
Knowledge-based approaches to drug discovery for rare 
diseases

Vinicius M. Alvesa,b, Daniel Korna, Vera Pervitskya, Andrew Thiemea, Stephen Capuzzia, 
Nancy Bakerc, Rada Chirkovae, Sean Ekinsd, Eugene N. Muratova,f, Anthony Hickeyb,*, 
Alexander Tropshaa,*

aLaboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC 
Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.

bUNC Catalyst for Rare Diseases, UNC Eshelman School of Pharmacy, University of North 
Carolina, Chapel Hill, NC, 27599, USA.

cParlezChem, 123 W Union Street, Hillsborough, NC, 27278, USA.

dCollaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 
27606, USA.

eDepartment of Computer Science, North Carolina State University, Raleigh, NC, 27695-8206, 
USA

fDepartment of Pharmaceutical Sciences, Federal University of Paraiba, Joao Pessoa, PB, Brazil.

Abstract

The conventional drug discovery pipeline has proven to be unsustainable for rare diseases. 

Herein, we discuss the recent advances in biomedical knowledge mining applied to discovering 

therapeutics for rare diseases. We summarize current chemogenomics data of relevance to rare 

diseases and provide a perspective on the effectiveness of machine learning and biomedical 

knowledge graph mining in rare disease drug discovery. We illustrate the power of these 

methodologies using a chordoma case study. We expect that a broader application of knowledge 

graph mining and artificial intelligence approaches will expedite the discovery of viable drug 

candidates against both rare and common diseases.

Teaser:

We describe how recent advances in biomedical knowledge graph mining and artificial intelligence 

could aid the discovery of viable drug candidates against rare diseases.
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Introduction

Rare diseases are usually defined as conditions that affect fewer than 200,000 people in 

the United States and 1 in 2,000 people in the European Union.1 Unfortunately, there 

is currently no universal definition of what constitutes a rare disease. Several countries 

outside Europe and North America estimate rare disease prevalence ranging from 5 to 76 

per 100,000 people, reaching, collectively, a conservative number of up to 446.2 million 

people affected worldwide, suffering from over 7,000 rare diseases.2 In Africa, access to 

diagnosis and advanced genetic testing has hindered the estimation of incidence.3 Some 

diseases are ultrarare, affecting less than 100 individuals worldwide and, in some cases, a 

single individual.4 In addition, many diseases, e.g., Malaria, Chagas disease, and sleeping 

sickness, uncommon in developed countries, are regarded as endemic in other geographical 

areas of the world. The World Health Organization calls these diseases “neglected” since big 

pharmaceutical companies often overlook them.5 Conversely, rare diseases are uncommon 

everywhere and they represent a substantial burden on individuals, families, and whole 

economies. As such, rare diseases demand disruptive and revolutionary drug discovery 

paradigms to promote the development of innovative therapies.6 Before 1983, there were 

only 34 treatments for rare diseases.7 In the last four decades, governmental incentives 

resulted in more than 600 therapies being approved as of 2021.8 Despite this progress, only a 

small fraction of patients can be treated with an approved medication.1

It is widely accepted that the conventional drug discovery pipeline is generally inadequate 

and unsustainable, as it usually takes 10–15 years and, on average, $2.6 billion in research 

and development costs to develop a single new drug.9 Inefficiencies in this pipeline are 

particularly problematic for rare diseases due to high research and development costs 

coupled with the potential for low revenue gains.10 Consequently, drug repurposing has 

become a trending topic among researchers.11 This approach allows researchers to identify 

new uses for already-approved or investigational drugs beyond the original therapeutic 

indication.12 Compared to new therapeutics, repurposed drugs can be approved for 

additional indications faster and at a reduced cost since FDA-approved medicines have 

already considered the effects of human exposure and can bypass additional expensive 

preclinical and Phase I safety studies.13

Drug repurposing studies are often only initiated after chance observations of unexpected 

or “off-label” effects.14 Typical examples include sildenafil (Viagra) that initially found 

unintended application as a treatment for erectile dysfunction,15 and zidovudine and 

thalidomide that were repurposed for HIV and multiple myeloma, respectively.16 Notably, 

these drugs were successfully repurposed serendipitously rather than systematically.

