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Abstract

Background: Elexacaftor-Tezacaftor-Ivacaftor (ETI) therapy is showing promising efficacy for 

treatment of cystic fibrosis (CF) and is becoming more widely available since recent FDA 

approval. However, little is known about how these drugs will affect lung infections, which are the 

leading cause of morbidity and mortality among people with CF (pwCF).

Methods: We analyzed sputum microbiome and metabolome data from pwCF (n=24) before and 

after ETI therapy using 16S rRNA gene sequencing and untargeted metabolomics.

Results: The sputum microbiome diversity, particularly its evenness, was increased (p=0.036) 

and the microbiome profiles were different between individuals before and after therapy 

(PERMANOVA F=1.92, p=0.044). Despite these changes, the microbiomes remained more similar 

within an individual than across the sampled population. No specific microbial taxa differed in 

relative abundance before and after therapy, but the collective log-ratio of classic CF pathogens 
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to anaerobes significantly decreased (p=0.013). The sputum metabolome also showed changes 

associated with ETI (PERMANOVA F=4.22, p=0.002) and was characterized by greater variation 

across subjects while on treatment. Changes in the metabolome were driven by a decrease in 

peptides, amino acids, and metabolites from the kynurenine pathway, which were associated with 

a decrease in CF pathogens. Metabolism of the three small molecules that make up ETI was 

extensive, including previously uncharacterized structural modifications.

Conclusions: ETI therapy is associated with a changing microbiome and metabolome in airway 

mucus. This effect was stronger on sputum biochemistry, which may reflect changing niche space 

for microbial residency in lung mucus as the drug’s effects take hold.
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1. Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene. CFTR is a cAMP-regulated ion 

channel used for the transport of anions across epithelial cells [1]. Mutations in this gene 

result in a thickening of mucosal secretions, primarily in the respiratory and gastrointestinal 

systems [1]. Common clinical manifestations of this disease include, but are not limited to, 

chronic polymicrobial sino-pulmonary infections, male infertility, decreased lung function, 

and pancreatic insufficiency [1]. Pancreatic sufficiency is closely linked to the specific 

mutation class, but other aspects of CF pathology have unclear links to genotype [2,3]. 

Those with severe disease, especially the F508del mutation, are plagued by chronic lung 

infection throughout their lifetime [4].

The lung microbiome of people with CF (pwCF) has been well characterized and includes 

bacteria, viruses, and fungi [5–7]. Studies of sputum expectorated from the airways have 

demonstrated that the CF lung microbiome diversity decreases as the disease progresses over 

time, becoming dominated by opportunistic pathogens, such as Pseudomonas aeruginosa 
[4,8]. Thickened mucus within the lungs allows for these pathogens to form a biofilm and 

thrive [9]. The chemical composition of this matrix has been shown to mainly include DNA, 

amino acids, peptides, antibiotics, inflammatory lipids, and a myriad of small molecules 

from host, microbial, and xenobiotic sources [10–14].

In November 2019, a new triple therapy, comprised of three compounds Elexacaftor-

Tezacaftor-Ivacaftor (ETI, Trikafta®), was approved by the United States Food and Drug 

Administration (FDA) for the treatment of CF [15,16]. People with at least one copy of the 

F508del mutation, the most common across CF patients, are eligible to take ETI. Studies 

from clinical trials and data available since approval have shown that the treatment is 

providing remarkable improvements in lung function and other disease symptoms [17,18]. 

However, little is known about how this new therapy will affect the CF lung microbiome and 

metabolome.
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In this study, paired sputum samples from pwCF (n=24) were collected before and 

after therapy (within one year of FDA approval) and analyzed using an integrated multi-

omics approach including 16S rRNA amplicon sequencing and LC-MS/MS untargeted 

metabolomics. We hypothesized that the sputum microbiome and metabolome profiles 

would be altered before and after taking ETI. We measured alpha-diversity (the number 

and relative abundances of features in the samples), and beta-diversity (the relative similarity 

of overall profiles between samples) and found that the microbiome and metabolome were 

significantly different after ETI. These changes indicated a shift in the niche space of airway 

mucus and its microbial occupancy associated with ETI therapy.

2. Methods

2.1. Further detail available in supplemental methods

2.1.1. Sample Collection—Sputum samples were collected during routine clinical 

visits from adult pwCF (>18 years) at two separate CF clinics (patient details table S1). 

