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Abstract 

Background:  Overcrowding in emergency departments (ED) is a critical problem worldwide, and streaming can alle‑
viate crowding to improve patient flows. Among triage scales, patients labeled as “triage level 3” or “urgent” generally 
comprise the majority, but there is no uniform criterion for classifying low-severity patients in this diverse population. 
Our aim is to establish a machine learning model for prediction of low-severity patients with short discharge length of 
stay (DLOS) in ED.

Methods:  This was a retrospective study in the ED of China Medical University Hospital (CMUH) and Asia University 
Hospital (AUH) in Taiwan. Adult patients (aged over 20 years) with Taiwan Triage Acuity Scale level 3 were enrolled 
between 2018 and 2019. We used available information during triage to establish a machine learning model that 
can predict low-severity patients with short DLOS. To achieve this goal, we trained five models—CatBoost, XGBoost, 
decision tree, random forest, and logistic regression—by using large ED visit data and examined their performance in 
internal and external validation.

Results:  For internal validation in CMUH, 33,986 patients (75.9%) had a short DLOS (shorter than 4 h), and for external 
validation in AUH, there were 13,269 (82.7%) patients with short DLOS. The best prediction model was CatBoost in 
internal validation, and area under the receiver operating cha racteristic curve (AUC) was 0.755 (95% confidence inter‑
val (CI): 0.743–0.767). Under the same threshold, XGBoost yielded the best performance, with an AUC value of 0.761 
(95% CI: 0.742- 0.765) in external validation.

Conclusions:  This is the first study to establish a machine learning model by applying triage information alone for 
prediction of short DLOS in ED with both internal and external validation. In future work, the models could be devel‑
oped as an assisting tool in real-time triage to identify low-severity patients as fast track candidates.
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Streaming

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Surging emergency visits are a critical problem and 
cause overcrowding in emergency departments (EDs) 
worldwide. To improve patient flows, streaming is 
a possible resolution for alleviating crowding [1, 2]. 
The first step of streaming occurs during triage, when 
medical staffs stratify patients according to their 
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urgency of need for medical care. Formal five-level 
triage scales include the Canadian Triage and Acuity 
Scale (CTAS), the Emergency Severity Index (ESI), and 
the Manchester Triage System and Australasian Triage 
System [3–6]. In Taiwan, the five-level Taiwan Triage 
and Acuity Scale (TTAS) was adapted from the CTAS 
and was developed as a computerized system that has 
been used in all emergency rooms [7].

Among triage scales, patients labeled as triage level 3 or 
“urgent” generally comprise the major population [8–13]. 
Studies have reported a large diversity in disposition and 
resource consumption in this population. Some patients 
may experience early mortality, be admitted to the inten-
sive care unit (ICU) or general ward, or be discharged after 
various length of stay (LOS) [11, 14, 15]. Arya et al. empha-
sized the importance of splitting high-variability patients in 
ESI level 3 to improve ED crowding [16]. To further differ-
entiate patients with lower severity from this major popu-
lation, various criteria have been used in research, and the 
criteria generally include stable vital signs, ambulatory sta-
tus, and specific chief complaints [13, 16–18]. These lower 
severity patients were classified the same as those of level 
4 and level 5 and regarded as candidates for fast tract. In 
addition, Casalino et al. reported that patients with shorter 
LOS (greater than 160 min) was associated with less medi-
cal and nurse resource consumption [19]. Therefore, pre-
dicting a short discharge LOS (DLOS) may be a method of 
categorizing low-severity patients for further streaming.

Studies have mainly focused on identifying attrib-
utes to predict prolonged ED LOS using statistical 
techniques [12, 19–21]. Furthermore, d’Etienne et  al., 
Gill et al., and Rahman et al. have introduced machine 
learning models to predict prolonged LOS [22–24]. 
However, in these studies, features for machine learn-
ing or statistical techniques have been derived from 
triage information and from physician orders, which 
signifies that their prediction models can be used only 
after physician assessment. This is unsuitable for tri-
age where assessment was executed only by nurses.

