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Abstract

Systemic JIA (SJIA) is distinguished from other forms of JIA by the prevalence of the severe, life-

threatening complications macrophage activation syndrome (SJIA-MAS) and lung disease (SJIA-LD).

Alternative therapeutics are urgently needed, as disease pathogenesis diverges from what is observed

in SJIA, and currently available biologics are insufficient. SJIA-MAS, defined by a cytokine storm and

dysregulated proliferation of T-lymphocytes, and SJIA-LD which presents with lymphocytic interstitial

inflammation and pulmonary alveolar proteinosis, are both thought to be driven by IFNs, in particular

the type II IFN-c. Involvement of IFNs and a possible crosstalk of type I IFNs with existing biologics in-

dicate a distinct role for the JAK-STAT signalling pathway in the pathogenesis of SJIA-MAS and SJIA-

LD. Here, we review this role of JAK-STATs and IFNs in SJIA complications and discuss how new

insights of ongoing research are shaping future therapeutic advances in the form of JAK inhibitors and

antibodies targeting IFNs.
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SJIA and current therapies

JIA describes a group of heterogeneous childhood-onset

diseases with unknown aetiology. The different JIA disease

subtypes have diverging pathophysiologic origins and

mechanisms, ranging from various degrees of adaptive

and innate immune dysfunction, production of autoantibod-

ies, and dysregulation of immune cell populations such as

T cells and monocytes. However, all JIA subtypes are uni-

fied by the presence of chronic childhood arthritis [1, 2]. In

systemic JIA (SJIA), arthritis can sometimes play a minor

role at disease onset and instead systemic inflammation is

predominant, with symptoms including fever, rash, lymph-

adenopathy, hepatosplenomegaly and serositis [3].

Systemic JIA is further set apart from other forms of JIA

by its prevalence for the serious complications macro-

phage activation syndrome (SJIA-MAS) and lung disease

(SJIA-LD) [4, 5].

Treatments for pediatric rheumatologic diseases such

as SJIA have significantly evolved in the past two deca-

des. Synthetic glucocorticoids that suppress inflamma-

tion were developed >60 years ago, and have since

been widely used in various chronic diseases, including

SJIA [6]. DMARDs such as methotrexate were the first

non-steroidal medications shown to significantly improve

arthritis in JIA, and together with NSAIDs and glucocorti-

coids formed the mainstay of treatment in the pre-

biologic era [7, 8]. However, methotrexate proved largely

ineffective for the systemic features of SJIA, and
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adverse events, including steroid side effects, had sig-

nificant impact on pediatric patients [6, 9].

With better understanding of specific inflammatory cyto-

kines and proteins in SJIA disease pathology, including IL-

1, IL-6, TNFa, IL-18 and S100 proteins [10], biologic agents

in the form of recombinant monoclonal antibodies or re-

combinant proteins, directed at single cytokines, were

developed over the past two decades. The first biologic

approved for clinical use in JIA was etanercept in 1999,

which binds to circulating TNFa and prevents its interaction

with cell surface receptors [11]. Other biologics have since

been developed and used and/or approved specifically for

SJIA, including anakinra (a recombinant IL-1 receptor an-

tagonist, approved by the European Medicines Agency

(EMA) in 2018) and canakinumab (a recombinant monoclo-

nal IL-1b antibody, approved by the EMA and US Food

and Drug Administration (FDA) in 2013), and tocilizumab (a

recombinant antibody against IL-6, approved by the EMA

and FDA in 2011) [7, 12]. Since biologic drugs have been

introduced in the clinical practice and management of JIA,

the prognosis for pediatric patients has dramatically

improved [13–15].