Inclusion criteria for the study included adult subjects that could produce sputum and had an 

initial sample collected within one year of ETI administration and a paired sputum sample 

within one year after. Samples were obtained from the most recent clinical visit prior to ETI 

administration and the most recent visit after ETI administration if sputum production was 

possible. Thus, subjects had different intervals between paired samples (mean 202 days +/− 

108, Table 1, S1). Ethical approval for the collections at the University of California San 

Diego adult CF clinic was obtained from the UCSD Human Research Protections Program 

Institutional Review Board under protocol #160078. Institutional review board approval was 

also provided for the collections at the Spectrum Health adult CF clinic in Grand Rapids, 

MI by the Spectrum Health Human Research Protection Program Office of the Institutional 

Review Board under IRB #2018–438.

To serve as a control group for comparison of changes related to ETI therapy we mined 

publicly available microbiome and metabolome data from a previous study with a similar 

time of colleciton between paired samples but prior to ETI approval (mean 157 days +/− 

119, mean FEV1%-predicted = 67.77%, n=10 pwCF, Table S1) [13]. These samples were 

collected under the same UCSD IRB protocol with the same procedures.

2.1.2 DNA Extraction, qPCR and 16S rRNA single amplicon sequencing—
A Qiagen® PowerSoil® DNA extraction kit was used to extract DNA from the sputum 

samples following standard protocol. PCR amplification was then performed using 27F 

and 1492R primers targeting the bacterial 16S rRNA gene to test for DNA amplification 

quality. If amplifiable, bacterial 16S rRNA V4 amplicon sequencing was performed with 

primers 515f/806r on an Illumina® MiSeq® at the Michigan State University Sequencing 

Core. The raw sequences were processed using QIITA (qiita.ucsd.edu [19]), which is driven 

by QIIME2 algorithms [20], and quality filtered to generate amplicon sequence variants 

(ASVs) through the Deblur method [21]. ASVs in the microbiome data were classified as 

‘classic CF pathogens’ or ‘anaerobes’ based on the methods of Raghuvanshi et al. (2020) 

and Carmody et al. (2018) [22,23]. The specific ASVs and their classifications are available 

in table S2. Quantitative PCR (qPCR) was performed using universal 16S primers [43] 
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and Applied Biosystems SYBR Green PCR Master Mix with three technical replicates for 

each sample. The microbiome data is publicly available at the Qiita repository under study 

#13507. Microbiome data for the follow up control cohort was generated with the same 

extraction methods as described in [13].

2.1.3. Metabolomics—Organic metabolite extraction was performed by adding twice 

the sample volume of chilled 100% methanol, vortexing briefly, and incubating at room 

temperature for 2 hours. Samples were then centrifuged at 10,000 x g for 10 minutes 

and the supernatant was collected. Methanolic extracts were analyzed on a Thermo Q-

Exactive® Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Vanquish® ultra-

high-performance liquid chromatography system. All raw files were converted to .mzXML 

format and then processed with MZmine 2.53 software [24], GNPS molecular networking 

[25] and SIRIUS [26]. MZmine 2 parameters are available in the supplementary information 

(Table S3). The network job is available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=c700397169ff447490f764c34abb5abd and the mass spectrometry data were deposited 

on public repository massive.ucsd.edu under MassIVE ID MSV000087364. Metabolomics 

data for the follow up cohort was generated with the same extraction methods as described 

above and further detail is provided in [13].

2.2. Statistical Analysis

Statistical approaches for both the microbiome and metabolome data were similar, due to 

the inherent structural similarity of the multivariate data sets. Normality of the different 

quantitative measures was first tested using a Shapiro-Wilk (SW) test in order to determine 

the appropriate statistical methods. If the data were normally distributed, a paired dependent 

means t-test (DM t-test) was used, if not, a Wilcoxon signed-rank test (WSRT) was used. 

Alpha-diversity was calculated for both datasets using the Shannon index. Beta-diversity 

measures were calculated using the weighted UniFrac distance for the microbiome and 

Bray-Curtis distance for the metabolome. Beta-diversity was visualized for both datasets 

using principal coordinates analysis (PCoA) and the EMPeror software [27]. Beta-diversity 

clustering significance pre- and post-ETI were tested using a Permutational Multivariate 

Analysis of Variance (PERMANOVA) method with 999 permutations. Cross population 

beta-diversity comparisons were done between pwCF before and after ETI therapy, across 

the whole dataset, and within individuals pre- and post-therapy.