In this study, we used available information during 
triage to establish a machine learning model that can 
predict low-severity patients with short DLOS in a 
population with TTAS level 3. To achieve this goal, we 
trained 5 machine learning models by using large ED 
visit data and examined the performance in internal 
and external validation. Our prediction model can be 
used in real-time triage for streaming to identify low-
severity patients as fast track candidates.

Methods
Study design, setting and participants
This study was approved by the Institutional Review Board 
of China Medical University (CMUH109-REC1-021). 

All methods were performed in accordance with rel-
evant guidelines, and individual informed consent was 
waived because of the study design. It was a retrospec-
tive research by applying ED datasets of two hospitals 
in Taiwan. Dataset since Jan. 2018 to Dec. 2018 from 
China Medical University Hospital (CMUH) was used for 
model construction and internal validation, and dataset 
since Jan. 2018 to Dec. 2019 from Asia University Hospi-
tal (AUH) was applied for external validation. CMUH is 
a 1700-bed, urban, academic, tertiary care hospital with 
approximately 150  000 to 160  000 ED visits annually. 
AUH is a 482-bed regional hospital, and annual ED visits 
are around 36,000 persons.

The computerized TTAS system evaluates (a) trauma 
or nontrauma; (b) chief complaints; (C) injury mecha-
nisms; and (d) first-order modifiers, such as vital signs 
(including degree of respiratory distress, hemodynamic 
stability, conscious level, body temperature, and pain 
severity), to determine the triage level. Secondary order 
modifiers are used if the triage level cannot be deter-
mined according to these variables. The 2 main systems 
of TTAS are the traumatic and nontraumatic systems. 
The nontraumatic system contains 13 categories with 
125 chief complaints (pulmonary, cardiovascular, diges-
tive, neurological, musculoskeletal, genitourinary, ear, 
nose, and throat–related, ophthalmologic, dermatologic, 
obstetric and gynecologic, psychiatric, general, and other 
disorders) [25].

Adult patients (aged over 20  years) with TTAS level 
3 were enrolled, and we excluded patients with the fol-
lowing criteria: 1) death on arrival, 2) trauma, 3) hav-
ing left without being seen, 4) discharge against 
medical advice, 5) admission to either ward or ICU, 6) 
transfer to another hospital, 7) missing information, 
and 8) inconsistent data (i.e., systolic blood pressure 
(SBP) > 300  mmHg or < 30  mmHg, diastolic blood pres-
sure (DBP) > 300 mmHg, SBP < DBP, pulse rate > 300/min 
or < 20/min, respiratory rate > 60/min, body tempera-
ture > 45 °C or < 30 °C, and body mass index (BMI) > 150 
or < 5).

Data collection
The triage data were recorded routinely by each tri-
age nurse and were extracted from electronic databases 
in two hospitals. The information included age, gender, 
BMI, vital signs, consciousness, indwelling tube, whether 
the patient was transferred and the facility the patient 
was transferred from, mode of arrival, bed request, 
comorbidity, pregnancy, frequency of intensive ED visits 
(> 2 times a week or > 3 times a month), 72-h unsched-
uled returns, and the system of chief complaint.
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Machine learning models
In this study, we used the following 5 machine learning 
classification models: CatBoost, XGBoost, decision tree 
(DT), random forest (RF), and logistic regression (LR) 
[26–30]. We explored the parameter space and common 
variations for each machine learning classification model 
as thoroughly as computationally feasible. XGBoost uses 
no weighted sampling techniques, which slows its split-
ting process compared with that of gradient-based one-
side sampling and minimal variance sampling (MVS). 
CatBoost offers a new technique called MVS, which is a 
weighted sampling version of stochastic gradient boost-
ing. CatBoost-weighted sampling happens at the tree-
level and not at the split-level. The observations for each 
boosting tree are sampled to maximize the accuracy of 
split scoring. DT is one of the earliest and most promi-
nent machine learning based on decision logics. DTs have 
multiple levels in which the first or topmost node is called 
the root node. All internal nodes represent tests on input 
variables or attributes. Depending on the test outcome, 
the classification algorithm branches toward the appropri-
ate child node where the process of testing and branching 
repeats until it reaches the leaf node. RF is a classification 
algorithm that works by forming multiple DTs to train 
and test the classes it outputs. A DT effectively learns the 
characteristics of simple decision rules that are extracted 
from the data. The deeper the tree, the more complex the 
rules and the healthier the decision. RFs overcome prob-
lematic trees that are over-adapted to decision-making. 
LR can be considered as an extension of ordinary regres-
sion and can model only a dichotomous variable that 
typically represents the occurrence or nonoccurrence of 
an event. LR helps in finding the probability that a new 
instance belongs to a certain class. Supervised learning is 
mainly used to learn a model by learning the training data 
of multiple features and predicting the result of the target 
variable through the model. The model is represented by a 
mathematical function; furthermore, by using the objec-
tive function of predicting Y from a given X—wherein the 
parameters of the model are learned, adjusted from the 
data, and depend on the predicted value—we can classify 
problem types into regression or classification.6