Despite this success, between 20% and 40% of SJIA

patients fail to respond to anti-cytokine biologics or de-

velop adverse events during treatment [16, 17]. Some

treatments can also lose efficacy over time, resulting in

the need for novel therapeutic strategies. For example,

in the randomized controlled trial of canakinumab, 38%

of SJIA patients do not achieve an adapted JIA ACR cri-

teria (JIA-ACR) score of at least 50 [18]. Additionally, the

potentially life-threatening complications SJIA-MAS and

SJIA-LD are not prevented by currently available thera-

pies, as they instead seem to be driven by IFNs and IL-

18 (discussed below) [4, 5, 19]. While individual pro-

inflammatory cytokines present an obvious target in

many rheumatologic diseases, evidence has accumu-

lated for the significance of the Janus kinase (JAK)-sig-

nal transducer and activator of transcription (STAT)

signalling pathway in disease pathogenesis. In particular,

the key role of this pathway in IFN signalling highlights

the importance of JAK-STAT signalling as a potential

therapeutical target for SJIA and its complications.

Interferons and JAK-STAT signalling

The JAKs compose a family of four intracellular tyrosine

kinases JAK1, JAK2, JAK3 and tyrosine kinase (TYK) 2.

When cytokines bind to membrane receptors, JAKs are

activated, recruited and in turn phosphorylate the recep-

tors. This allows the selective binding and phosphoryl-

ation of members of the STAT family to induce

downstream genes transcription [6]. Seven STATs have

been identified in mammals: STAT1, STAT2, STAT3,

STAT4, STAT5A, STAT5B and STAT6 [20].

Overall, >50 cytokines signal via the JAK-STAT path-

way, including IL-2, IL-6 and IL-10 family members, to

regulate cell homeostasis, proliferation and differenti-

ation, as well as control the immune system and

inflammatory response. However, the JAK-STAT path-

way also plays a central role in mediating the cellular re-

sponse to the IFN family cytokines.

IFN type I, consisting of 13 subtypes of IFNa and one

IFNb, binds to the IFN alpha receptor (IFNAR) 1 and

IFNAR2 heterodimer, signalling downstream via JAK1 and

TYK2. In response, STAT1 and STAT2 are phosphorylated,

heterodimerize, and are transported into the nucleus,

where they then associate with IFN regulatory factor (IRF)

9 to form a transcriptionally active complex termed the IFN

stimulatory gene factor (ISGF) 3 (Fig. 1). ISGF3 then recog-

nizes specific sequences (IFN-stimulated response ele-

ments, ISRE) in IFN-stimulated genes (ISGs), where it

binds and facilates their transcription [21].

Type II IFN, IFN-c, binds to the IFN gamma receptor

(IFNGR) heterodimer IFNGR1/IFNGR2 and utilizes JAK1

and JAK2 to induce phosphorylation of STAT1. STAT1

forms homodimers, which in the nucleus bind to

Gamma-IFN sites (GAS) to activate transcription of ISGs

(Fig. 1). Finally, type III IFNs, composed of IFNk1-3, use

the same signalling pathway as type II IFN with the ex-

ception of binding to a heterodimeric receptor of IL-

28Ra and IL10Rb [21].

While the general mode of IFN-mediated JAK-STAT sig-

nal transduction is known, various forms of non-canonical

signalling have been discovered, along with different com-

binations of STAT homo- and heterodimers to convey po-

tentially very different transcription signals. For example,

type I IFNs are also able to induce homodimers of STAT1

or STAT3 instead of utilizing the ISGF3 for transcriptional

signalling. These IFN type I induced STAT homodimers

bind to GAS to induce gene expression [22]. Curiously,

while type I and type III IFN both utilize the ISGF3, their

ISGF3-induced gene expression profile is not identical [23].

This indicates that mere activation of the same transcrip-

tionally active complexes does not convey which genes

are expressed, suggesting that either IFN dosage or pres-

ence of other factors can divert ISGF3 to other loci [24].

Type I IFNs also induce responses by different subtypes

alone, and patterns of STAT activation can vary depending

on cell types [25]. To complicate the matter, unphosphory-

lated STATs can play a role in nuclear gene expression.

Unphosphorylated STAT1 and 3 (U-STAT1, U-STAT-3)

(Fig. 1), for example, can enter the nucleus and modulate

gene transcription by binding to DNA or to transcription

factors such as NFjB [26].