Computational approaches have emerged as practical solutions to accelerating drug 

discovery efforts and reducing drug development costs.17 Additionally, Literature-Based-

Discovery (LBD), which seeks to unlock biological observations hidden within the existing 
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information sources, such as published texts and manuscripts, has emerged as a promising 

approach.18 More recently, the exploration of biomedical knowledge graphs has found 

growing application as another promising approach.19 In such graphs, biomedical concepts 

are represented as nodes, and linkages between concepts are represented as edges connecting 

the respective nodes. The consolidation and integration of knowledge-driven drug discovery 

approaches toward developing a cost-effective, innovative drug discovery pipeline represents 

a formidable but potentially highly impactful challenge.

In this Perspective, we (i) review current data sources and computational approaches 

for the discovery of potential drug targets (e.g., genes or proteins) associated with rare 

diseases, (ii) describe different means to find information on a given disease and classify 

the diseases according to the putative treatment (small molecules, biologics, cell therapies, 

gene therapies, and nutraceuticals that are either approved, investigational, or experimental 

agents), (iii) propose a new approach to integrating existing data on drugs, rare diseases 

and imputed information from knowledge graphs to detect new targets and therapies; and, 

(iv) demonstrate the utility of this approach in a case study. We hope that this structured 

discussion and proof-of-concept studies will provide practical and useful guidance to enable 

many studies concerning drug discovery for rare diseases but also can be extended for 

neglected and common diseases.

Current therapeutics for treating rare diseases.

In contrast to many common diseases, the etiologies and pathogenesis for most rare diseases 

remain unknown. For example, amyotrophic lateral sclerosis is a rare disease that is long 

known as Lou Gehrig’s Disease and it still has an uncertain etiology.20 Phenotypic cell-

based assays can identify potential drug candidates even if the disease pathophysiology 

is not well understood. In these assays, biological changes are observed when active 

compounds are present. However, when the disease etiology and pathophysiology are 

unknown, optimizing active compounds to improve efficacy, pharmacokinetics, and toxicity 

profiles is even more challenging. Still, thanks to the advances in these technologies, the 

number of new molecular entities or biologics license applications approved by the FDA for 

rare or orphan diseases increased from 5 in 2006 to 21 in 2015.21

Drug development for rare diseases is complicated because many such disorders are 

associated with multiple genotypic variations and phenotypic presentations.22 Furthermore, 

it is also challenging to collect sufficient safety and efficacy data with a naturally small 

number of patients recruited for clinical trials.23 Similarly, it is hard to find experts 

to help run these clinical trials. Finally, rare diseases most commonly develop in early 

childhood. Conducting clinical trials in children brings additional complications due to 

variable pharmacokinetics and pharmacodynamics of drugs, physiological differences, and 

ethical considerations.24

Despite the challenges, several therapeutics have been approved to treat rare diseases, 

especially those with higher incidence, such as multiple sclerosis, narcolepsy, primary 

biliary cholangitis, hemophilia, and cystic fibrosis. We summarize approved and 

investigational small molecules and biologics for some rare diseases in Table 1. Small 
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molecules defined as chemical structures with molecular weight lower than 1 kDa and they 

constitute most of the approved drugs.25 Biologics are therapeutic modalities composed of 

large and complex structures derived from natural sources, such as proteins, antibodies, 

vaccines, nucleic acids (DNA, siRNA, mRNA, oligonucleotides), and cells.26 Some of 

these approaches can include replacing, altering, or introducing novel versions of genes, 

proteins, or cells in the patient’s body. In the last few years, these approaches have 

become promising for treating rare diseases (Table 1).21 For instance, growth hormone 

