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A B S T R A C T   

Background: COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues 
related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for 
improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. 
Method: ology: The proposed study uses multicenter ~9,000 CT slices from two different nations, namely, 
CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). 
We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be 
reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution 
(DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization 
algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were 
designed. COVLIAS 2.0 was validated using “Unseen NovMed” and benchmarked against MedSeg. Statistical tests 
for stability and reliability were also conducted. 
Results: Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN–PSO, and (iv) FCN-WO showed improvement in 
storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, 
(vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 
99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p <
0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM 
heatmaps showed validation on glass ground opacity lesions. 
Conclusions: Eight PAI networks that were successfully validated are five times faster, storage efficient, and could 
be used in clinical settings.   

1. Introduction 

COVID-19 (the novel coronavirus) that was proclaimed by the World 
Health Organization (WHO) on March 11, 2020 [1] as a global 
pandemic has been a rapidly developing disease with limited hospital 
resources worldwide. As of February 15, 2022, it has infected more than 
410 million people and killed almost 5.8 million [2] worldwide. 
COVID-19 molecular pathways [3,4] are worse in people with comor
bidities such as coronary artery disease [3,5,6], diabetes [7], athero
sclerosis [8], and fetal programming [9]. Further, it also damages the 
vasa vasorum of the aorta, causing micro thrombosis and atherosclerotic 
plaque vulnerability [10,11]. It has also caused architectural deforma
tion because of interactions between alveolar and vascular modifica
tions [12] and affects daily activities such as nutrition [13]. Pathology 
revealed that vaccine-induced immune thrombotic thrombocytopenia 
(VITT) is generated even after vaccine inoculation (ChAdOx1 nCoV-19) 
[14]. Adults who are born tiny, a condition known as intrauterine 
growth restriction (IUGR), are also more likely to be infected with 
COVID-19 [9]. Due to the lack of adequate immunization or therapy, 
early and accurate detection of COVID-19 is critical and in need of im
mediate attention. Due to the lower specificity of reverse 
transcription-polymerase chain reaction (RT-PCR) tests [15–17], 
research has become more inclined to use image-based analysis for 
detecting and diagnosing COVID-19. 

With the advancement of artificial intelligence (AI) technology, 
machine learning (ML) and deep learning (DL) techniques have been 
widely adopted for pneumonia detection and classification [18–21]. 
However, these technologies possess a threat when it comes to real-time 
analysis [22]. An advanced stage of DL is hybrid DL (HDL) [23–30]. 
Even though DL/HDL models offer higher accuracy and performance, 
the cost associated with these models are high since it takes time to train 
and predict results. One way to solve the processing problem is to use 
GPU or supercomputers [29,31–33]]. However, they are expensive and 
difficult to maintain in the long run. 

Originally, LeCun et al. [34], in their paper "Optimal Brain Damage," 
published in 1989, was the first to bring the concept of pruning to the 
area of deep learning. Pruning is a term that refers to trimming or cutting 
away excess from a model or search area to remove the redundant or 
insignificant sections [35]. This pruning concept was extended to 

improve storage [36,37] and speed up the model training by choosing 
the correct/appropriate hyperparameters [38,39]. They have mostly 
been applied to X-ray non-COVID and COVID-19 imaging [40]. As a 
result, the proposed study hypothesizes that such pruning methods can 
significantly enhance storage and processing time for computed to
mography (CT) lung segmentation and lesion localization while 
requiring no additional hardware and maintenance. 

The proposed study is the first to introduce eight DL-based innova
tive pruning models based on evolutionary algorithms (EA). This is our 
prime contribution and innovation in COVID-19 based CT lung segmen
tation. The eight-novel pruning AI (PAI) models are (i) differential 
evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm opti
mization algorithm (PSO), and (iv) whale optimization algorithm (WO) 
with FCN and SegNet as base DL infrastructure. As a result, the following 
eight pruning models emerges (i) FCN-DE, (ii) FCN-GA, (iii) FCN–PSO, 
(iv) FCN-WO when using solo FCN and (v) SegNet-DE, (vi) SegNet-GA, 
(vii) SegNet-PSO, and (viii) SegNet-WO when using solo SegNet. To 
scientifically validate the aforesaid innovation and contributions, we 
used a multicenter paradigm in an unseen framework. This requires 
training with our DL-based EA on the high-GGO cohort, which is taken 
from Croatia (CroMed), and predicting the segmented lung using the 
data from Novara, Italy (NovMed). Note that these “Unseen NovMed” 
data were acquired utilizing different CT machines and patients from 
various geographies and ethnicities, resulting in the Unseen AI para
digm. We consider this as our second innovation for this study. To assert 
the power of our innovation, we designed a unique pipeline to accu
rately localize the COVID-19 lesions in segmented lungs, which are 
taken from PAI and converted into a classification framework by fusing 
DenseNet-121 and GRAD-cam to generate powerful and visual color 
heatmaps. This takes us to our third and most distinctive innovation: 
evolutionary-based lung segmentation with lesion localization. To 
authenticate our contributions, we benchmarked our evolutionary- 
based COVLIAS 2.0 against MedSeg ([41]), a web-based lung segmen
tation tool, as the first attempt in low-storage and high-speed infra
structure. This is the fourth major contribution we have made. All our 
data analysis is comprehensive and adapted to 360-degree assessments. 
This consists of (i) Dice Similarity (DS), (ii) Jaccard Index (JI) [42], (iii) 
Bland-Altman plots (BA) [43,44], (iv) Correlation coefficient (CC) plot 
[45,46], (v) lung area error (AE), and (vi) receiver operator character
istic (ROC). We consider this as the fifth contribution for this study. We 
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put COVLIAS 2.0 through clinical and statistical testing to prove the 
reliability and stability of our hypothesis, which is considered as the 
sixth and final contribution. 

COVLIAS 2.0 system pipeline is presented in Fig. 1, which demon
strates a universally applicable AI system for COVID-19 based lung 
segmentation that uses pruned and optimized AI (POAI) models for 
faster processing and less storage. It consists of volume acquisition, 
online lung segmentation, and benchmarking against MedSeg, as well as 
performance evaluation using “Unseen NovMed” data set. 

Our suggested research is organized into seven sections. The back
ground literature is presented in section 2, and the methodologies, de
mographics, image acquisition, and a brief explanation of the AI models 
employed in this work are presented in section 3. The findings of the 
models, as well as their performance evaluation, are presented in Sec
tion 4. The validation and statistical analysis of a different data set and 
MedSeg are shown in Section 5. Section 6 deals with discussion and 
benchmarking. Section 7 deals with the conclusion. 

2. Literature survey 

The art of segmentation in medical imaging has existed for several 
years [47–49], but it has recently been steered into an AI framework. 
Further, segmentation has caused problems in tissue characterization 
and classification in the early diagnosis of disease. Hence AI has begun 
to dominate that framework [19,20]. It started with ML, where it pro
gressed to point-based models, such as problems related to diabetes [50, 
51], neonatal and infant mortality [52], and gene classification and 
analysis [53]. Moving from point-based to image-based machine 
learning for classification, several innovations have emerged which 
applied to lung segmentation [54], carotid plaque classification 
[55–59], thyroid [60], liver [61], stroke [62], coronary [63], ovarian 
[64], prostate [65], skin cancer [66–68], Wilson disease [32], and 
ophthalmology [69]. 