Assessment of the IFN response in
disease

To date, it remains difficult to distinguish the specific

roles of type I and type II IFN. Direct serum IFN meas-

urements using ELISA have proven to be challenging

due to the presence of heterophilic serum proteins

that nonspecifically bind to the capture and detection

antibodies in the assay, as well as extremely low bio-

logical levels of type I IFN in serum [27, 28]. Only re-

cently have new assays been developed that can
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detect attomolar, physiological levels of IFNa [28].

Therefore, the measuring of IFN-induced chemokines

CXCL9, CXCL10 and CXCL11 is widely accepted.

CXCL9 is induced by IFN-c but not IFN-a or -b [29],

CXCL10 is induced by IFN-c and to a lesser degree by

IFN-a/b [30] and CXCL11 is similarly induced by IFN-c
and IFN-b, and weakly by IFN-a [31]. Notably, only

CXCL9 is completely dependent on IFN-c and can

thus be used as secondary measurement for presence

of type II IFN [32]. CXCL10, CXCL11 and neopterin,

however, are not selectively induced by IFN-c despite

often being reported as such [33, 34]. Together, this

may result in a certain bias towards the role of IFN-c,

while IFN-a and IFN-b responses are not properly

assessed. In addition, IFN gene score signatures are

used to evaluate the role of IFNs in diseases by

assessing the expression of ISGs compared with

healthy individuals, and have particularly been utilized

in interferonopathies or IFN driven diseases such as

systemic lupus erythematosus (SLE). Assessing the

IFN gene score by RNA level is a more sensitive

method to pick up IFN activity as compared with pro-

tein levels, particularly when compared with direct

measurement of IFNs. Distinct IFN gene signatures

FIG. 1 Interferon-induced JAK-STAT signalling pathways

IFN-a/b, IFN-c and IFNk signal via distinct receptors, but can share downstream JAK-STAT pathways and signalling

molecules. Canonically, IFN-a/b and IFNk induce assembly of the interferon-stimulated gene factor 3 (ISGF3) which

promotes transcription by recognizing and binding to interferon-stimulated response elements (ISREs). IFN-c canonic-

ally leads to the assembly of STAT1 homodimers, which migrate to the nucleus and bind to interferon gamma activa-

tion sites (GASs), inducing transcription of ISGs. Unphosphorylated STATs (U-STAT) are also able to facilate

transcription via GAS.
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have been developed for type I and type II IFNs,

though overlapping transcriptional activation as well

as a dynamic IFN signatures that evolve over time

continue to make interpretation challenging [35–38].

Role of IFNs and JAK-STAT in SJIA

Polyarticular and oligoarticular JIA have been associated

with high plasma levels of IFN-c, as well as elevated

CXCL9/10 in both plasma and synovial fluid [39].

However, SJIA (when not complicated by MAS or LD)

is not generally associated with a robust type I or type II

IFN signature. Independent microarray gene expression

studies using PBMCs did not detect any IFN-induced sig-

nature in SJIA [40–42], with the exception of one study

on a Japanese SJIA patient cohort [43]. Recent bulk

RNA-Seq analysis of SJIA patient monocytes also failed

to reveal evidence of an IFN-induced signature [44].

No recent studies have reported detectable type I IFN

levels in serum of SJIA patients, owing to the lack of

specific, highly sensitive methods to detect low IFN-a/b
in serum [27, 28, 45].

In contrast, reports on IFN-c and CXCL9/10 in SJIA

have been contradictory. Gattorno et al. reported that

CXCL10 and IFN-c were modestly elevated compared

with controls but did not display the control levels. De

Jager et al. also showed that while IFN-c was not ele-

vated in SJIA patients with longstanding disease, CXCL9

and CXCL10 were, albeit at significantly lower levels than

those seen in oligoarticular or polyarticular JIA [39, 46].