To identify metabolite and microbial drivers of the difference pre- and post-therapy, a 

random forest (RF) machine learning approach was used via the randomForest package 

in R [28]. The top 50 variables of importance were further explored. As all individual 

metabolite and microbiome abundance data were not considered normally distributed, 

statistical significance for individual microbial and metabolite changes before and after 

ETI therapy were calculated using the WRST. The p-values were adjusted for multiple 

comparisons using the Benjamini-Hochberg method.

Microbe and metabolite association vectors were calculated using mmvec [29]. Detail of the 

mmvec parameters and analysis are available in the online supplement.
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3. Results

3.1. Patient Clinical Changes after ETI Therapy

Sputum was collected from twenty-four pwCF during routine clinical visits most recently 

before ETI therapy and most recently after (Table 1, Table S1). Subjects had varied time 

periods before and after treatment (mean 202 days +/−108 days between samples, mean 

150 days +/−81 days since ETI prescription, Table 1). The FEV1%-predicted across the 

cohort significantly increased after ETI therapy (mean change = +15.6%, +/−11.8%, DM 

t-test p < 0.0001), as did the FVC measure (mean change = +10.1 ml, +/− 10.64 ml; 

DM t-test p < 0.0001) and BMI (Mean Change = +1.49, +/− 1.53; DM t-test p <0.0001, 

Table 1). The control cohort of successive paired samples from previously published data 

[13] (n = 10 pwCF, 24 paired samples, mean 157 days between samples +/− 119) did 

not show significant changes in lung function between samples (mean change = 1.19% 

+/−3.43, Table S1). Antibiotic administration before and after ETI was not significantly 

different (Chi-squared test: inhaled antibiotics p = 0.10, Oral and/or IV antibiotics p = 

0.0857, any antibiotic p = 0.549), as many of the subjects continued their routine antibiotic 

regimen during ETI therapy. From available paired sample microbial culture data (n=16) 14 

subjects that cultured Pseudomonas aeruginosa prior to ETI therapy cultured it in the sample 

collected after, while two subjects cultured this bacterium only when on ETI (Table S4). 

Other notable changes include the loss of Aspergillus sp. positive cultures in 4 of 6 subjects 

(Table S4).

3.2. Microbiome and Metabolome Diversity Changes after ETI Therapy

Diversity measures in this study included alpha-diversity, representing the number and 

relative abundances of features in the samples, and beta-diversity, the relative similarity 

of overall profiles between samples. Measures of microbiome alpha-diversity, both the 

Shannon index and Peilou evenness, showed a significant increase after ETI therapy 

(Shannon SW normality p=0.238, WSRT p=0.038; Peilou evenness SW normality p=0.074, 

WSRT p=0.036). The number of amplified sequence variants also increased, but did not 

reach statistical significance (ASVs SW normality p=0.0043, DM t-test p=0.12, Fig. 1a). 

The microbiome alpha-diversity of our control cohort did not show a significant difference 

in similarly paired sputum samples prior to ETI approval (Fig. S1). The metabolome did 

not show a significant change in Shannon index (SW p=0.0017, DM t-test, p=0.45, Fig. 

1b) or evenness (Pielou evenness SW p=0.13, WRST p=0.30), but the number of molecular 

features in the metabolome did decrease significantly after ETI therapy (SW p=0.0027 DM 

t-test p=0.010). We also explored changes in microbiome alpha-diversity with other clinical 

parameters and drugs detected in the metabolome data to determine if these were significant 

confounders. The amount of antibiotics present in the metabolome data did not correlate 

with alpha-diversity measures and was not significantly different before or after ETI 

therapy (Fig. S2). The change in FEV1%-predicted also did not correlate with a changing 

microbiome diversity (Fig. S3). Collectively, this alpha-diversity analysis demonstrates that 

new microbial ASVs were not being introduced into the sputum microbiome after ETI 

therapy (ie. no change in richness), but rather the community became more even with 

previously present taxa. In the metabolome, only a decrease in the number of total molecules 

detected was observed (ie. loss of richness).
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PCoA plots were used to visualize beta-diversity of the two data types and PERMANOVA 

tests were used to determine if clustering based on ETI therapy was statistically significant 

(Fig. 1c, d). The overall microbiome profiles of the sputum samples changed after ETI 

therapy (PERMANOVA p=0.044). The metabolome profile also changed after treatment 

(p=0.002), with a stronger metric of difference in the metabolome compared to the 

microbiome (F-value=1.92 microbiome, F-value=3.12 metabolome, Fig. 1c, d). There was 

statistically significant movement along the first principal coordinate axis after ETI therapy 

for both the microbiome (SW test p=0.02, DM t-test p=0.0027) and the metabolome (SW 

p=0.0011, DM t-test p=0.00071). This indicates that the overall changes in the two data 

types occurred similarly, despite subjects having different initial profiles. To determine how 

variable the microbiome and metabolome profiles were overall, beta-diversity differences 

were compared before, between, and after ETI therapy across subjects and within subjects 