CT and X-ray play the most critical role in medical imaging for 
diagnosing COVID-19. CT has demonstrated high sensitivity and 

Acronym table 

ACC Accuracy 
AI Artificial Intelligence 
ARDS Acute Respiratory Distress Syndrome 
BA Bland-Altman 
CC Correlation Coefficient 
CE Cross-Entropy 
COVID Coronavirus disease 
COVLIAS COVID Lung Image Analysis System 
CroMed Croatian data set 
CT Computed Tomography 
DE Differential Evolution 
DL Deep Learning 
DS Dice Similarity 
EA Evolutionary Algorithm 
FoM Figure of merit 
GA Genetic Algorithm 
GGO Glass Ground Opacities 
GT Ground Truth 
HDL Hybrid Deep Learning 
HU Hounsfield Units 
JI Jaccard Index 
NovMed Italian data set 
NIH National Institute of Health 
PAI Pruned AI 
POAI Pruned and optimized AI 
PSO Particle Swarm Optimization 
RT-PCR Reverse Transcription-Polymerase Chain Reaction 
SDL Solo Deep Learning 
SegNet Segmentation Network 
VGG Visual Geometric Group 
WHO World Health Organization 
WO Whale Optimization 
μ Mean 
σ Standard Deviation 
αCE Cross-entropy-loss 
pi Classifier probability 
x i Input gold standard label 1 
FOpt Optimized fitness function 
HNOriginal Original hidden neuron 

HNCompress Compressed hidden neuron 
βACC Mean intersection over union accuracy 
μ1 and μ2 Weight factors for the fitness function 
TP True Positive 
TN True Negative 
FN False Positive 
FP False Negative 
m Variable for counting EA and takes the values 1, 2, 3, and 4 
EA(m) Evolutionary algorithm - DE, GA, PSO, and WO 
DSFCN

EA(m)
Dice Similarity for the base models FCN & EA (m) 

DSSegNet
EA(m)

Dice Similarity for the base models FCN & EA (m) 
JIFCN

EA(m)
Jaccard Index for the base models FCN & EA (m) 

JISegNet
EA(m)

Jaccard Index for the base models SegNet & EA (m) 
CCFCN

EA(m)
Correlation Coefficient for the base models FCN & EA (m) 

CCSegNet
EA(m)

Correlation Coefficient for the base models SegNet & EA 
(m) 

DSMedSeg Dice Similarity for the MedSeg 
JIMedSeg Jaccard Index for the MedSeg 
CCMedSeg Correlation Coefficient for the MedSeg 
ΔDSFCN

EA(m)
Difference between FCN and MedSeg 

ΔDSSegNet
EA(m)

Difference between SegNet and MedSeg 
ΔJIFCN

EA(m)
Difference between FCN and MedSeg 

ΔJISegNet
EA(m)

Difference between SegNet and MedSeg 
ΔCCFCN

EA(m)
Difference between FCN and MedSeg 

ΔCCSegNet
EA(m)

Difference between SegNet and MedSeg 
μFCN

EA Mean of all the four EA using FCN as base model 
μSegNet

EA Mean of all the four EA using SegNet as base model 
[d] Datatype - CroMed and NovMed 
AIEA[d] Mean area for EA models for the datatype “d” 
GTEA[d] Mean area for EA models for the datatype “d” 
N Total number of images 
FoMEA[d] Figure-of-Merit for EA using datatype “d” 
A EA(n) Area of the lungs in the CT image ‘n’ 
A GT(n) GT area of the lungs in the CT image ‘n’ 
Σ Summation  
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repeatability in the general diagnosis of COVID-19, body imaging [62, 
70–72], and the ability to detect various types of opacities such as 
ground-glass opacity (GGO), consolidation, crazy paving, and other 
opacities [73–75] that are mainly seen in COVID-19 patients [76–81]. 
Jiang et al. presented COVID-19-based CT lung classification where the 
authors synthetically generated 1,186 CT images using CycleGAN [82]. 
The raw input lung cancer CT images were processed by the network 
taken from LUAN16 [83]. Each image patch had a size of 5122 pixels. A 
total of five AI models, namely, VGG16, ResNet-50, Inception 
ResNet_v2, Inception_v3, and DenseNet-169, were used to train on the 
synthetic data. The authors showed that Densenet-169 was the best 
performing model with an accuracy of 98.92%, while VGG16, 
ResNet-50, Inception ResNet_v2, and Inception_v3 had an accuracy of 
94.19%, 94.83%, 96.55%, and 95.91%, respectively. There was no 
application of PAI in their research. 

By analysing CT scan images, Kogilavani et al. [84] demonstrated the 
classification of CT images between COVID-19 and non-COVID-19. The 
author used six deep learning architectures, namely, VGG16 [85], 
DenseNet [86], MobileNet [87], Xception [88], NASNet [89], and Effi
cientNet [90]. All the models were trained on 3,873 CT images with an 
image resolution of 2242. While the authors used metrics like precision, 
recall, and F1-score for performance evaluation, the best-performing 
model was VGG16 with an accuracy of 97.68%. There was no applica
tion of PAI in their system design. 

Paluru et al. [91] proposed a combination of UNet and ENet, the 
so-called AnamNet. It was designed to separate COVID-19-based lesions 
in segmented CT images of the lungs. The model was trained on a data 
set of 69 patients [92], in which the segmented lung was the input image 
to the AnamNet. The model was compared to ENet [93], UNet++ [94], 
SegNet, and LEDNet [95]. The pre-processing did not use any augmen
tation, and the dice similarity for lesion detection was 0.77. While the 
author did not use PAI, they deployed AnamNet on an edge device using 
an android application instead. The authors didn’t compare lung area 
errors or create JI or BA plots. 

Cai et al. [96] used the UNet model for lung and lesion segmentation, 
which resulted in a dice similarity of 0.77 using a ten-fold CV protocol 
with a database of 250 pictures taken from 99 patients. They also pro
posed a method for forecasting the length of an intensive care unit (ICU) 
stay based on the results of the lesion segmentation. The authors didn’t 
compare lung area errors or create JI or BA plots. 

Saood et al. [97] presented a COVID-19 based CT lung image seg
mentation system that used 100 COVID-19 lung CT images downscaled 
to 256 × 256. The scientists evaluated the findings of the two models, 
UNet and SegNet, and found they had similar DS scores of 0.73 and 0.74, 
respectively. The authors did not compare lung area errors or create JI or 
BA plots, and further, the authors did not apply PAI. 

Our proposed study offers (i) eight pruning AI models demonstrating 
high speed and low storage, (ii) training of our pruning models using 

CroMed data set and performing unseen analysis using Unseen NovMed 
data set, (iii) classification framework to assert the COVID-19 lesions, 
(iv) MedSeg for benchmarking COVLIAS 2.0 to authenticate previous 
contributions, and finally, (v) conducting performance evaluation and 
statistical analysis to further provide the clinical evidence of our 
hypothesis. 

3. Methodology 

3.1. Patient demographics 

3.1.1. CroMed Data set 
The proposed study makes use of two distinct cohorts from separate 

nations. The first data set, also known as the experimental data set, 
consists of 80 CroMed COVID-19 positive individuals, of which 57 were 
male, and the rest were female. An RT-PCR test was conducted to 
confirm the positivity of COVID-19 in the selected cohort. The average 
value of ground-glass opacity (GGO), consolidation, and other opacities 
was ~4. Out of the 80 CroMed patients who participated in this study, 
83% had a cough, 60% had dyspnoea, 50% had hypertension, 8% were 
smokers, 12% had a sore throat, 15% were diabetic, and 3.7% had 
COPD. A total of 17 patients were admitted to the Intensive Care Unit 
(ICU), and 3 died due to a COVID-19 infection. 

