Skip to main content
. 2022 Apr 10;11(3):1117–1132. doi: 10.1007/s40121-022-00628-6

Table 2.

Performances of the seven machine learning models for predicting in-hospital mortality

ML Accuracy AUC
XGBoost
 Training set 1.000 1.000
 Validation set 0.895 0.884
RF
 Training set 1.000 1.000
 Validation set 0.891 0.882
SVM
 Training set 0.875 0.747
 Validation set 0.872 0.763
LR
 Training set 0.882 0.833
 Validation set 0.890 0.845
NB
 Training set 0.856 0.836
 Validation set 0.862 0.856
KNN
 Training set 0.904 0.940
 Validation set 0.868 0.651
DT
 Training set 1.000 1.000
 Validation set 0.842 0.655

ML machine learning, XGBoost eXtreme Gradient Boosting, RF Random Forest, SVM Support Vector Machine (radial bias function), LR Logistic Regression, NB Naive Bayes, KNN k-Nearest Neighbors, DT Decision Tree, AUC the area under curve