(SW normality beta-diversity microbiome p=1.4 × 10−15, metabolome p=2.2 × 10−16). The 

lowest microbiome variation was found within subjects before and after therapy, indicating 

that although the microbiome profiles change significantly (Fig. 1e), individuals were still 

more similar to themselves before and after therapy than across the cohort. The metabolome 

beta-diversity comparisons showed different trends than the microbiome. The largest beta-

diversity variation in metabolite profiles was seen across patients in samples collected 

during therapy, signifying that the chemical makeup of sputum becomes far more varied 

across people once administered ETI (Fig. 1f). In contrast, the metabolomes were the most 

similar across subjects prior to ETI therapy, indicating that sputum metabolite profiles were 

relatively similar prior to ETI administration, but varied greatly across individuals after 

treatment.

3.3. Microbial Changes After ETI Therapy

A random forest machine learning classification was used to determine how well the 

microbiome data reflected the pre- or post-treatment groups and to rank the ASVs by their 

contribution to that classification. Overall, the random forest model poorly classified the 

microbiome data with an error rate of 44.7%. Veillonella parvula and Staphylococcus sp. 

were strong classifiers (Table S5), however, none of the ranked ASVs were significantly 

different between pre- and post-treatment samples after correction for false-discovery 

(Benjamini-Hochberg corrected, WSRT p>0.05). Similarly, at the family level, there was no 

significant difference before and after therapy following false discovery rate correction (Fig. 

2a). The ASV representing Pseudomonas showed dynamic changes in some individuals, but 

it was not significantly different in the overall paired data (Fig. 2b). We therefore summed 

the abundance of all ‘CF pathogens’ and ‘anaerobes’ (as described by Raghuvanshi et 

al. (2020) [22], Table S2) and compared the log-ratio of pathogens/anaerobes. This ratio 

significantly decreased following ETI therapy (SW p = 0.233, WSRT p = 0.013, Fig. 2).

A qPCR assay using universal primers for the bacterial 16S rRNA gene [43] was used to 

calculate the total number of rRNA copies/mL of sputum pre- and post-therapy. The mean 

prior to therapy was 1.17 × 109 copies/mL and after therapy was 7.62 × 108 copies/mL. This 

difference was not statistically significant but did show a decreasing trend (SW p = 0.0027, 

DM t-test p = 0.061, Fig. 2).
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3.4. Metabolite Changes After ETI Therapy

Grouping known metabolites into molecular families showed that the strongest metabolomic 

signature due to ETI therapy was a decrease in peptides and amino acids. Comparatively, 

phosphocholine and phosphoethanolamine molecular families did not change with ETI (Fig. 

3a). A random forest machine learning classification was used to assess how well the 

complete metabolomic data reflected changes after ETI therapy. The out-of-bag error rate 

of the classification was 22.92% indicating that there was a metabolomic signal for ETI 

therapy, but not all samples were correctly classified as pre- or post-treatment, likely due 

to personalization. Of the 50 most important classifiers (Table S6), 13 had matches in 

the GNPS database, and of those, 10 were amino acids or peptides. These were primarily 

dipeptides, including Phe-Glu, Ile-Leu, Glu-Val, and Ser-Phe, as well as the amino acid 

tryptophan; all of which significantly decreased after ETI therapy (Fig 1b). Molecular 

network analysis (Fig. 3c) showed a diverse set of peptides that were more abundant 

prior to ETI. Comparatively, tryptophan and total peptides in our control cohort did not 

show a significant difference in paired samples across a similar timeframe prior to ETI 

approval (Fig. S1), implicating ETI in the changes observed here. Metabolites from the 

kynurenine pathway (which includes tryptophan) were also identified as strong classifiers 

in the model. Kynurenine, formylkynurenine, and indole abundances significantly decreased 

after ETI therapy (Fig. 3b). The P. aeruginosa siderophore pyochelin was detected in 10 of 

the 24 patients, and within those individuals, it also decreased (Fig. 3b). Though commonly 

detected in CF sputum with the metabolomics methods used here, other P. aeruginosa 
specialized metabolites were not detected in this study, except for one quinolone (NHQ) that 

was detected in 6 samples.