3.1.2. NovMed data set 
The second data set, also known as the validation data set, consisted 

of 72 NovMed COVID-19 positive individuals, of which 47 were male, 
and the rest were female. An RT-PCR test was conducted to confirm the 
positivity of COVID-19 in the selected cohort. The average value of 
ground-glass opacity (GGO), consolidation, and other opacities was 
~2.4. Out of the 72 NovMed patients who participated in this study, 
61% had a cough, 9% had a sore throat, 54% had dyspnoea, 42% had 
hypertension, 12% were diabetic, 11% had COPD, and 11% were 
smokers. Total 10 patients died due to COVID-19 infection. 

3.2. Image acquisition and data preparation 

3.2.1. CroMed and NovMed dataset 
A CroMed data of 80 COVID-19 positive individuals (Fig. 2) was 

employed in this suggested investigation. The retrospective cohort study 
was conducted at the University Hospital for Infectious Diseases in 
Zagreb, Croatia, from March 1 to December 31, 2020. All patients over 
the age of 18, who agreed to take part in the study, had a positive RT- 
PCR test for the SARS-CoV-2 virus and underwent thoracic MDCT dur
ing their hospital stay. The patients met at least one of the following 
criteria: hypoxia (oxygen saturation 92%), tachypnea (respiratory rate 
22 per minute), tachycardia (pulse rate >100), or hypotension (systolic 
blood pressure 100 mmHg). The UHID Ethics Committee approved the 

Fig. 1. COVLIAS 2.0 using pruned AI system for segmentation of CT lungs. The benchmarking is conducted using MedSeg. The performance is evaluated using 
manually delineated borders of lungs by radiologist. The scientific validation was conducted using Unseen NovMed data set. 
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proposal. The scanner used was a 64-detector FCT Speedia HD (from 
Fujifilm Corporation, Tokyo, Japan, 2017), and the acquisition protocol 
for collecting the CT scan was a single full inspiratory breath-hold in the 
craniocaudal direction. 

The NovMed dataset taken from Italy consisted of 72 patients 
(Fig. 3), were positioned supine, and chest CT scans were taken in a full 
inspiratory breath-hold using a 128 slice multidetector-row CT scanner 
(Philips Ingenuity Core, by Philips Healthcare). There was no intrave
nous or oral administration of the contrast agent. A soft tissue kernel 
with a lung kernel of a 768 × 768 matrix (lung window) was used to 
reproduce a one mm thick slice. The CT scans were performed using a 
120 kV, 226 mAs/slice (using Philips’ automatic tube current modula
tion – Z-DOM), a 1.08 spiral pitch factor, and a 0.5-s gantry rotation time 
64 × 0.625 detector setup. 

3.3. Artificial intelligence models 

3.3.1. Overall system for pruned AI and unpruned AI 
Fig. 4 shows the local pruned AI system for CT lung segmentation. It 

consists of two parts, the training and testing systems. The training 
system has two parts. Part A uses a conventional system of two types of 
base models such as FCN or SegNet for training the AI model without EA, 
the so-called unpruned AI (UnPAI). It uses raw grayscale pre-processed 
images and gold standard. In part B, the training system uses PAI system 
that utilizes evolutionary algorithms, such as DE, GA, PSO, and WO to 
generate the PAI models with EA. Next, we discuss the base DL models, 
which are well known in the DL industry. 

3.3.2. Base model 1: Fully Convolutional Networks 
Fully Convolutional Networks, or FCNs (Fig. 5) are a type of archi

tecture mainly utilized for semantic segmentation. They only use locally 
connected layers for convolution, pooling, and up sampling. Since they 
avoid the dense layers, it results in fewer parameters, which will make 

the networks faster to train. It also implies that an FCN can work with 
varying image sizes if all connections are local. The model learns the 
essential features in an image using a CNN feature extractor, referred to 
as the model’s encoder. The image gets down sampled as it goes through 
convolutional layers. The output is then transmitted to the model’s 
decoder portion, consisting of additional convolutional layers. 

The decoder layers step-by-step up samples the image to its original 
dimensions, resulting in pixelwise labeling, also known as pixel mask or 
segmentation mask of the original image [98]. Some standard versions 
of FCNs are FCN-32, FCN-16, and FCN-8. 

3.3.3. Base model 2: segmentation network 
SegNet is a semantic segmentation model (Fig. 6) and has been 

implemented before [99]. However, we have fused evolutionary stra
tegies with this base model, is a truly innovative component of this 
study, and it has been used for the first time in CT lung segmentation. 
SegNet is a trainable segmentation architecture that consists of (i) an 
encoder network (the left half of Fig. 6) topologically identical to the 13 
convolutional layers, (ii) a corresponding decoder network, followed by 
(the right half of Fig. 6) (iii) a pixel-wise classification layer (the last 
block of Fig. 6). The encoder network’s architecture down-samples the 
encoder output using a technique that requires storing the max-pooling 
(filter size of 2 × 2) indices. On the encoder side, the max-pooling layer 
is added at the end of each block, doubling the depth of the following 
layer (64–128 – 256–512). Similarly, up-sampling occurs in the second 
half of the design, where the layer depth is reduced by two (512–256 – 
128–64). The max-pooling indices at the relevant encoder layer are 
recalled during the up-sampling operation. Finally, a K-class SoftMax 
classifier is used to predict the class for each pixel in the conclusion. This 
provides reasonable performance while also saving space. Typical Seg
Net examples for segmentation for other applications can be seen here 
[23,25,28]. 

Fig. 2. Sample CT scans taken from raw CroMed data set.  
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3.3.4. Design of eight PAI models 
As discussed earlier, the overall structure of the interface between 

base FCN/SegNet models and the adaptation of four EA methods can be 
seen in Fig. 7. Note that the input to the entire system is the raw gray
scale lung CT scans along with the binary gold standard. These two base 
DL networks (FCN/SegNet) get optimized using the four EA methods. 
These four times two constitute the eight pruning techniques. The eight 
novel AI model pruning techniques are (i) DE, (ii) GA, (iii) PSO, and (iv) 
WO, with FCN and SegNet as base DL models. This yields the following 
eight pruning models: (i) FCN-DE, (ii) FCN-GA, (iii) FCN–PSO, (iv) FCN- 
WO when using solo FCN and (v) SegNet-DE, (vi) SegNet-GA, (vii) 
SegNet-PSO, and (viii) SegNet-WO when using solo SegNet. 

Note that the EA methods are fundamentally compressing the base 
networks (FCN/SegNet). The steps are broken down as follows: (i) This 
compression process starts from 1st hidden convolutional layer and 
forms a vector equal to number of hidden neurons in that layer, 
comprising of random 0s and 1s. The trained FCN/SegNet model hidden 
neurons corresponding to 0 position of vector are temporarily removed 
and fitness criterion value is calculated. Fitness value is dual objective 
function with accuracy and compressed nodes ratio as the two objec
tives. Note that we need to maximize a weighted sum of both the ob
jectives. After several EA iterations (say 20–30), we find the best vector 
with the best set of neurons that can be dropped to get the best 
compression ratio and accuracy after compression. (ii) The above pro
cess is repeated for all the hidden layers till we remove redundant filters 
from all the hidden convolutional layers. (iii) A new compressed model 
is created with each hidden layer having those number of neurons equal 
to sum of 1s in the EA vector for that hidden layer. (iv) Weights are then 
copied from original trained FCN/SegNet to the newly created com
pressed model. This is done such that each original model neuron’s 
weight, which is at vector position that has a value 1, is copied to the 
corresponding compressed model neuron. (v) The compressed model is 
further trained for around 10–50 epochs to get the accuracy back which 

was reduced due to the nodes discarding process. After this, the accuracy 
and compressed model size is recorded. (vi) If the accuracy of the 
compressed model is within an acceptable value, i.e., not less than 1% of 
the original accuracy, then this compressed model is treated as the 
original uncompressed model and is further compressed by going back 
to step 1. By doing this, we get large compression after several 
compression iterations (say ~10). The four evolutionary algorithms 
work similarly by making vectors of random 0s and 1s of an initial 
population (around 50 individuals). Only the intermediate steps are 
different to form new child vectors. Finally, the best vector is retained 
with the best fitness function value. This best vector helps to remove 
redundant neurons from the trained FCN/SegNet. 