Similarly, a recent study reported relatively low but

increased CXCL9 levels in SJIA patients that respond to

canakinumab vs non-responders [47]. On the other hand,

more recent studies have not observed significantly ele-

vated IFN-c in SJIA patients’ serum [39, 45], or increased

IFN-c production following SJIA PBMC stimulation com-

pared with healthy controls [48]. Similarly, Bracaglia et al.

did not observe significantly elevated levels of IFN-c or

IFN-c inducible chemokines CXCL9, CXCL10 or CXCL11

in active SJIA patients without MAS [49]. SJIA patients’

natural killer (NK) cells in fact have been shown to have a

specific defect in IL18-induced IFN-c production, at least

in part caused by a defective phosphorylation of the IL

18 receptor beta [50, 51].

Intriguingly, however, a subset of SJIA patients without

MAS treated with anti-IL-1 inhibitors were shown to upre-

gulate a type I IFN gene signature [37, 52]. Monocytes

from SJIA patients naı̈ve to biological therapy are hypo-

responsive to IFN-c and lack an IFN-induced gene ex-

pression signature, but anti-IL1b treatment can increase

their basal IFN signal and also increase monocyte re-

sponsiveness to IFN-c, potentially facilitated by increased

levels of IFNGR expression [44, 53, 54].

Role of IFNs and JAK-STAT in the compli-
cations SJIA-MAS and SJIA-LD

In contrast to SJIA without MAS, substantial evidence

supports a key role for type II IFNs in SJIA-MAS. MAS is

a severe and potentially fatal hyperinflammatory compli-

cation arising in up to 30% of SJIA patients [5, 55]. Key

features of MAS are overactivation of T lymphocytes

causing highly elevated production of IFN-c, which

drives activation of hemophagocytic macrophages.

What rheumatologists call MAS is also called secondary

hemophagocytic lymphohistiocytosis (HLH) when result-

ing after infection or other triggers [56]. Primary HLH on

the other hand is an autosomal recessive disorder

caused by deficiencies in genes involved in the cytolytic

activity, such as perforin, resulting in impaired NK cell

and cytotoxic T-cell function and inability to limit prolif-

eration and expansion of T cells and macrophages [55,

57]. While the pathophysiology is not completely under-

stood, it is thought that risk for MAS is at least partially

driven by a genetic component, and indeed several

studies have found SJIA-MAS patients carrying hetero-

zygous variants in causative genes for primary HLH [58–

60].

Because IFN-c production plays a key role in MAS,

high levels of IFN-c and IFN-c inducible chemokines

CXCL9 and CXCL10 in serum are characteristic for MAS

patients [45, 49, 61]. Bracaglia et al. found that IFN-c
and CXCL9, CXCL10 and CXCL11 are highly elevated in

SJIA-MAS patients [49], and another study showed MAS

is characterized by IFN-c production from CD8þ lym-

phocytes [61]. Murine MAS models have further

increased evidence for the pivotal role of IFN-c in MAS

[62–65]. Recently, single-cell RNA-sequencing of bone

marrow macrophages in early SJIA-MAS revealed acti-

vated subpopulations with altered transcriptomes includ-

ing upregulated IFN-c response pathways [44].

IL-18, known for its strong IFN-c inducing capacities,

is also highly increased in SJIA-MAS [36, 47, 49].

Hyperproduction of IL-18 drives the overactivation of

Th1 lymphocytes and macrophages. Massive hyperse-

cretion of IFN-c from these cells is in fact likely a result

of high IL-18 levels setting the milieu for MAS [10, 36,

45]. In a murine MAS model, mice lacking the natural in-

hibitor of IL-18, IL-18 binding protein, had a more severe

clinical manifestation of MAS compared with wildtype

mice, highlighting the critical role for this protein in driv-

ing disease pathogenesis [62, 66].

Another SJIA-associated complication with links to IL-

18 and IFN activation is interstitial lung disease (SJIA-LD)

[4, 19]. SJIA-LD is characterized by lymphocytic intersti-

tial inflammation as well as accumulation of lipoproteina-

ceous material and lipid-laden macrophages in the lungs.