3.5. ETI Metabolism in CF Mucus

Ivacaftor, Elexacaftor, and Tezacaftor were all identified in the sputum metabolome by 

MS/MS analysis with similar fragmentation behavior to that described by Reyes-Ortega et 

al. (2020) [30]. This included the known and unknown metabolized products of the parent 

drugs with related MS/MS spectra (Fig. 4). Ivacaftor had extensive metabolism revealed by 

molecular networking with the parent drug having six related nodes with unique retention 

times. Two of these are the known M1 and M6 metabolites, representing hydroxymethyl 

ivacaftor and ivacaftor carboxylate, respectively (level 2 matches according to [31]). Other 

modifications of the compounds were also seen, including a hydroxylated quinolone ring 

(m/z 425.2067, C24H29N2O5+H+) and further hydroxylations and carboxylations on two 

trimethyl groups, but the exact the location of these modifications cannot be discerned 

(level 3 annotation [31], Fig. S4). Tezacaftor metabolism was also identified including 

a known dehydrogenation (metabolite M1, m/z 519.1400, C26H26F3N2O6+H+), a known 

glucuronate (metabolite M3, Fig. 4a) and a phosphorylated metabolite (m/z 599.1401, 

C26H27F3N2O9P+H+). Elexacaftor exhibited only one metabolic transformation – the loss 

of a methyl group, but its location could not be determined by MS/MS analysis (level 4 

match, Fig. 4). Newly annotated metabolites are only putative and require further analytical 

analysis to validate proposed structures.

Similar to the ability to detect antibiotics directly in the sputum metabolome, Ivacaftor 

and Tezacaftor were also detected both prior to and after ETI administration. These two 
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compounds were released as therapies in prior formulations of CFTR modulators, likely 

explaining their presence. In light of this detection, we investigated whether or not the 

presence of previously approved correctors/potentiators in sputum prior to administration 

of ETI may have buffered the microbiome dynamics observed. Ivacaftor (a component of 

Kalydeco®, Orkambi®, and Symdeko®) was found in 11 of the 24 patients prior to ETI 

therapy. There was no significant difference in the alpha or beta-diversity changes between 

subjects that had Ivacaftor in their sputum prior to ETI and those that did not (p>0.05, 

Fig. S5). Thus, prior CFTR corrector/potentiator therapy did not contribute significantly 

to the overall changes seen with ETI, allowing these changes to be more definitively 

attributed to the triple therapy. Elexacaftor, the next-generation corrector unique to ETI, 

was present in sputum after its prescription as expected. However, one subject unexpectedly 

had Elexacaftor present in their lung sputum prior to knowledge of clinical administration of 

ETI.

3.6. Microbiome/Metabolite Associations Through ETI Therapy

We employed the novel neural network algorithm mmvec [29] to integrate the microbiome 

and metabolome data and provide a picture of collective changes with ETI. Mmvec 

calculates conditional probabilities of the association between all ASVs in the microbiome 

data with all metabolite features. The overall neural network showed a strong association 

between a changing microbiome and metabolome (Fig. S6). The biplot of the mmvec 

algorithm enabled visualization of the microbiome vectors associated with the metabolomic 

changes. There was a clear separation in vector directionality between pathogen and 

anaerobe associations with the metabolome in the mmvec biplot. This indicates that 

the metabolite changes associated with classic pathogens are not the same metabolites 

associated with changing anaerobes. Drivers of the metabolite changes associated with 

classic pathogens were mostly peptides (Fig. 5a); those same peptides shown to be 

decreasing after ETI therapy. Plotting the conditional probabilities of each peptide with 

the mean of all pathogens and all anaerobes in the dataset showed that the peptides were 

significantly associated with classic pathogens (WSRT p<0.001) (Fig. 5b). Kynurenine, 

another metabolite found to decrease with ETI therapy, was also strongly associated with 

pathogens. This analysis indicates the decrease of peptides and kynurenine in sputum 

samples associated with ETI corresponds to a decrease in the relative abundance of classic 

pathogens (Fig. 5c).