DE is a reproduction process that uses distance and orientation in
formation via unit vectors, improving solutions through evolutionary 
processes [100,101]. The process uses mutation recombination to form 
new vectors [102,103]. These algorithms make minimal assumptions 
about the underlying optimization problem and explore enormous 
design spaces rapidly. In second EA method so-called GA, which origi
nated from Darwin’s Theory of Evolution [104], maintains a population 
of individuals who differ from one another. Those who are better 
adapted to their environment have a higher chance of surviving, 
reproducing, and passing on their traits to future generations (survival 
of the fittest). GA uses the process of selection, crossover, and mutation 
to produce optimized solutions [105,106]. The third EA method, 
so-called PSO was originally proposed by Kennedy and Eberhart [107] 
in 1995, originated from this concept that imitates a flock of birds or 
fishes which learn from each other to find the best position having food 
[108,109]. The position vector is formed in this scenario by having 
random 0 and 1. The vector with the highest fitness is assumed to be the 
position of food. It has a set of equations to find new position vectors in 
the next iterations. Finally, the last EA method so-called WO was 
inspired by the meta-heuristic optimization algorithm [110]. It origi
nated from humpback whale behavior of encircling its prey in a spiral 

Fig. 3. Sample CT scans taken from raw unseen NovMed data set.  
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fashion [111,112]. The best vector with the highest fitness is assumed to 
be the position of prey, so the algorithm converges to that position. It 
also has a different set of equations to find new position vectors in the 
next iterations. These algorithms are shown in the diagrammatic form in 
Fig. 7(a–d) where (a), (b), (c), and (d) represent DA, GA, PSO, and WO. 

3.4. Loss function for AI base models 

The new models adopted the cross-entropy (CE)-loss functions dur
ing the model generation. If αCE represented the CE-loss function, pi 
represents classifier’s probability used in the AI model, xi represents the 
input gold standard label 1, (1-xi) represents the gold standard label 0. 
The loss function can be expressed mathematically as shown in Eq. (1). 

αCE = − [(xi × log pi) + (1 − xi)× log(1 − pi)] (1)  

Here × represents the product of the two terms. 

3.5. Fitness function for AI EA models 

The main foundation of EA is fitness function which helps us to 
achieve the best possible solution set to maximize or minimize the 
objective fitness criterion. In each iteration the value of fitness function 
is compared with the previous best and solution space updated 
depending on its value. In all the evolutionary algorithms in this study, a 
dual objective fitness function has been used which depends on mean 
intersection over union (mIoU) accuracy (symbolised as βACC) of test set 
and nodes compression ratio (Cr) [113,114]. If HNOriginal be the original 
hidden neuron and HNCompress be the compressed hidden neuron, then 
the optimized fitness function FOpt can be mathematically given by the 
equation Eq. (2) below: 

Fig. 4. Local COVLIAS 2.0 system for pruned and unpruned AI models.  
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⎪⎪⎪⎪⎩

FOpt = (μ1 × βACC) + (μ2 × Cr)

μ1 + μ2 = 1

Cr =
HNOriginal

HNCompress

(2)  

Where μ1 and μ2 are weight factors that helps to give more emphasis on 
one of the objectives. In our implementations, we have chosen these 
weights as 0.5. If we choose combinations such as 0.2 and 0.8, more 
compression can be achieved, but accuracy may be compromised and 
vice-versa. 

3.6. Experimental protocol 

A standardized cross-validation (CV) technique was used to train the 
AI models. Our team has created several CV-based protocols of various 
types using the AI framework. The K5 technique was used because the 
data was moderate. The data-consisted of 80% training data (4,000 CT 
scans) and 20% testing data (1,000 CT images). Five folds were designed 
in such a way that each fold has its own test set. Internal validation was 
included in the K5 protocol, with 10% of data being examined for 
validation. 

The accuracy of an AI system is measured by comparing the expected 
output to ground truth pixel values. These readings were interpreted as 
binary (0 or 1) numbers because the output lung mask was only black or 
white. Finally, the total number of pixels in the image is divided by the 

sum of these binary integers. If TP, TN, FN, and FP stand for true posi
tive, true negative, false negative, and false positive, respectively, then 
Eq. (3) can be used to calculate the AI system’s accuracy. 

Accuracy (%)=

(
TP + TN

TP + FN + TN + FP

)

× 100 (3)  

4. Results and performance evaluation 

The results have been compartmentalize using eight sets as proposed 
by COVLIAS 2.0, and eight pruning and optimization techniques. The 
first one uses (i) first base model FCN and four optimization techniques 
with FCN such as (ii) FCN-DE, (iii) FCN-GA, (iv) FCN–PSO, and (v) FCN- 
WO. The second one uses (ii) second base model SegNet and four opti
mization techniques with SegNet such as (ii) SegNet-DE, (iii) SegNet-GA, 
(iv) SegNet-PSO, and (v) SegNet-WO. This would enhance the speed and 
reduce the storage of the final AI models. 

4.1. Results  

(A) Visual Results using Pruning Models on CroMed Experimental 
Data set 

The training of the AI modes was done using the CroMed data set 
with 5,000 COVID-19 CT lung images, with one set of ground truth 
annotation from a senior radiologist. Figs. 8 and 9 shows the overlay 

Fig. 5. Architecture for base model one - FCN.  

Fig. 6. Architecture for base model two – SegNet.  
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results of the segmented lungs with grayscale in the background. Fig. 8 is 
for the combinations FCN + DE, FCN + GA, SegNet + DE, and SegNet +
GA and Fig. 9 for FCN + PSO, FCN + WO, SegNet + PSO, and SegNet +
WO.  

(B) Percentage Storage Reduction using Pruning Models on CroMed 
Data set 

Table 1 shows the storage reduction for the eight pruning techniques 
using the percentage storage reduction (PSR) formula as shown in Eqs. 
(4) and (5). 

PSREA
FCN(%)=

[
SFCN– ​ SFCN–EA

SFCN

]

× 100 [4]  

where SFCN represents the storage of the FCN model and SFCN-EA repre
sents the storage corresponding to the EA algorithm. 

PSREA
SegNet(%)=

[
SSegNet– ​ SSegNet–EA

SSegNet

]

× 100 [5]  

where SSegNet represents the storage of the SegNet model and SSegNet-EA 
represents the storage corresponding to the EA algorithm. 

For (i) FCN-DE, (ii) FCN-GA, (iii) FCN–PSO, and (iv) FCN-WO, the 
PSR using Eq. (4) was 92%, 95%, 99%, and 100%, respectively when 
compared against FCN and for (v) SegNet-DE, (vi) SegNet-GA, (vii) 

SegNet-PSO, and (viii) SegNet-WO, the PSR using Eq. (5) was 97%, 98%, 
99%, and 99%, respectively when compared against SegNet. Thus, 
proving the hypothesis that pruning helps considerably reduce the size 
of the AI models, making the system fast, efficient, and most impor
tantly, keeping the performance of the AI models in clinical standards. 
As per Table 1, the PSR values are made to increase along the rows. We 
observed that PSR was highest in FCN–PSO and SegNet-PSO pruning 
models. The lowest PSR was for FCN-DE and SegNet-DE models. The 
intermediate PSR models were FCN-WO and FCN-GA when FCN was 
used as a base. The intermediate models were SegNet-GA and SegNet- 
WO when SegNet was used as a model. Note that all the eight fused 
systems were five times faster compared to the base model FCN and 
SegNet. 