These are features shared with pulmonary alveolar protei-

nosis (PAP), where dysfunction of alveolar macrophages

by lack of GM-CSF signalling leads to accumulation of

pulmonary surfactant in alveolar spaces [4, 67]. In SJIA-

LD, GM-CSF signalling remains intact, but substantial

Th1-driven lung inflammation is present, along with highly

increased IL-18 serum levels, IL-18 and IFN-c-induced

chemokines in the lungs, and pulmonary gene expression

reflecting IFN-driven activation [4].

The majority of patients with SJIA-LD were diagnosed

after 2000, have refractory systemic disease with MAS,
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and are being treated with various biological therapies.

Saper and colleagues have hypothesized that the time-

line of increase in SJIA-LD aligning with the rise of

cytokine-directed therapies may indicate a connection

of both [19]. The underlying pathogenesis of SJIA-LD

remains unknown, and considerations include persist-

ently active SJIA-MAS perhaps modified by biologic

therapy, a delayed hypersensitivity reaction to anti-IL1

or anti-IL-6 agents, or an autoinflammatory reaction to-

wards cryptic antigens exposed by persistent inflamma-

tion during SJIA-MAS [68, 69].

Therapeutic approaches targeting IFNs in
SJIA, SJIA-MAS and SJIA-LD

While IFN-c appears activated in polyarticular and oli-

goarticular JIA, it is likely not the main driver of disease.

However, in SJIA-MAS, SJIA-LD and HLH, therapy

directed at IFN-c appears much more promising. As

noted above, MAS mouse models using repeated CpG

DNA induced TLR9 stimulation have shown that direct

IFN-c blockade or JAK/STAT inhibition alleviates inflam-

mation [62, 64,65, 70]. Another MAS mouse model using

animals transgenic for human IL-6 challenged by LPS

provided evidence that direct IFN-c inhibition with

monoclonal antibodies may be effective in SJIA-MAS

[65].

Emapalumab is a monoclonal antibody against human

IFN-c. A recent open-label phase 2–3 study evaluating

the efficacy and safety of emapalumab in children with

HLH found the treatment efficacious without any organ

toxicity, although infections, including severe infections,

occurred frequently [32]. Thus far, emapalumab treatment

for SJIA-MAS is based on anecdotal clinical experience;

an open-label clinical trial is ongoing (Clinicaltrials.gov:

NCT03311854), though the preliminary data is promising

[71]. There are case reports of emapalumab in secondary

HLH/MAS, including a young adult patient with adult-

onset Still’s disease and MAS successfully treated with

emapalumab following seven infusions within 2 months

[72]. Emapalumab was also effective in treating a patient

with refractory Epstein–Barr (EBV)-associated secondary

HLH despite severe pre-existing comorbidities [73].

However, it remains to be seen if neutralization of IFN-c
alone by emapalumab is an effective therapy outside of

HLH, where it was mainly utilized as a bridge to bone

marrow transplant [32, 74].

Inhibition of type I IFN has not been investigated in

clinical trials for JIA or SJIA patients, as there is no dir-

ect evidence for IFN type I contribution to the patho-

physiology at this time. Therapy targeting type I IFN,

however, has been investigated in other rheumatic dis-

eases. Studies of sifalimumab, an anti-IFN alpha mono-

clonal antibody, were discontinued despite promising

phase 2 b results in systemic lupus erythematosus

(SLE), an autoinflammatory disease marked by high ele-

vation of type I IFN gene signatures [75]. Instead, anifro-

lumab, a monoclonal antibody directed against type I

IFN receptor subunit 1 that has recently been found

effective in a phase 3 trial in SLE is now FDA approved

[76]. Should future studies be able to overcome the diffi-

culties of disentangling type I and II IFN effects and pro-

vide evidence of IFN type I driven immunity in JIA or

particularly in SJIA-MAS and SJIA-LD, alternative thera-

pies such as anifrolumab should be considered.

Indirect inhibition of IFNs: JAK inhibitors
in SJIA, SJIA-MAS and SJIA-LD

In contrast to recombinant antibodies directly targeting

IFNs or their receptors, much more is known about the

effectiveness of JAK inhibitors (jakinibs), a novel group

of oral small molecule inhibitors.