4. Discussion

This study assessed the multiomic changes in sputum from pwCF after administration of the 

novel CF triple therapy ETI. ETI has led to significant improvement in lung function and 

symptom measures of pwCF in clinical trials (and this study) with great potential to improve 

the lives of these individuals [15,16]. Promising as the treatment is, it is mostly unknown 

how the therapy will affect lung infections and the chemistry of sputum as CFTR function 

improves. This is of paramount importance, because if the microbial infections in the lungs 

of pwCF do not clear and/or change favorably, then the full benefits of the therapy may 

not be realized. Preliminary studies of other CFTR modulators, specifically Ivacaftor, which 

has received the most attention due to having the earliest FDA approval, have shown some 
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changes in microbial diversity measures with treatment [32], specifically in the gut [33,34]. 

However, most studies find little change in the airway microbiome [34–37]. The addition 

of CFTR correctors, such as Lumacaftor, has shown an increase in microbial diversity in 

the CF airways [38], but other studies show less marked responses [39]. To our knowledge, 

this is the first study to report microbiome and metabolome changes resulting from ETI 

(which includes the new corrector Elexacaftor). Effects of the treatment were seen in both 

the microbiome and the metabolome. By beta-diversity measures, the effect was stronger in 

the metabolome, demonstrating that a change in the biochemical environment of CF mucus 

was associated with ETI therapy. Correspondingly, and similar to other studies [18], patients 

in our cohort showed improvements in clinical parameters, such as lung function and body 

mass index.

Microbial alpha-diversity increased after therapy, indicating that the microbiome in the 

lungs of pwCF became more complex. This increase was driven by a higher microbial 

evenness, a metric that contributes to the Shannon diversity, though the number of individual 

microbial sequences detected did not change. Therefore, the lung microbiome of pwCF 

was not necessarily gaining new or losing old members during therapy, but those present 

became more similar in their relative abundances. This was reflected in clinical culture 

data, where the major pathogens were mostly cultured before and after ETI. A similar 

change in alpha-diversity did not occur in our control cohort, supporting the notion that 

ETI is responsible for the changes observed. The overall profiles of the microbiome 

(beta-diversity) were changed significantly after ETI therapy and did so in a similar way 

across the study population, as shown by the homogeneous directional movement across 

the first principal coordinate axis. Despite these overall changes, no single organism was 

significantly altered from ETI therapy after multiple-comparisons correction. This is likely 

due to the widely known personalization in the CF microbiome, the phenomenon where 

individual pwCF have unique microbiome signatures which show some consistency over 

time for that individual [8,40]. Because individuals have very different microbial profiles, 

the start and endpoints from any pharmaceutical treatment may not be universal across 

subjects. This personalization was again observed here, as subjects were still more similar to 

themselves after ETI therapy than to other subjects. A larger sample size may have reached 

statistical significance for microbial taxa of interest because the trends for pathogens, such 

as P. aeruginosa and Staphylococcus, were showing reductions in relative abundance, while 

anaerobes were showing an increase. Accordingly, a collective comparison of the log-ratio 

of pathogen:anaerobe abundances did reach statistical significance. This ASV binning 

approach normalizes some of the personalized signatures, as not all subjects have the same 

bacteria, but when grouped in this clinically relevant manner, there is an overall reduction 

of classic pathogens relative to anaerobes. There was also a trend in the decreased bacterial 

load after ETI therapy, supporting that the increase in diversity seen from microbiome 

measures may be associated with a decrease in total bacteria in sputum, though this did 

not reach statistical significance. In summary, ETI therapy was associated with an altered 

lung microbiome, exemplified by an increased microbial evenness driven by a reduction in 

the relative abundance of pathogens in place of an increase in the relative abundance of 

anaerobes. This increase in anaerobes may be relevant for treating lung infections in the new 

era of highly effective CFTR modulators. The role of anaerobes in the CF lung is rather 
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unclear however, as they are associated with better lung function [41], but also pulmonary 

exacerbations [22,23,42]. From a clinical standpoint, future studies need to examine if 

altering antimicrobial therapies for pulmonary exacerbations are needed as ETI and other 

highly effective modulators begin to reshape the lung microbiome.

The metabolome showed stronger beta-diversity changes than the microbiome. The sputum 

metabolomes were relatively similar prior to therapy, but when on drug, they became 

highly diverse across subjects. These interesting chemical dynamics indicate that ETI 

therapy is associated with a sort of metabolomic turmoil within the airways of pwCF, 

where the lung sputum biochemistry changes significantly with a highly varied outcome 

across individuals. However, similar to the microbiome, the directionality of change 

had some uniformity, indicating a common metabolomic shift driven by ETI. Uniform 

changes included a decrease in peptides, amino acids and kynurenine metabolism. The 

latter was identified as an important pathway associated with P. aeruginosa dynamics from 