The dataset of CMUH was divided into 2 subsets, 
where 80% of the sample was for the training set and the 
remaining 20% sample was used to test the trained mode. 
Besides, all the data from AUH was used for the externa 
validation. To indicate prediction performance, we 
computed the receiver operating characteristics (ROC) 
curve, the area under the ROC curve (AUC), sensitivity, 
specificity, positive predicted value, and negative pre-
dictive value. All ML algorithms and competed perfor-
mance analysis were conducted using scikit-learn and the 
XGBoost library.

Feature selection
We filtered the data to the remaining 32 pieces of inspec-
tion information and began to train and evaluate our 
model, which we then discussed with another doctor 
who picked out the least used feature. In general, a few 
or several variables are commonly used in machine learn-
ing predictive models and are not associated with the 
response. In practice, including such irrelevant variables 
leads to unnecessary complexity in the resulting model. 
Therefore, in this study, we used the popular feature 
importance selection tool scikit-learn to choose the most 
effective attributes in classifying training data. This algo-
rithm assesses the weight of each variable by evaluating 
the Gini index regarding the outcome and then ranks the 
variables according to their weights.

Parameter optimization
Machine learning algorithms involve a few hyperparam-
eters that must be fixed before the algorithms are run. 
Grid search is often used in the machine learning litera-
ture, and it is used to optimize the hyperparameters of 
the machine learning model. Grid search is a traversal of 
each intersection in the grid to find the best combination. 
The dimension of the grid is the number of super param-
eters. If there are k parameters and each parameter has 
candidates, we must traverse k × m combinations. Grid 
search yields good results at the expense of very slow 
implementation efficiency. Bergstra and Bengio noted 
that random search is more efficient than grid search 
[31]. In this study, only when the number of searches 
was the same were the random search results the same as 
the web search results. Therefore, the web search speed 
was slow, but the optimization result was better. For the 
detailed hyper-parameterization of the algorithms, please 
refer to the scikit-learn documentation [32].

Outcomes
The outcome was a short DLOS of < 4  h in the ED, and 
the DLOS was measured as the time interval between 
being registered in the ED triage and being discharged 
from the ED.

Results
In 2018, CMUH had a total of 127  749 nontraumatic 
ED visits, including those from 92 528 adult patients. Of 
these, 58 743 adults without traumas with TTAS level 3 
were enrolled. We excluded 10 199 visits with admission 
to either ward or ICU, 9 visits in which the patient died 
in the ED, 69 visits in which patients left without being 
seen, 296 visits in which patients escaped, 2849 visits in 
which patients left against medical advice, 383 visits in 
which patients were transferred to other hospitals or out-
patient department, and 99 visits in which patients had an 
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indeterminable disposition. In total, 44 839 patients were 
discharged directly from the ED. The remaining patients 
had 64 records (0.14%) with either inconsistent or missing 
data. The final analytic cohort comprised 44 775 ED visits. 
We used 28  656 patients (64%) in the training set, 7164 
patients (16%) in the validation set, and 8955 patients 
(20%) in the test set. During 2018 to 2019 in AUH, there 
were 44,947 adult patients without trauma, and 29,730 
patients belonged to TTAS level 3. We then further 
excluded 5865 patients admitting to either ward or ICU, 
1 patient expired in ED, 2 patients left without being seen, 
29 escaped patients, 571 patients discharged against med-
ical advice, 522 patients transferred to other hospitals or 
outpatient department, and 157 patients with ambiguous 
disposition. Among the remaining 22,587 patients directly 
discharged from ED, there were 6540 patients (28.95%) 
with either missing or inconsistent data. The final cohort 
was composed of 16,047 patients. Table  1 shows the 
demographic characteristics of patients from CMUH and 
AUH datasets. In CMUH, 33  986 patients (75.9%) had 
short DLOS (< 4  h), and the number of female patients 
(58.4%) was greater than that of male patients. The mean 
age of the entire cohort was 45.7 years, and most patients 
visited the ED directly without transfer (95.1%) or using 
an ambulance (94.7%). Gastrointestinal, neurological, and 
general complaints accounted for the majority of com-
plaints (62.95%). In AUH, 13,269 patients (82.7%) had 
short DLOS, and the top 5 most common system of com-
plaints were the same with those in CMUH.

