of the βCTD is higher for
the DCA-SBM pipeline. As a control, we compared our
DCA-SBM simulations for full-length βRfaH (Figure S7)
with simulations of the isolated βCTD using coevolution-
ary contacts predicted only for the 55 C-terminal residues
of RfaH (Table S7). While in all simulations of the iso-
lated CTD its RMSD against the experimental β-folded
state stayed above 8 Å, its RMSD against the reported
β-intermediate reaches down to 4.6 Å. This evidence sug-
gests that βCTD folding is impeded by the idealized fully
extended β-strands that are being used as secondary
structure bias in these SBM-models, but that its main fea-
tures are correctly modeled.

For the NTD, we observed that the β2-β3 hairpin,
largely responsible for its binding to the RNAP, is highly

flexible in the final configurations obtained using the
GREMLIN-AWSEM-ER pipeline, particularly in the
βRfaH configuration, giving rise to higher RMSD values
than in αRfaH. It should be noted, however, that the
RMSD between the NTD for both experimental structures
of RfaH (PDB 5OND and 6C6S) is 3.0 Å, largely due to
structural differences in this hairpin. Regardless, the
physicochemical potential of the AWSEM forcefield
allows proper compaction of the NTD, thus exhibiting
lower RMSD values for the best-predicted structure than
the DCA-SBM pipeline.

To determine the effect of coevolution-based native
and non-native contacts on the accuracy of RfaH struc-
ture prediction, we further employed the DCA-SBM pipe-
line in which only bonded interactions and nonbonded
coevolution-based contacts are involved, in contrast to
GREMLIN-AWSEM-ER that also incorporates physico-
chemical and knowledge-based potentials. We first deter-
mined the fraction of native and non-native contacts as a
function of time for the DCA-SBM simulation that
reflects the lower RMSD to the αRfaH fold (Figure S8).
We observed that the fraction of native contacts reaches
0.7 in the final native ensemble, as expected for a simu-
lated annealing of a globular protein, whereas the frac-
tion of non-native contacts only reaches 0.3, indicating
that the non-native interactions inferred by coevolution
are not compatible with the native contacts in this
structural form.

Next, we chose different subsets of coevolution-based
predicted contacts for subsequent DCA-SBM simulations.
First, we performed simulations in which we deleted
DCA-predicted contacts that exhibit shorter distances in
βCTD than in αCTD. Second, we performed additional
simulations only considering TP native contacts present
in the experimental αRfaH structure, effectively disre-
garding non-native interactions. In the first case, we
observed that the RMSD to the NTD was similar as the
one achieved with the whole set of DCA-predicted con-
tacts (Table S8), whereas an overall increase in RMSD for
the NTD and a less compact global architecture was
observed for the second scenario (Table S9). Regardless,
in both cases the CTD was no longer binding to the
hydrophobic depression at the NTD and was less com-
pact when compared with the initial simulations.

Finally, given that most coevolutionary-predicted
native and non-native contacts exhibit shorter interaction
distances than randomly generated contacts (Figures S1
and S2), we tested if replacing these non-native contacts
by an equal number of randomly selected non-native
interactions would replicate the compaction caused by
the coevolved pairs obtained through DCA. As summa-
rized in Table S10, we observe a similar behavior for the
NTD as in the simulations in which only TP contacts for
RfaH were considered, except that the topology of this
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domain was, in most cases, incorrect. For the CTD, we
observed compaction of this domain, which is likely cau-
sed by the native interactions of the βCTD, but ID

interactions occur away from the hydrophobic patch of
the NTD probably due to the random nature of the non-
native contacts.

FIGURE 3 Best predicted structures for αRfaH and βRfaH based on the GREMLIN-AWSEM-ER pipeline. (a) Comparison of the

coevolution-based and the experimental contact maps of αRfaH (PDB 5OND). (b,c) Comparison of the contact maps generated using the

AWSEM-ER-predicted structures and experimental structures for αRfaH (PDB 5OND, (b) and βRfaH (PDB 6C6S, c). (d) Cartoon

representation of the best predicted structures for both RfaH folds, and their respective RMSD to the experimental structures.
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Altogether, these results suggest that non-native
coevolutionary contacts may be important to reach a
compact architecture, and that compactness at the CTD
may be essential for having clustered interactions that
simultaneously bind the NTD at the hydrophobic depres-
sion, enabling RfaH to reach its autoinhibited state.

3 | DISCUSSION

RfaH is one of the most prominent examples of metamor-
phic proteins, exhibiting fold-switch of an entire domain
from an α-helical hairpin to a small β-barrel. Since this
protein subfamily is thought to have originated from
non-metamorphic NusG transcription factors, its new
metamorphic fold should be stabilized by ID interactions
emerging during its evolution. To assess such scenario,
we sought to find RfaH sequences to infer coevolution-
based residue-residue interactions essential for the novel
RfaH autoinhibited fold.

It is worth noting that current state-of-the-art struc-
tural predictors, such as AlphaFold2,40 can predict the
metamorphic behavior of RfaH. For example, using the
sequence of full-length E. coli RfaH as input into
ColabFold (colabfold.com),41 a Google Colaboratory
implementation of AlphaFold2, yields the αRfaH fold as
a result, whereas using only the CTD of the same protein
as input yields the canonical NusG-like β-barrel. How-
ever, this approach is not as straightforward as the coevo-
lutionary analysis of thousands of protein sequences in
defining the key interactions stabilizing each fold and
how these interactions emerged during the evolution of
the NusG protein family.