Lumacaftor/Ivacaftor therapy in a previous study [39], which supports the findings here, and 

may represent a universal consequence of CFTR modulator treatment. The decrease in the 

overall abundance of peptides, particularly dipeptides, links these metabolites to a previous 

study that associated their abundance with worsening lung function and neutrophil elastase 

activity [13]. Though not measured in this study, the decrease in peptides may be a proxy for 

decreased neutrophil proteolysis and inflammation in the lung. Importantly, we re-analyzed 

some data from that study as a control cohort and did not find a decrease in peptides 

in similarly paired samples, implicating ETI in the peptide and amino acid dynamics 

observed here. There may be a link between the decrease in kynurenine metabolism and 

amino acids/peptides, as it is a principal pathway for the metabolism of tryptophan in 

humans and bacteria. The reduction of peptides in sputum may reduce their availability 

for pathogens (particularly P. aeruginosa) to metabolize through the kynurenine pathway 

or others. Mmvec analysis further supported the changing relationship between peptides, 

kynurenine metabolism and pathogens. This approach, robust to the statistical challenges of 

cross-omics comparisons from compositional datasets [29,43], showed that the decrease in 

peptides and kynurenine was associated with a reduction in classic pathogens. In light of this 

finding, we propose the hypothesis that ETI therapy, and possibly other CFTR modulators 

[39], reshape microbiome niche space in CF mucus by reducing peptide and amino acid 

availability. This shift may begin to squeeze out some pathogens, such as P. aeruginosa, 

which is known to preferentially metabolize amino acids in the lung [44–47]. This changing 

niche space could have clinical consequences, as treatment for lung infection may need 

to be tailored to a shifting microbiome. How much the microbiome will change however, 

and whether there will be an altered steady state of the bacterial and viral community, will 

require more long-term studies of the effects of ETI.

Metabolomics of complex clinical samples often detects xenobiotics, such as drugs 

administered to patients, which can become confounders of studies of a particular treatment 

such as ETI [14]. For example, we detected four antibiotics in the sputum metabolome 

data, allowing for comparison of their abundances with microbiome measures in the same 

samples. There was no difference between the amount of antibiotics measured before or 

after therapy and no correlation between their abundance and microbiome alpha-diversity. 

This supports the notion that antibiotics were not a strong confounding factor in our study 
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of ETI, however, we do not detect all drugs administered and it cannot be ruled out that 

the changes observed may, in part, be due to the impacts of antibiotics. Interestingly, prior 

CFTR modulators were also detected in the sputum metabolome data and there was diverse 

metabolism of these drugs, particularly Ivacaftor. This created a unique opportunity to 

determine whether or not the presence of a previously approved CFTR modulator therapy in 

a patient’s sputum affected the microbiome and metabolome dynamics of ETI. There was no 

difference in the microbial and metabolite dynamics while on ETI between those previously 

taking CFTR modulators and those not, evidence that the changes observed were associated 

with ETI therapy, perhaps Elexacftor itself, which is known to be a highly effective CFTR 

corrector. These results show promise that ETI therapy may have a particularly strong effect 

on the CF sputum microbiome and metabolome where other CFTR modulators have not 

[34–37].

There are several caveats to our study, perhaps most importantly, ETI therapy is known to 

reduce sputum production in pwCF. It is difficult to discern if the changes we identified here 

are due to sputum chemical and microbial dynamics or a change in the ability to produce 

sputum when on CFTR modulators. Instructions for expectoration were not varied before 

and after ETI to normalize the sampling approach, and all subjects in this study were able 

to produce sputum for collection both prior to and during ETI therapy. Furthermore, the 

relatively small sample size may have masked some specific changes, particularly with 

individual microbial ASVs. Larger studies of pwCF before and after ETI therapy are 

warranted, though with the wide availability of these CFTR modulators currently makes 

collecting ETI naïve samples difficult. Follow up studies on subjects taking ETI for longer 

periods are also needed.

In conclusion, the highly effective CF triple therapy ETI results in an overall reduction 

in pathogens compared to anaerobes and reduced amino acid availability and kynurenine 

metabolism. This change was associated with improved clinical parameters, most notably 

lung function. Changing chemistry within lung mucus associated with ETI will begin 

to reshape the niche space for its resident microbiome. A reduction of amino acids and 

peptides in lung mucus may be unfavorable to pathogens that preferentially metabolize these 

nutrients, leading a different future for the CF lung microbiome with widespread availability 

of ETI.
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Fig. 1. 
Alpha and Beta-diversity of lung microbiomes before and after ETI. Alpha-diversity 

measures of a) microbiome data and b) metabolome data before (N_ETI) and after ETI 

therapy. P-values shown are from either the DM t-test or WSRT after testing for normality. 