Prediction of a short DLOS
(a) Internal validation
The performance of the 5 models in the test set are 
illustrated in Fig. 1 and Table 2. The AUC for 5 models 
(CatBoost, XGBoost, DT, RF, and LR) were 0.755 (95% 
confidence interval (CI): 0.743–0.767), 0.749 (95% CI: 
0.736–0.761), 0.704 (95% CI: 0.691–0.717), 0.733 (95% CI: 
0.720–0.745), and 0.694 (95% CI: 0.681–0.707), respec-
tively. CatBoost yielded the best AUC, the specificity was 
83.12% (95% CI: 81.43–84.72%), and the positive predic-
tive value (PPV) was 90.64% (95% CI: 89.77–91.45%).

From the CatBoost model, the 5 most crucial predic-
tors were ambulation, chief complaint, system of chief 
complaint, first-order modifier, and whether the patient 
was transferred (Fig. 2A). The variable importance rank-
ing up to the fifth was different in the XGBoost model. 
BMI was the most important variable, followed by heart 
rate, DBP, SBP, and chief complaint (Fig. 2B).

Table  3 presents the performance under a different 
threshold (0.80–0.95) in each model, and an assumption 
of per 100 patients for screening the model were used to 
simulate the real situation in the ED. Under a threshold 
of 0.85, CatBoost had 83.12% specificity and 90.64% PPV, 

Table 1  Demographic characteristics of ED visits in CMUH and 
AUH

Abbreviation: SD Standard deviation, SBP Systolic blood pressure, DBP Diastolic 
blood pressure, COPD Chronic obstructive pulmonary disease, ED Emergency 
department, DLOS Discharge length of stay, CMUH China Medical University 
Hospital, AUH Asia University Hospital

Variables CMUH AUH

N = 44,775 N = 16,047

Age, mean ± SD 45.65 ± 17.86 46.39 ± 18.21

Sex-female, No. (%) 26,185 (58.48) 8807 (54.88)

Body mass index, mean ± SD 23.76 ± 4.56 24.36 ± 4.49

Respiratory rate, mean ± SD 19.88 ± 1.24 18.45 ± 2.27

SBP (mmHg), mean ± SD 136.93 ± 23.50 138.33 ± 24.56

DBP (mmHg), mean ± SD 86.70 ± 16.05 80.17 ± 15.35

Heart rate (bpm), mean ± SD 89.36 ± 17.43 89.05 ± 18.39

Body temperature (℃), mean ± SD 36.95 ± 0.80 37.08 ± 0.87

Consciousness, No. (%)

  Alert (6) 44,616 (99.64) 15,987 (99.63)

  Voice (5) 100 (0.22) 41 (0.26)

  Pain (4) 41 (0.09) 12 (0.07)

  Unresponsive (1–3) 18 (0.04) 7 (0.04)

Tracheostomy, No. (%) 8 (0.02) 1 (0.01)

Drainage tube, No. (%) 16 (0.04) 1 (0.01)

Nasogastric tube, No. (%) 157 (0.35) 15 (0.09)

FOLEY catheter, No. (%) 209 (0.47) 24 (0.15)