PSR: Percentage Storage Reduction; DE: differential evolution; GA: 
genetic algorithm; PSO: particle swarm optimization algorithm; WO: 
whale optimization algorithm. 

Note that in Eq. (2), Cr can have a minimum value of 1 and a 
maximum value equal to the total number of hidden neurons. To avoid 
unacceptable conditions, one must ensure that compressed hidden 
neurons never be zero. The maximum Cr obtained for FCN–PSO and 
SegNet-PSO after 10 iterations were 962.47 and 133.12, respectively. 
The maximum Cr obtained for FCN-GA and SegNet-GA after 4 iterations 
were 80.03 and 48.71, respectively. The Cr for FCN-DE, after 4 iterations 
was 13.54, while after 8 iterations for SegNet-DE it was 34.79. The Cr for 
FCN-WO, after 12 iterations was 31.99, while after 10 iterations for 

Fig. 7. Four pruning techniques (DE, GA, PSO, and WO) leading to eight system: FCN-DE, FCN-GA, FCN–PSO, FCN-WO, SegNet-DE, SegNet-GA, SegNet-PSO, and 
SegNet-WO. 
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SegNet-WO it was 85.73. The further effort to compress led to degra
dation in performance, therefore it was not considered. 

4.2. Performance evaluation  

(A) Performance Evaluation for eight EA models 

The proposed study makes use of mainly five kinds of performance 
evaluation metrics (i) AE, (ii) BA, (iii) CC, (iv) DS, (v) JI, and (vi) ROC to 
compare the performance of the pruned AI models. The cumulative 
frequency distribution (CFD) plot for AE is presented in Fig. 10 at a 
threshold cutoff of 80% for CroMed data. Fig. 11 shows the BA plot with 
mean and standard deviation (SD) line for the estimated lung area 
against the AI models and ground truth tracings for CroMed data. 
Similarly, CC plots with a cutoff of 80% are displayed in Fig. 12. CFD 
plots for DS and JI at a threshold cutoff of 80% for the CroMed is pre
sented in Figs. 13–14. The COVIAS 2.0 diagnostic performance can be 
calculated utilizing the variable threshold technique and ROC analysis. 
Fig. 15 shows the ROC curves using CroMed data set for FCN-based and 
SegNet-based four EA models, each having AUC values greater than 
~0.94 (p < 0.0001) and ~0.96 (p < 0.0001), respectively.  

(B) DS, JI, and CC for eight EA models for CroMed and NovMed Data 
sets 

Let DSFCN
EA(m)

and DSSegNet
EA(m)

be the DS for the base models FCN and 
SegNet, corresponding to EA(m), where m can take the values 1, 2, 3, 
and 4, which implies DE, GA, PSO, and WO, respectively. Similarly, 
JIFCN

EA(m)
and JISegNet

EA(m)
be the JI for the base models FCN and SegNet, cor

responding to EA(m), where m can take the values 1, 2, 3, and 4, which 
implies DE, GA, PSO, and WO, respectively. 

Let CCFCN
EA(m)

and CCSegNet
EA(m)

be the CC for the base models FCN and 
SegNet, corresponding to EA(m), where m can take the values 1, 2, 3, 
and 4, which implies DE, GA, PSO, and WO, respectively. Using the 
above notations, we can define ΔDSFCN

EA(m)
and ΔDSSegNet

EA(m)
as given in Eq. (6), 

ΔJIFCN
EA(m)

and ΔJISegNet
EA(m)

as given in Eq. (7) and ΔCCFCN
EA(m)

and ΔCCSegNet
EA(m)

as in 
Eq. (8). 

Fig. 8. Overlays for optimized pruning networks over raw grayscale CT scans using CroMed data set. Top: FCN-DE and FCN-GA pruning combination and Bottom: 
SegNet-DE and SegNet-GA pruning combination. 
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ΔDSFCN
EA(m)[d] =

⃒
⃒
⃒DSFCN

EA(m) − DSMedSeg[d]
⃒
⃒
⃒

DSMedSeg[d]
, ΔDSSegNet

EA(m) [d]

=

⃒
⃒
⃒DSSegNet

EA(m)
− DSMedSeg[d]

⃒
⃒
⃒

DSMedSeg[d]
[6]  

ΔJIFCN
EA(m)[d] =

⃒
⃒
⃒JIFCN

EA(m) − JIMedSeg[d]
⃒
⃒
⃒

JIMedSeg[d]
, ΔJISegNet

EA(m)
[d] =

⃒
⃒
⃒JISegNet

EA(m)
− JIMedSeg[d]

⃒
⃒
⃒

JIMedSeg[d]
[7]  

ΔCCFCN
EA(m)[d] =

⃒
⃒
⃒CCFCN

EA(m) − CCMedSeg[d]
⃒
⃒
⃒

CCMedSeg[d]
, ΔCCSegNet

EA(m)
[d]

=

⃒
⃒
⃒CCSegNet

EA(m)
− CCMedSeg[d]

⃒
⃒
⃒

CCMedSeg[d]
[8] 

Using Eqs. (6)–(8) the one can compute the mean of all the four EA 
models for FCN and SegNet base models as defined in Eq. (9). 

μFCN
EA [d] =

∑M=4
m=1 ΔDSFCN

EA(m)[d]
M = 4

, μSegNet
EA [d] =

∑M=4
m=1 ΔDSSegNet

EA(m) [d]
M = 4

[9] 

Table 2 summarizes the DS, JI, and CC values for the eight pruned AI 
models over CroMed (experimental) and Unseen NovMed (validation) 
data sets, along with the results achieved by the MedSeg. Table 3 pre
sents the percentage difference for the DS over eight AI pruned models 
with FCN-DE, FCN-GA, FCN–PSO and FCN-WO on the left side and 
SegNet-DE, SegNet-GA, SegNet-PSO and SegNet-WO on the right side 
using Eq. (9). The mean dice for the four pruned FCN models is 3%, 8%, 
and 2%, while for four pruned SegNet models was 0%, 4%, and 1%, 
respectively for CroMed (experimental) and Unseen NovMed 

Fig. 9. Overlays for optimized pruning networks over raw grayscale CT scans using CroMed data set. Top: FCN–PSO and FCN-WO pruning combination and Bottom: 
SegNet-PSO and SegNet-WO pruning combination. 

Table 1 
Percentage storage reduction (in MB) for the pruned AI models.  

Models Size (MB) PSR Models Size (MB) PSR 

FCN 512 – SegNet 20.9 – 
FCN-DE 38.72 92.4% SegNet-DE 0.6 97.1% 
FCN-WO 23.85 95.3% SegNet-GA 0.44 97.9% 
FCN-GA 6.55 98.7% SegNet-WO 0.25 98.8% 
FCN–PSO 1.2 99.8% SegNet-PSO 0.16 99.2%  
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(validation) data sets using Eq. (9). Further, the mean percentage dif
ference using Eq. (7) for JI values is presented in Table 4, which is 5%, 
15%, and 3% for pruned FCN models, and 1%, 8%, and 1% for pruned 
SegNet models, respectively for CroMed (experimental) and Unseen 

NovMed (validation) data sets. Similarly, the mean percentage differ
ence for CC values using Eq. (8) is presented in Table 5, which is 3%, 1%, 
and 1% for pruned FCN models, and 1%, 1%, and 0% for pruned SegNet 
models, respectively for CroMed (experimental) and Unseen NovMed 

Fig. 10. Cumulative frequency plot for lung Area Error for CroMed data. Top: FCN with four pruning (DE, GA, PSO, WO) and Bottom: SegNet with four pruning (DE, 
GA, PSO, WO). 
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(validation) data set.  