Jakinibs target both type I and type II IFN (and type

III, though not further discussed here) pathways, as well

as other cytokines, by interfering with the JAK-STAT

pathway. JAKs provide high biological plausibility as effi-

cacious targets in diseases where either IFNs, other

cytokines signalling via the JAK-STAT pathway, or both

are driving the disease. These small molecule inhibitors

use a novel mechanism of action by affecting intracellu-

lar signalling pathways instead of targeting a specific

cytokine or its receptor. The competitive interaction of

the Jakinib with the JAK region constituting the ATP

binding site significantly interferes with JAK and STAT

phosphorylation required for downstream signalling [77].

Various jakinibs with different selectivity towards JAK1,

JAK2, JAK3 and TYK2 have been developed, though

the homology within the JAK family structures makes it

challenging to target just one specific JAK selectively

[77]. Ruxolitinib and baricitinib are more selective to-

wards JAK1 and JAK2 over the other JAKs. Tofacitinib,

on the other hand is most effective at blocking JAK3

[77, 78]. A recent study found that tofacitinib, baricitinib,

and two other mainly JAK3 inhibitors named upadaciti-

nib and filgotinib exhibit similar cytokine receptor inhib-

ition profiles in vitro despite different IC50 values for

each JAK [79]. Fenwick et al. tested two different JAK

inhibitor compounds and their effectiveness at inhibiting

CXCL9, CXCL10 and CXCL11 secretion from chronically

obstructive pulmonary disease (COPD) patients’ airway

epithelial cells. They found both compounds suppressed

the chemokines and STAT1 phosphorylation, but one

compound (PF1367550) was more effective than the

other [80]. Thus, whether subtle differences in structure

and selectivity could translate to clinical differences be-

tween these JAK inhibitors remains to be seen.

While the Jakinib tofacitinib has been recently FDA

approved for treatment of polyarticular course JIA, and

there is an ongoing clinical trial for SJIA with systemic

features (Clinicaltrials.gov: NCT03000439), currently only

case reports support these medications for SJIA or its

complications, MAS and SJIA-LD. In fact, use of jakinibs

in SJIA-MAS and SJIA-LD is extrapolated from murine

data and from clinical trials with similar diseases that

are driven by IFN.

Jakinibs have been assessed in monogenic interfero-

nopathies such as SAVI [stimulator of IFN genes-
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associated (STING-associated) vasculopathy with onset

in infancy] and CANDLE (chronic atypical neutrophilic

dermatosis with lipodystrophy and elevated tempera-

tures), with results showing clinical and laboratory im-

provement of disease [81, 82]. As noted above, murine

models have also shown beneficial effects of JAK/STAT

inhibitors in HLH and MAS. Ruxolitinib significantly

reduced the clinical and laboratory manifestations of

both primary HLH (PRF-/- mice infected with LCMV) and

MAS/secondary HLH (mice repeatedly stimulated with

CpG DNA) [64, 70, 83].

One report describes using ruxolitinib in an EBV-

induced secondary HLH patient, resulting in decreased

disease markers, including ferritin. However, with worsen-

ing clinical status, treatment was ceased after only 7 days

and the patient expired [84]. On the other hand, a pilot

study of a 28-day treatment course of oral ruxolitinib in

12 children with secondary HLH showed encouraging

results, with two-thirds of patients achieving complete re-

sponse and maintaining this status for >6 months [85].

A case report in SJIA and another study reporting a

case of SJIA-MAS and SJIA-LD have described signifi-

cant clinical improvement or even complete remission

within 3 months of tofacitinib treatment [86, 87]. In an-

other recent case report, a 4-year-old SJIA-LD patient

was successfully treated with ruxolitinib, achieving sig-

nificant clinical improvement that also allowed steroid

tapering [88]. Two other juvenile patients with refractory

dermatomyositis and associated LD responded remark-

ably to tofacitinib [89].