Transferred, No. (%) 2212 (4.94) 515 (3.21)

  Hospitals 418 (0.93) 344 (2.14)

  Clinics 1685 (3.76) 153 (0.93)

  Nursing home 34 (0.08) 18 (0.11)

  Others 75 (0.17) 0 (0.00)

Arrival by ambulance, No. (%) 2364 (5.28) 377 (2.34)

Bed request, No (%) 3412 (7.62) 999 (6.22)

Comorbidity, No. (%)

  Diabetes mellitus 4963 (11.08) 1963 (12.23)

  Hypertension 8747 (19.54) 3544 (24.58)

  Unknown heart disease 3545 (7.92) 893 (5.56)

  Congestive heart failure 144 (0.32) 49 (3.05)

  Ischemic heart disease 417 (0.93) 50 (0.31)

  End-stage renal disease 672 (1.50) 262 (1.63)

  Liver cirrhosis 413 (0.92) 143 (0.89)

  COPD 155 (0.35) 85 (0.52)

  Cancer 2969 (6.63) 600 (3.74)

Pregnancy, No. (%) 801 (1.79) 173 (1.08)

ED visits over twice in a week, No. (%) 2930 (6.54) 1094 (6.82)

ED visits over 3 times in a month, No. (%) 1634 (3.65) 661 (4.12)

72-h ED return, No. (%) 1420 (3.17) 504 (3.14)

Common system of complaints, No. (%)

  Gastrointestinal-related 15,097 (33.72) 5199 (32.40)

  Neurological-related 7838 (17.51) 3186 (19.85)

  General 5247 (11.72) 2162 (13.47)

  Cardiovascular-related 4278 (9.55) 1460 (9.10)

  Urological-related 2978 (6.65) 1143 (7.12)

DLOS, No. (%)

  ≧ 4 h 10,789 (24.1%) 2778 (17.31)

   < 4 h 33,986 (75.9%) 13,269 (82.69)
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and 41.40 patients were identified to have a short DLOS. 
Of these, 37.52 was true and 3.88 was false. The speci-
ficity  and PPV increased to 99.90% and 98.68%, respec-
tively, and only 1.70 patients were identified with a short 
DLOS under CatBoost when we adopted a threshold of 
0.95. Different thresholds decided the performance of 
each model.

(b) External validation
Under the same threshold of 0.85, prediction perfor-
mance of dataset in AUH was reported in Table  4. 
XGBoost yielded the best performance and had an AUC 
value of 0.761 (CI: 0.742–0.765). The sensitivity was 
57.64% (CI: 57.16–58.12) and specificity was 81.43% (CI: 
80.62–82.22).

Fig. 1  Receiver operating characteristic (ROC) curves. ROC curves of machine learning models for short discharge lengths of stay (DLOS) in the test 
set of internal validation

Table 2  Prediction performance of internal validation in CMUH

Abbreviation: AUC​ Area under the receiver operating characteristic curve, PPV Positive predictive value, NPV Negative predictive value, CMUH China Medical University 
Hospital

Model AUC​ Sensitivity Specificity PPV NPV

CatBoost 0.755 (0.743–0.767) 48.70% (47.52–49.89) 83.12% (81.43–84.72) 90.64% (89.77–91.45) 32.56% (31.91–33.23)
XGBoost 0.749 (0.736–0.761) 51.50% (50.31–52.69) 81.08% (79.32–82.75) 90.13% (89.28–90.92) 33.25% (32.55–33.97)

Random Forest 0.733 (0.720–0.745) 33.80% (34.67–36.95) 88.18% (86.71–89.55) 91.04% (90.00–91.99) 29.05% (28.56–29.54)

Decision tree 0.704 (0.691–0.717) 44.05% (42.87–45.23) 81.76% (80.02–83.41) 89.02% (88.05–89.91) 30.34% (29.72–30.96)

Logistic regression 0.694 (0.681–0.707) 28.71% (27.65–29.80) 89.80% (88.46–91.03) 89.80% (88.55–90.93) 27.13% (28.30–29.14)
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Discussion
In this study, either in internal or external validation, we 
found that machine learning can predict which patients 
will have low severity with short DLOS, and the prediction 

models yielded high specificity and PPV. Although com-
plete information, including that for present illness, physi-
cal examinations, laboratory data, computed tomography, 
and magnetic resonance imaging, may have strengthened 

Fig. 2  Relative importance of top 15 predictive features. Measurement was scaled with a maximum value of 1.0 in A) the CATboost model and B) 
the Xgboost model
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predictive performance, obtaining such information is 
impractical in triage situations where streaming is initi-
ated. To our knowledge, ours is the first study to establish 
a machine learning model for predicting short DLOS in an 
ED through the use of triage information alone.