(C) Comparison between eight EA models using Figure-of-Merit 

We compared the FCN and SegNet-based eight pruned AI models 

using standardized Figure-of-Merit (FoM) algorithm [25,115–117]. 
Mathematically, this can be represented as follows. Let AIEA[d] repre
sents mean area for EA models on a datatype [d], GT[d] represents mean 
ground truth (GT) area for the datatype [d], both taken over ‘n’ images 

Fig. 11. Bland-Altman plots for Area Error on Croatia data. Top: FCN with four pruning (DE, GA, PSO, WO) and Bottom: SegNet with four pruning (DE, GA, 
PSO, WO). 
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of the cohort datatype [d] having ‘N’ images, where ‘d’ representing 
CroMed, or NovMed. Using these notations, the FoM in % for the EA 
using datatype [d] can be represented as shown in Eq. (10). 

FoMEA[d](%)=

[

1 −
(
|AIEA[d] − GT[d]|

GT[d]

)]

× 100 [10]  

Fig. 12. CC plots for Area Error on CroMed data. Top: FCN with four pruning (DE, GA, PSO, WO) and Bottom: SegNet with four pruning (DE, GA, PSO, WO).  
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where, AIEA[d] =

∑N
n=1

A EA(n)
N and GT[d] =

∑N
n=1

A GT (n)
N , 

A EA(n) represents the area of the image ‘n’ using the evolutionary 
algorithm EA (DE, GA, PSO, and WO). A GT(n) represents the GT area 
corresponding to image ‘n’, ‘Σ’ represents the summation of area of all 

the image in the cohort. Tables 6 and 7 shows the FoM for the CroMed, 
and NovMed data sets. Table 6 shows the FoM for CroMed corre
sponding to FCN and SegNet based EA models in the column 2 and 3. 
The difference of the two columns is shown in the column ‘Superior’. For 
the EA algorithm except DE, SegNet-based EA is superior in the range 

Fig. 13. Dice Similarity on CroMed data. Top: FCN with four pruning (DE, GA, PSO, WO) and Bottom: SegNet with four pruning (DE, GA, PSO, WO).  
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Fig. 14. Jaccard Index plots for Area Error on CroMed data. Top: FCN with four pruning (DE, GA, PSO, WO) and Bottom: SegNet with four pruning (DE, GA, 
PSO, WO). 
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1–10%. Overall mean for the four EA using the two base models are 
comparable, having a different of 2.39%. Table 7 shows the FoM for 
unseen NovMed corresponding to FCN and SegNet based EA models in 
the column 2 and 3. The difference of the two columns is shown in the 
column ‘Superior’. For the EA algorithm except GA and WO, SegNet- 
based EA is superior in the range 1–10%. Overall mean for the four 

Fig. 15. ROC using CroMed data set. Left: FCN-based four EA (DE, GA, PSO, WO) and Right: SegNet-based four EA (DE, GA, PSO, WO).  

Table 2 
DS, JI, and CC values for experimental CroMed and Unseen NovMed.  

Models CroMed Unseen NovMed 

DS JI CC DS JI CC 

FCN-DE 0.93 0.88 0.97 0.93 0.87 0.99 
FCN-GA 0.93 0.87 0.94 0.94 0.88 0.98 
FCN–PSO 0.92 0.86 0.97 0.91 0.84 0.98 
FCN-WO 0.94 0.89 0.97 0.94 0.89 0.99 
SegNet-DE 0.96 0.92 0.97 0.94 0.89 0.99 
SegNet-GA 0.96 0.93 0.98 0.94 0.89 0.98 
SegNet-PSO 0.96 0.94 0.99 0.95 0.91 0.99 
SegNet-WO 0.96 0.94 0.98 0.95 0.91 0.99 
MedSeg 0.96 0.92 0.99 0.95 0.90 0.99  

Table 3 
Percentage difference in Dice Similarity (against GT) for the eight EA models 
when compared against MedSeg using experimental CroMed and Unseen 
NovMed.  

Models CroMed Unseen 
NovMed 

Models CroMed Unseen 
NovMed 

FCN-DE 3% 2% SegNet-DE 0% 1% 
FCN-GA 3% 1% SegNet- 

GA 
0% 1% 

FCN–PSO 4% 4% SegNet- 
PSO 

0% 0% 

FCN-WO 2% 1% SegNet- 
WO 

0% 0% 

μ 3% 2% μ 0% 1% 
σ 1% 1% σ 0% 1%  

Table 4 
Percentage Difference in Jaccard Index (against GT) for the eight EA models 
when compared against MedSeg using experimental CroMed and Unseen 
NovMed.  

Models CroMed Unseen 
NovMed 

Models CroMed Unseen 
NovMed 

FCN-DE 4% 3% SegNet-DE 0% 1% 
FCN-GA 5% 2% SegNet- 

GA 
1% 1% 

FCN–PSO 7% 7% SegNet- 
PSO 

2% 1% 

FCN-WO 3% 1% SegNet- 
WO 

2% 1% 

μ 5% 3% μ 1% 1% 
σ 1% 2% σ 1% 0%  

Table 5 
Percentage difference in Correlation Coefficient (against GT) for the eight EA 
models when compared against MedSeg using experimental CroMed and Unseen 
NovMed.  

Models CroMed Unseen 
NovMed 

Models CroMed Unseen 
NovMed 

FCN-DE 2% 0% SegNet-DE 2% 0% 
FCN-GA 5% 1% SegNet- 

GA 
1% 1% 

FCN–PSO 2% 1% SegNet- 
PSO 

0% 0% 

FCN-WO 2% 0% SegNet- 
WO 

1% 0% 

μ 3% 1% μ 1% 0% 
σ 2% 1% σ 1% 1%  

Table 6 
FoM comparison for CroMed using eight EA models.  

FoM comparison for CroMed Seen Data 

Models FCN SegNet Superior 

DE 94.33 93.00 1.33 
GA 97.95 98.94 0.99 
PSO 90.12 97.08 6.96 
WO 98.08 98.35 0.28 
μ 95.12 96.84 2.39 
σ 3.76 2.68 3.08  

Table 7 
FoM comparison for Unseen NovMed using eight EA models.  

FoM comparison for NovMed Unseen Data 

Models FCN SegNet Superior 

DE 89.81 98.50 8.70 
GA 93.21 89.25 3.96 
PSO 85.62 94.32 8.70 
WO 92.90 92.47 0.43 
μ 90.38 93.64 5.45 
σ 3.53 3.86 4.02  
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EA using the two base models are comparable, having a difference of 
5.45%. 

Finally, we can conclude from Tables 6 and 7 that the mean FoM for 
FCN based EA models over all three data sets (CroMed and NovMed) is 
~94%, while for SegNet it was ~96%. This clearly demonstrated that 
the four EA models based on SegNet are better than the four EA models 
based on FCN. This is mainly because the number of layers present in the 
SegNet (Fig. 6) models are more than the layers in the FCN (Fig. 5) 
model. SegNet has skip connections where FCN lacks it. The results in 
which SegNet is superior to FCN are similar to previous applications [23, 
25,26,28]. 