Using the metagenomic database metaclust to
increase the available number of RfaH sequences over
those deposited in the Interpro database, and then filter-
ing these sequences by using a secondary structure pre-
dictor to ascertain the duality of their structure
propensity, it was possible to increase the number of ID
contacts by enriching our coevolutionary analysis with
true metamorphic sequences.

This coevolutionary information, in combination with
different secondary structure biases, was sufficient to pre-
dict both the predominant autoinhibited structure of
RfaH in solution and to retrieve key contacts involved in
the stabilization of the βCTD in the active state and the
formation of a recently described β-intermediate. In fact,
the β-intermediate that precedes βCTD folding38 is formed
even in the presence of ID contacts. These findings sug-
gest that the duality in secondary structure propensity of
RfaH is essential for the stabilization of both folds.

We have also shown that it is not necessary to infer
all interhelical CTD contacts to predict a compact αCTD
that inhibits the NTD. In fact, recent experimental work

has demonstrated that the ends of the αCTD hairpin are
largely unstructured in solution.7,18 Furthermore, it has
been shown that an exactly solvable model of helical-
coil-sheet transitions displays cooperativity in its
temperature-induced folding from helical to extended
configurations, prior to reaching the coil state.42 Alto-
gether, these precedents suggest that nucleation of the tip
of the αCTD hairpin at the NTD hydrophobic patch by
coevolutionary ID contacts could trigger the formation of
the autoinhibited fold of RfaH. Although the stability of
the autoinhibited state over the active state of RfaH in
solution cannot be derived from these coevolution-guided
simulations, its thermodynamic favorability has been
thoroughly analyzed in simulations and experiments that
explore its protein folding landscape in detail.11,38,43

Our results also showed that non-native interactions
of either RfaH state were relevant to produce compact-
ness during protein folding. In particular, non-native
contacts from the β-barrel CTD were essential to ensure
compactness of the αCTD in the autoinhibited state. Even
though they account for nearly half of all coevolution-
based interactions, only 30% of these non-native contacts
are present in the final annealed configurations of αRfaH,
while 70% of the correctly predicted native contacts are
formed.

Although being marginally formed, some of the non-
native contacts that guide αRfaH folding are in close spa-
tial proximity in the native state, and hence help com-
pacting the protein structure. Thus, the local frustration
brought by non-native contacts, that is, the roughness of
the potential energy landscape for protein folding arising
from conflicting interactions,44 is expected to play a fun-
damental role in enhancing the folding process of RfaH,
as has been seen in globular proteins.45,46 These pairs of
significantly coevolving residues not involved in direct
physical contacts in RfaH may correspond to interactions
necessary to some functional aspects, presumably even
fold-switching.

4 | METHODS

4.1 | Sequence search

All initial RfaH sequences were retrieved from the Inter-
pro database of protein families.24 The choice of this data-
base for sequence retrieval is due to a recent study that
employed this database to characterize the sequence con-
servation in both RfaH and NusG and further experimen-
tally tested substitutions of these residues in vitro.47 The
retrieved sequences were also used to construct an
HMM32 profile that was employed to retrieve more RfaH
sequences from the metaclust database,26 using cutoff
e-values of 10�30, 10�25, and 10�20. Lastly, the sequences
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from Interpro and metaclust were combined and filtered
based on the duality of their secondary structure propen-
sity, similarly to previous works.27 To do this, a region of
the CTD sequence of each protein (starting from the resi-
due pattern FQAIF, corresponding to residue number
126 in E. coli RfaH) was used as input for secondary
structure prediction on the JPred4 webserver28 (https://
www.compbio.dundee.ac.uk/jpred/) using default set-
tings. Each unaligned sequence that had at least four
consecutive helical residues in this trimmed version of
the CTD was included in the Metamorphics alignment.

4.2 | Coevolutionary analysis

The three datasets obtained before, Interpro with 1,005
sequences, Interpro + MG with 5,379 sequences and
Metamorphics with 3,570 sequences, were used as input
for the pyDCA algorithm implemented in Google Col-
aboratory or submitted at the GREMLIN webserver
(http://gremlin.bakerlab.org). The retrieved residue-pair
list was analyzed using a homemade script to calculate
the Cα distance at the target PDB file of either αRfaH or
βRfaH from PDB 5OND and 6C6S, respectively
(Tables S1 and S2).

4.3 | Simulated annealing using
structure-based MD (DCA-SBM)

SBMs were generated based on the secondary structure of
either RfaH fold and the coevolutionary information
obtained by plmDCA,21 following a protocol already
reported.22 Besides the SBMs for αRfaH with all DCA
contacts (Table S3) and βRfaH with all DCA contacts
(Table S5), additional models for βCTD with predicted
DCA contacts of L = 55 (Table S7), αRfaH will all DCA
contacts except those of the βCTD (Table S8), αRfaH with
only native DCA contacts (Table S9), and αRfaH with
native contacts plus randomly generated non-native con-
tacts equal to the number of non-native coevolving pairs
(Table S10), were produced. All these models were run
for 2 � 107 steps with a timestep 0.0005 τ in reduced
units, over which a temperature gradient lowered the
temperature from 200 to 0 reduced temperature units. All
the simulations were performed with a modified version
of GROMACS.48

4.4 | Simulated annealing using
GREMLIN-AWSEM-ER

Following the AWSEM-ER protocol for the GREMLIN-
derived RfaH contacts,30 a simulated annealing was

produced for αRfaH (Table S4) and βRfaH (Table S6) by
decreasing the temperature from 450 to 350 temperature
units over 4 � 106 steps using a timestep of 5 fs. The
default AWSEM forcefield was used, except for the frag-
ment memory potential which was turned off and the
evolutionary restraints derived from GREMLIN that were
added.
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