Principal coordinate analysis plots of beta-diversity data for c) microbiome data with 

significance calculated utilizing the weighted UniFrac distance and d) metabolome data 

with significance calculated utilizing the Bray-Curtis distance. PERMANOVA statistics and 

the percent of variance explained by each axis are shown. Boxplots of positions on the first 

principal coordinate are shown tested for significance with the DM t-test. Beta-diversity 

cross comparisons within the e) microbiome and f) metabolome data. Cross comparisons 

were done across subjects before and after ETI therapy, across the entire dataset, and within 

a subject’s paired samples (within). Statistical significance was first tested with an ANOVA 
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followed by an ad-hoc Tukey’s test. Shared letters denote distributions that are significantly 

different from each other.
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Fig. 2. 
Microbiome changes throughout ETI therapy. a) Taxonomic dynamics at the family level 

of ASVs in each subject before (N) and after (T) ETI therapy. b) The rRNA copies/mL of 

sputum, log-ratio of pathogen:anaerobes and ASV dynamics before and after ETI therapy.
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Fig. 3. 
Molecular families and metabolite changes before and after ETI therapy. etabolite network 

of peptides and other metabolite changes. a) Molecular family metabolite abundance 

changes pre- and post-therapy. b) Individual metabolite changes pre- and post-therapy. c) 

Molecular network of peptides identified by GNPS library searching. Each node represents 

a unique MS/MS spectrum (putative metabolite), connections between the nodes are 

determined and width-scaled by the cosine score from MS/MS alignment. Pie charts are 

the total feature abundance colored according to the legend.
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Fig. 4. 
ETI metabolism detected in sputum metabolomic data. a) Three separate molecular 

networks are shown for Ivacaftor, Tezacaftor, or Elexacaftor and their related metabolic 

products as identified by MS/MS spectral alignments. Each node in a network represents a 

unique MS/MS spectrum and connections between the nodes indicate spectral similarity as 

identified by the cosine score. The width of the edges are scaled to the cosine score and the 

pie chart inside nodes represent the sum of the area-under-curve abundance of that molecule 

in either pre- (red) or post-treatment (blue) sputum samples. The nodes are highlighted 

by whether they represent parent drug, known metabolized product, or putative unknown 

metabolized product. Putative structures of the metabolites are shown with their molecular 

formulas, retention times, and exact masses. Note that the stereochemistry of some of the 

metabolized products cannot be discerned with this level of MS/MS annotation. ISF= in 

source fragment. b) Boxplots of the area-under-curve abundance of the three parent drugs in 

pre- and post-ETI samples.
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Fig. 5. 
Mmvec analysis of sputum microbiomes and metabolomes from pwCF. a) Biplot of the 

metabolite and microbe vector associations. Each diamond represents a metabolite (only 

metabolites annotated within the GNPS library are shown) and they are colored by their 

molecular family. The vectors are the top 15 ASVs associated with the metabolomic 

dynamics and they are colored by whether or not they are considered clinical pathogens 

or anaerobes. b) Conditional probability distributions for the mean of all peptides identified 

in the dataset and their association with either anaerobes (red) or pathogens (purple, p-value 

from DM T-test). c) Rank abundance of the conditional probabilities of kynurenine with 

different anaerobes (red) and pathogens (purple) ASVs.
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Table 1

Clinical, microbiological and sampling data on pwCF in this study prior to and after ETI therapy. Numbers are 

reported means. NA=not applicable, +/− = Standard Deviation of the mean.

Prior to ETI Post ETI Delta

Number of subjects 24 24 NA

% Male NA 0.54 NA

Average age (from range) 32.50 33.00 0.50

FEV1%-predicted 50.21 (+/−17.8) 65.86 (+/−18.73) 15.65

FVC 71.83 (+/−20.0) 81.95 (+/−18.36) 10.12

BMI 22.14 (+/−3.44) 23.63 (+/−3.31) 1.49

Height (cm) 166.58 166.39 −0.19

# Days on ETI NA 149.71 (+/−81.17) NA

# Days between samples NA 201.79 (+/−107.97) NA

% Pseudomonas by culture 70.00 84.00 14.00

Exacerbations per year 2.63 2.45 −0.17

% Pancreatic sufficient NA 0.04 NA
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