This model can be integrated into triage to screen and 
stream fast track candidates. Thus, we focused on reduc-
ing the false positive value because incorrectly streaming 
high-severity patients into the fast track may lead to the 

overconsumption of nursing resources or unnecessary 
patient transfers to other nonfast tract units for exami-
nation or treatment. In addition, the influence of mis-
streaming low-severity patients into units other than the 
fast track is lower. Therefore, high specificity and PPV 
were used, and all models yielded low sensitivity and 
negative predictive values.

For efficient streaming, categorizing the abundant and 
undifferentiated TTAS level 3 group, which comprised 

Table 3  Operational performance among various thresholds in internal validation

Abbreviation: PPV Positive predictive value

Threshold and models Sensitivity Specificity PPV Identification per 100 ED visits

Total True False

0.80
  CatBoost 65.52% 71.98% 88.70% 56.90 50.47 6.43

  XGBoost 66.26% 71.01% 88.47% 57.70 51.04 6.66

  Decision tree 53.23% 74.71% 87.60% 46.80 40.99 5.81

  Random forest 53.86% 78.26% 89.26% 46.50 41.51 4.99

  Logistic regression 58.47% 70.09% 86.77% 51.90 45.03 6.87

0.85
  CatBoost 48.70% 83.12% 90.64% 41.40 37.52 3.88

  XGBoost 51.50% 81.08% 90.13% 44.00 39.66 4.34

  Decision tree 44.05% 81.76% 89.02% 38.10 33.92 4.18

  Random forest 35.18% 88.42% 91.07% 29.80 27.14 2.66

  Logistic regression 28.19% 89.40% 89.92% 24.20 21.76 2.44

0.90
  CatBoost 24.34% 94.60% 93.80% 20.00 18.76 1.24

  XGBoost 30.44% 91.00% 91.90% 25.50 23.44 2.06

  Decision tree 26.86% 90.42% 90.39% 22.90 20.70 2.20

  Random forest 0.00% N/A N/A 0.00 0.00 0.00

  Logistic regression 1.61% 99.90% 98.23% 1.30 1.28 0.02

0.95
  CatBoost 2.17% 99.90% 98.68% 1.70 1.68 0.02

  XGBoost 7.29% 98.98% 95.99% 5.90 5.66 0.24

  Decision tree 0.04% 99.81% 42.86% 0.90 0.39 0.51

  Random forest 0.00% N/A N/A 0.00 0.00 0.00

  Logistic regression 0.00% N/A N/A 0.00 0.00 0.00

Table 4  Prediction performance of external validation in AUH

Abbreviation: AUC​ Area under the receiver operating characteristic curve, PPV Positive predictive value, NPV Negative predictive value, AUH Asia University Hospital

Model AUC​ Sensitivity Specificity PPV NPV

XGBoost 0.761 (0.742- 0.765) 57.64% (57.16–58.12) 81.43% (80.62–82.22) 93.13% (92.93–93.48) 30.29% (29.97–30.61)
CatBoost 0.748 (0.735–0.756) 59.09% (58.61–59-58) 83.25% (82.51–83.96) 93.21% (92.93–93.48) 34.33% (34.01–34.66)

Random Forest 0.741 (0.724–0.752) 58.89% (58.40.59.37) 81.84% (81.08–82.57) 92.49% (92.20–92.78) 34.38% (34.05–34.72)