Further case reports of adult patients with

dermatomyositis-associated LD describe improvement with

tofacitinib treatment [90], and in line with this a single-

center, open-label clinical study (Chinese Clinical Trial

Registry number, ChiCTR-1800016629) evaluating the effi-

cacy of tofacitinib in patients with dermatomyositis-LD

showed improved survival and respiratory symptoms [91].

IFN crosstalk can affect SJIA
therapeutics

A key consideration when using agents such as jakinibs is

the significant crosstalk between Toll-like receptors (TLRs),

type I and II IFNs, NFjB and STAT signalling. Type I and

type II IFNs are able to prime the chromatin structure to

enable robust transcriptional responses to TLR signalling,

inducing sustained transcription factor binding to TNFa,

IL-6 and IL12 gene loci [92–94]. Furthermore, IFN-c can

augment TLR responses (such as production of TNFa and

IL-6) by IFN-c-induced suppression of the anti-

inflammatory cytokine IL-10 and STAT3 [95] (Fig. 2).

Another study showed type I IFNs and NFjB have

overlapping antiviral functions and NFjB is able to medi-

ate effective ISG induction independent of type I IFNs

[96]. Two previous studies have also suggested that un-

conventional transcription initiation complex assembly

by both STAT and NFjB regulate nitric oxide synthase

expression [97] and IL-18 gene expression [86] (Fig. 2).

The latter study suggests that co-induction of IL-18 by

IFN-a/b, and not IFN-c-mediated STAT signalling and

DAMP or PAMP mediated TLR-NFjB signalling could

have significant implications for the disease pathogen-

esis in SJIA-MAS and SJIA-LD.

Of interest is the cross-regulation of IL-1b and type I

IFNs, particularly as IL1-inhibition has now become the

mainstay of treatment in SJIA patients. Type I IFNs attenu-

ate IL-1a/b signalling through induction of anti-

inflammatory IL-10, IL1RA (the natural IL1 receptor

FIG. 2 IFN crosstalk and signalling pathway modulation

(A) Type I and II IFNs modulate the immune response by epigenomic changes. IFN-c inhibits the anti-inflammatory re-

sponse of IL-10 by interfering with STAT3 signalling. IFNa/b signalling via IFNAR and DAMPs/PAMPs signalling via

TLRs can work together to induce transcriptional regulation of IL-18. (B) IFNa/b downregulates IL-1a/b by upregula-

tion of IL-10, IL1RA and the decoy IL-1R2 receptor. IL-1 suppresses IFNa/b production via Prostaglandin E2 (PGE2)

upregulation. Anakinra/Canakinumab, which blocks IL-1 signalling, can thus promote increased IFNa/b levels.
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antagonist) and by regulating the decoy receptor IL-1R2.

On the other side, IL-1a and IL-1b limit type I IFN produc-

tion through direct transcriptional downregulation and

Prostaglandin E2 production [98, 99]. Inhibition of IL-1 by

canakinumab or the recombinant IL-1 receptor antagonist

anakinra could thus lead to increased levels of type I IFN

signalling (as previously observed in subsets of SJIA

patients [37, 52]) which could in turn augment IL-18 pro-

duction, setting the stage for massive IFN-c driven hyper-

inflammation and MAS and LD [86] (Fig. 2). In fact, it is

conceivable that in this subset of patients, dysregulation of

signal transduction crosstalk contributes to the pathogen-

esis of hyperinflammation.

Conclusion

With jakinibs and monoclonal therapies targeting IFNs,

promising therapies for SJIA and its complications SJIA-

MAS and SJIA-LD may be on the horizon. Current on-

going trials in JIA and SJIA will provide more data about

their efficacy and safety. The potential implications for

the role of biological therapies in contributing to the de-

velopment of SJIA-LD have the power to dramatically

reshape the treatment landscape for SJIA and its com-

plications. The subset of patients affected will have to

be closely investigated to understand what sets them

apart, and further study is required to evaluate whether

they have an increased risk of developing SJIA compli-

cations. More so, there is urgent need for unravelling

the origin of pathogenesis and particularly the distinct

roles of type I and II IFNs in SJIA-MAS and LD to guide

future decisions for novel alternative treatments.
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