5. Validation and statistical tests 

The proposed study presents a lung segmentation validation using (i) 
Unseen NovMed data set on the trained pruned AI models and (ii) 
compared the results against MedSeg, a web-based CT lung segmenta
tion tool. Figs. 16–17 shows the overlay results of the segmented lungs 
(red) with grayscale in the background using the Unseen NovMed data, 
respectively. Fig. 16 is a combination of FCN-DE, FCN-GA, SegNet-DE, 

and SegNet-GA. Fig. 17 is a combination of FCN–PSO, FCN-WO, Seg
Net-PSO, and SegNet-WO using the Unseen NovMed data, respectively. 
Further, note that “Unseen NovMed” data sets were taken to validate the 
results. Figs. 18–22 show the CFD plots of AE, BA, CC, DS, and JI, 
respectively, for the segmented lungs using COVLIAS 2.0 on the “Unseen 
NovMed” data set. Fig. 23 shows the ROC curves using Unseen NovMed 
for FCN-based and SegNet-based four EA models, having each AUC 
values more than ~0.86 (p < 0.0001) and ~0.86 (p < 0.0001), 
respectively. 

The MedSeg tool’s results were compared to the gold standard 
tracings of the two data sets utilized in the study. CFD plot of DS, JI, and 
CC for the segmented lungs using the MedSeg tool for CroMed and 
“Unseen NovMed” data sets are shown in Figs. 24–26, respectively. 
Similarly, Fig. 27 show the BA plot of the results from the MedSeg 
compared to the ground truth tracings of the two data sets (CroMed on 
the left and NovMed on the right). The percentage difference between 
the DS, JI, and CC score of the COVLIAS 2.0 AI models compared to 
MedSeg is <5%, thus proving the applicability of the proposed AI 
models in the clinical domain. Fig. 28 shows the ROC curve and AUC 
values for the MedSeg, with CroMes and Unseen NovMed having AUC 

Fig. 16. Overlays (red) for optimized pruning networks over raw grayscale CT scans for NovMed data set. Top: FCN-DE and FCN-GA pruning combination and 
Bottom: SegNet-DE and SegNet-GA pruning combination. 
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values of 0.99 (p < 0.0001) and 0.89 (p < 0.0001), respectively. The size 
utilized by the models in decreasing order were FCN, FCN-DE, FCN-GA, 
FCN–PSO, and FCN-WO is shown in Fig. 29 and for SegNet, SegNet-DE, 
SegNet-GA, SegNet -PSO, and SegNet-WO is shown in Fig. 30. The 
quantitative analysis using AE, DS, JI, BA, CC, and ROC on Unseen 
NovMed have similar behavior as Seen CroMed data. 

We present a summary and percentage improvement for all eight 
pruned AI models for DS, JI, and CC values using experimental CroMed, 
validation Unseen NovMed data set in Tables 2–5, respectively. When 
comparing four pruning techniques against the base model (FCN and 
SegNet) for experimental and validation data, the pruning model per
forms far better than the base model for all three performance evalua
tion matrices. Finally, to prove the reliability of the AI-based 
segmentation system COVLIAS 2.0, statistical test such as Mann- 
Whitney, Paired t-Test, and Wilcoxon test were presented for using 
experimental CroMed (Table 8), validation Unseen NovMed (Table 9) 
analysis. All the above analysis was conducted by using MedCalc soft
ware (v18.2.1, Osteen, Belgium). 

5.1. Lesion localization validation 

Lesions have different characteristics such as texture, contrast, in
tensity variation, density changes, and etc. [118]. Fig. 31 presents the 
pipeline for lesion validation using heatmaps, where the input to the 
eight pruned segmentation model is the CT image, which produces the 
segmented lungs. This segmented lung goes to the DenseNet-121 for 
classification into two classes, i.e., COVID-19 and Controls. 

The Gradient-weighted Class Activation Mapping (Grad-CAM) 
(Fig. 32) algorithm is applied to produce the lesion heatmap. Grad-CAM 
employs the gradients of any target concept (example “COVID-19” in 
this classification network) to build a coarse feature map by showing the 
critical regions in the picture for predicting the concept. Grad-CAM 
produces a coarse localization map showing the essential regions in 
the image for predicting the idea by using the gradients of any target 
concept flowing into the final convolutional layer. From a high level, we 
take an image as input to the model for which a Grad-CAM heatmap is 
desired. Then this image is passed through the network following the 
normal prediction cycle (including the FC Layer) and generating the 
class probability scores followed by the loss calculation. Next, we 

Fig. 17. Overlays (red) for optimized pruning networks over raw grayscale CT scans for NovMed data set. Top: FCN-DE and FCN-GA pruning combination and 
Bottom: SegNet-DE and SegNet-GA pruning combination. 
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calculate the gradient of our desired model layer’s output concerning 
the model loss. Then we trim, resize, and rescale areas of the gradient 
that contribute to the prediction such that the heatmap can be overlaid 
with the original image. In this scenario, ReLU is the best option because 
it highlights qualities that positively impact the class of interest. 

DenseNet-121(Fig. 33) is made up of 120 convolutions and 4 Avg
Pool layers. All layers, including those within the same dense block and 
transition layers, spread their weights across numerous inputs, allowing 
deeper layers to leverage characteristics collected earlier in the process. 
DenseNets result in more compact models, attain state-of-the-art 

Fig. 18. Cumulative frequency plot for Area Error using NovMed data.  
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Fig. 19. BA plot using NovMed data.  
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Fig. 20. CC plot using NovMed data.  
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Fig. 21. Cumulative frequency plot for Dice using NovMed data.  
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Fig. 22. Cumulative frequency plot for Jaccard using NovMed data.  
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Fig. 23. ROC using NovMed data set. Left: FCN-based four EA (DE, GA, PSO, WO) and Right: SegNet-based four EA (DE, GA, PSO, WO).  

Fig. 24. Cumulative frequency plot of DS for MedSeg using CroMed (left) and Unseen NovMed (right) data sets.  

Fig. 25. Cumulative frequency plot of JI for MedSeg using CroMed (left) and Unseen NovMed (right) data sets.  

Fig. 26. CC plot for MedSeg vs. GT using CroMed (left) and Unseen NovMed (right) data sets.  
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performances, and better outcomes across competing data sets than their 
typical CNN or ResNet equivalents. This is because they require fewer 
parameters and allow feature reuse [119–121]. These critical regions 
that differentiate the COVID-19 CT scan from the Control CT scans are 
presented in Figs. 34–36. 

6. Discussion 

6.1. Major contributions and study findings 

The proposed study presented eight pruned AI techniques, namely, 
(i) FCN-DE, (ii) FCN-GA, (iii) FCN–PSO, (iv) FCN-WO, (v) SegNet-DE, 
(vi) SegNet-GA, (vii) SegNet -PSO, and (viii) SegNet-WO for CT lung 

Fig. 27. BA plot for MedSeg vs. GT using CroMed (left) and Unseen NovMed (right) data sets.  

Fig. 28. ROC plot for MedSeg vs. GT using CroMed and Unseen NovMed 
data sets. 

Fig. 29. Size (in Megabyte) of the FCN-based models in descending order.  

Fig. 30. Size (in Megabyte) of the SegNet-based models in descending order.  

Table 8 
Statistical test for CroMed data set.  

Models Paired t-Test Mann-Whitney Wilcoxon 

FCN-DE P < 0.0001 P < 0.0001 P < 0.0001 
FCN-GA P < 0.0001 P < 0.0001 P < 0.0001 
FCN–PSO P < 0.0001 P < 0.0001 P < 0.0001 
FCN-WO P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-DE P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-GA P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-PSO P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-WO P < 0.0001 P < 0.0001 P < 0.0001 
MedSeg P < 0.0001 P < 0.0001 P < 0.0001  

Table 9 
Statistical test for NovMed data set.  