Decision tree 0.710 (0.692–0.722) 56.14% (55.64–56.63) 80.11% (79.33–80.86) 91.28% (90.96–91.59) 32.99% (32.69–33.32)

logistic regression 0.699 (0.691–0.710) 51.30% (50.81–81.80) 84.72% (84.01–85.41) 92.73% (92.41–93.04) 31.41% (31.13–31.69)
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over 60% of total ED visits in our hospital, is crucial. The 
percentage of the level 3 population was similar with that 
of the TTAS research by Chaou et  al. [12] Therefore, a 
wide range of severity converged in this group to inad-
vertently make streaming and ED resource distribution 
more difficult, and severely ill patients were potentially 
masked and delayed by large numbers of over-triage 
patients with lower severity. Notably, in our cohort (dis-
charged nontraumatic patients with level 3 TTAS), 75.9% 
of patients were discharged is less than 4 h. Insufficient 
discrimination of TTAS level 3 endangers patient safety 
and overall ED efficiency. The model in our study was 
designed to better classify patients with lower severity 
from this diverse population.

Nonetheless, the best-predicting model is not necessar-
ily the most clinical practicable: computational efficiency 
must also be considered. For example, in Table 3, with the 
threshold increasing from 0.85 to 0.95, both the CatBoost 
and XGBoost models yielded higher specificity and PPV; 
however, per 100 ED visits, the number of patients with 
a short DLOS decreased to 5.9 in XGBoost and to 1.7 in 
CatBoost, respectively. Thus, the ratio of identification 
for fast tract candidates is affected by different thresh-
olds. The triage nurse may select and adjust the threshold 
according to the physician and nurse workforce at that 
time to avoid overloading or underutilization. Of note, 
the model was designed to provide decisional support 
rather than to completely replace the triage provider. The 
personnel in charge can still override the model’s sugges-
tion based on their professional judgement.

External validation is imperative that it aims to ver-
ify the validity of models in new patients from a differ-
ent population. Before using prediction model among 
patients in real life, external validation is indispensable. 
In our study, we included an independent dataset from 
a different level of hospital during a different period. To 
address the ability of generalization, the performance 
of external validation was not inferior to that observed 
in internal validation. This is the first research regard-
ing establishing machine learning models for predicting 
short LOS in ED with external validation.

In the future, establishing the model for prediction of 
final disposition (discharge or not) is necessary, and we 
will build a decision support system by integrating the 
prediction models of disposition and DLOS. Therefore, 
predicting the possibility of low-severity can be executed 
right after the triage information is completed. Based on 
both subjective judgement, and the result of prediction, 
the triage nurse can decide whether the patient is a suit-
able candidate for fast track. The actual effects of these 
support models are needed to be verified, including pre-
diction performance, change of triage time, and impact 
on ED crowding.

Limitation
This study has several limitations. First, pediatric 
patients and those with trauma were not included in 
this study, and these groups should be analyzed sepa-
rately in the future. Second, during the study period, 
there was no actual strategy to stream low-severity 
patients of TTAS level 3 in our hospital. Besides, in 
other research, the criteria to select fast tract candidate 
were either patients with only triage level 4 and 5, or 
existing subjective judgements which were not suit-
able to apply retrospectively in our study [17, 18, 33–
36]. Therefore, we could not compare our models with 
actual ED decision nowadays. Next, although longer 
stay means more consumption of medical resource, 
further work must be done to evaluate the most appro-
priate cutoff point of short DLOS in our hospital [19]. 
Finally, we could not include other potential confound-
ing factors, such as occupancy rate and total boarding 
patients, which may represent ED crowding conditions 
[37, 38]. Several studies have reported that overcrowd-
ing EDs may delay medical care and potentially prolong 
DLOS [39, 40]; thus, crowding leads to some low-sever-
ity patients being underrecognized and reduces the 
performance of our model. Therefore, further investi-
gation and the addition of other confounding factors 
are imperative.

Conclusion
In this research, we developed a machine learning model 
by applying triage information alone to predict which 
patients have low severity with short DLOS (< 4  h). In 
future research, we aim to perform external validation to 
generalize the models to different hospitals and integrate 
this system into triage for decisional support in identify-
ing fast track candidates. Using this model may further 
strengthen such streaming, and a future survey of the vir-
tual impact is required. 
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