Models Paired t-Test Mann-Whitney Wilcoxon 

FCN-DE P < 0.0001 P < 0.0001 P < 0.0001 
FCN-GA P < 0.0001 P < 0.0001 P < 0.0001 
FCN–PSO P < 0.0001 P < 0.0001 P < 0.0001 
FCN-WO P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-DE P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-GA P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-PSO P < 0.0001 P < 0.0001 P < 0.0001 
SegNet-WO P < 0.0001 P < 0.0001 P < 0.0001 
MedSeg P < 0.0001 P < 0.0001 P < 0.0001  
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segmentation, namely, and this was our premier contribution of this 
study. The pruned AI models were trained on a CroMed data set, con
taining 5,000 COVID-19 CT images collected from 80 patients. The pre- 
processing involved in the CroMed data set consists of Hounsfield unit 
(HU) that was adjusted to highlight the lung region (1600, − 400), 
making the model train efficiently. The second major contribution was the 

Unseen data analysis taken from Unseen NovMed data and it consists of 
validating the eight pruned AI models using Unseen NovMed data on 
4,000 CT images from 72 patients. The two data sets CroMed and Unseen 
NovMed were annotated by senior radiologists. The third major innova
tion of our study is the design of the lesion localization that consists of 
the superposition of heatmaps on the pruned AI segmented lungs, 

Fig. 31. COVLIAS 2.0 Lesion heatmap pipeline using DenseNet model using the infrastructure of pruned AI models during lung segmentation.  

Fig. 32. Grad-CAM process using DenseNet-121 model utilized for lesion localization.  

Fig. 33. DenseNet-121 model utilized for lesion localization.  
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displaying red color on the lesions. This innovation was first designed to 
develop the classification model using DensNet-121 and the trained 
model was then adapted for applying the Grad-CAM heatmap system on 
the grayscale lungs (Figs. 33–35). 

Our fourth major contribution mainly deals with benchmarking our 
evolutionary-based COVLIAS 2.0 against MedSeg ([41], a web-based 
lung segmentation tool). This was the first time attempted in a 
low-storage and high-speed infrastructures. The percentage difference 
between the DS, JI, and CC score of the COVLIAS 2.0 AI models was 

compared to MedSeg is <5%, thus proving that the proposed AI models 
are clinically applicable. For DS, JI, and CC values, we presented a 
summary and percentage improvement for all eight pruned AI models in 
Tables 3–5 

The study revealed that the pruned AI models (i) FCN-DE, (ii) FCN- 
GA, (iii) FCN–PSO, and (iv) FCN-WO) had storage reductions of 92%, 
95%, 99%, and 100%, respectively, when compared against the base 
FCN. When compared against base SegNet for (v) SegNet-DE, (vi) 
SegNet-GA, (vii) SegNet -PSO, and (viii) SegNet -WO, it showed a 

Fig. 34. Left: Raw grayscale CT slice. Right: Segmented lungs with colored heatmap where red arrow indicates the right lung damage only.  
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percentage storage reduction 97%, 98%, 99%, and 99%, respectively. 
Thus, we validate our hypothesis and demonstrate our superior clinical 
performance. We put COVLIAS 2.0 through clinical and statistical tests 
to ensure its reliability and stability to support our theory. All our data 
analysis was comprehensively adapted to 360-degree evaluations, and 
this consists of (i) DS, (ii) JI, (iii) BA (iv) CC, (v) AE and (vi) ROC plots. 
We consider this as our fifth contribution of our study. 

6.2. Benchmarking 

We couldn’t identify any articles that used pruning techniques to 
segment CT lungs. There have been several articles that use pruning 
approaches on X-ray images to classify COVID-19 pneumonia. As a 
result, we chose to include papers that used CT lung segmentation in our 
benchmarking strategy (Table 10). This included Jiang et al. [82], 
Kogilavani et al. [84] that used VGG16 [85], DenseNet [86], MobileNet 
[87], Xception [88], NASNet [89], and EfficientNet [90] for COVID-19 

Fig. 35. Left: Raw grayscale CT slice. Right: Segmented lungs with heatmap where red arrow indicated the left lung damage.  
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lung classification. Paluru et al. [91] developed a CT-based COVID-19 
detection model, named AnamNet, based on the data set in Ref. [92]. 
Other authors include Cai et al. [96] and Saood et al. [97]. The authors 
did not compare lung area errors or create JI or BA plots. The authors did 
not use any kind of model pruning technique to reduce the size of the 
training model, which helps to improve running time. 

6.3. Strengths, weakness, and extensions 

The study shows that using the eight pruning techniques such as (i) 
FCN-DE, (ii) FCN-GA, (iii) FCN–PSO, (iv) FCN-WO, (v) SegNet-DE, (vi) 
SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed a reduction 
in storage by ~97%. Thus, the hypothesis proves that pruning helps 
considerably reduce the size of the AI models, making the system fast, 
efficient, and most importantly, keeping the performance of the AI 
models in clinical standards. Our pruning techniques did not result in a 

Fig. 36. Left: Raw grayscale CT slice. Right: Segmented lungs with heatmap where red arrow indicated the damage in both left and right lungs.  
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decrease in the overall performance of the AI models. First, it was five 
times faster than the existing base models. Second, the system was 
validated using the “Unseen NovMed” data set. Third, the lesion local
ization showed powerful results and was graded by our expert radiolo
gists. Fourth, the system has shown strong clinical statistical results. 

The current pilot study is encouraging and yields promising results. 
However, we still need to explore the hybrid deep learning networks 
since it has proved to be efficient in classification and segmentation. We 
did not adapt mix-matching of the data for testing its abilities as done by 
our group earlier [122]. Further, we wish to explore statistical or 
non-statistical pruning and optimization techniques. The recent evolu
tion of UNet has a potential in our application [23,26,33,123]. The 
current study can therefore be extended by comparing SegNet-EA and 
FCN-EA against UNet-EA. Big data framework can be a powerful para
digm for including data from multiple sources [124]. 

Note that we did the HU adjustments to enhance the lung region in 
the CT images in our case, which can possibly also use noise removal or a 
mixture of window-level with noise smoothing [125] One can also use 
conventional methods like level sets [126] or stochastic segmentation 
[47] to get lesion region and then modify the loss function. AI tends to 
give a higher accuracy with a lack of clinical validations, thus bringing 
bias in AI systems. One can therefore compute the AI bias using AP(ai) 
Bias [127–129]. 

7. Conclusions 

The proposed study is the first pilot study that integrates eight kinds 
of evolution with two different DL paradigms. Thus, it accomplishes in 
designing eight different low storage and high-speed strategies for 
COVID-19 based CT lung segmentation. COVLIAS 2.0 demonstrated that 
the performance was retained while yielding the percentage storage 
reduction by ~97%. Overall, on average, the speed of the eight pruning 
methods was almost five times faster than the base models. We compare 
our eight pruned AI models against the open-source web-based lung 

segmentation tools MedSeg. We also validated our hypothesis that the 
overall system error was under 6%, thus proving the clinical applica
bility. The online COVLIAS 2.0 takes ~0.25 s for one CT slice. The 
COVLIAS 2.0 is reliable, accurate, and stable in clinical settings. 

Eight different pruning techniques (i) differential evolution (DE), (ii) 
genetic algorithm (GA), (iii) particle swarm optimization algorithm 
(PSO), and (iv) whale optimization algorithm (WO) in two deep learning 
frameworks namely, (i) Fully connected network (FCN) and (ii) SegNet. 
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