(e.g., somatropin for osteogenesis imperfecta27), stem-cell-based therapy (Cellavita HD for 

Huntington’s disease28), and gene therapy (e.g., ARU-1801 for sickle cell anemia29) have 

been explored. Furthermore, researchers use cell-based (normal or disease-affected) disease 

models, induced pluripotent stem cell models, and animal models to gain information about 

drug targets and treatment options.21

Despite some similarities to drug discovery for common diseases, rare disease drug 

discovery challenges are compounded by the lack of data and funding.30 In the 

pharmaceutical companies, success is often measured by the revenue from drug sales,31 

which may explain the lack of interest in rare diseases. Measuring success by the revenue 

is a one-sided metric. In addition to not considering the opportunity to improve the quality 

of life of individuals, it does not consider the economic impact that finding the cure for 

a disease will have on the society. The profit-driven mentality hampers stakeholders to 

invest in research and development of therapeutics for these diseases, and often times, drug 

discovery for rare disease may receive significant funding from wealthy individuals only 

when they themselves or their loved ones are affected by that rare disease.32

Efforts have been made to increase the support for rare disease research by forming different 

consortia and centers.33 These organizations specialize in identifying undiscovered diseases 

and developing improved treatments for identified diseases. The International Rare Diseases 

Research Consortium spearheads these efforts in conjunction with public organizations such 

as the US National Institutes of Health and the European Commission.34 Consequently, one-

third of new drug approvals for rare diseases occurred between 2010 to 2015.35 Currently, 

230 rare diseases are being studied within the Rare Diseases Clinical Research Network.33 

However, it is too soon to gauge the success of this endeavor as very few treatments have 

emerged thus far.

Gene therapy, protein/peptide replacement, and target-based small molecule discovery 

constitute existing approaches used to discover rare disease treatments.36 For example, 

onasemnogene abeparvovec-xioi (Zolgensma) was recently approved as gene therapy to 

treat spinal muscular atrophy caused by a mutation in the survival motor neuron 1 (SMN1) 

gene.37 The SMN1 was first described in 1995, allowing the development of a therapy to 

insert a functional SMN1 gene to prevent disease progression38, which eventually became 

available to patients only in 2019.37 Additionally, genetically validated drug targeting has 

become a popular approach for drug discovery.39 This approach involves identifying a gene 

that corresponds to a phenotype and creating small molecules or biologics to modulate 

the genetic target. It has been used for common diseases like hypercholesterolemia with 

the development of PCSK9 inhibitors and for cystic fibrosis, a rare disease resulting 

from mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) gene.40 
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Vertex Pharmaceuticals, a biopharmaceutical company known for conducting drug discovery 

studies for cystic fibrosis, has developed the first genetically validated medication to treat 

the underlying cause of cystic fibrosis rather than manage cystic fibrosis symptoms.41 This 

medication, known as ivacaftor, acts as a potentiator of the CFTR channel targeting patients 

with a G551D gene mutation in the CFTR gene.42 Since this gene was discovered in 1989, 

studies of this gene have led to novel agents like elexacaftor-tezacaftor-ivacaftor (Trikafta), 

which is potent in patients with Phe508del-minimal function genotypes that did not respond 

to CFTR modulator therapies like ivacaftor.40

Current efforts in drug repurposing for rare diseases are often 

serendipitous and patient- family-driven.

The conventional drug discovery pipeline involves target identification and validation 

to detect molecules that may affect a disease state; these phases benefit most from 

bioinformatics and cheminformatics approaches. In the discovery process, preclinical 

research includes in vitro and in vivo efficacy, safety, and pharmacokinetic profiles, followed 

by clinical trials to establish safety and effectiveness in human subjects.43 The development 

of treatments for rare diseases also needs to follow this general workflow. However, there 

need to be additional knowledge-based innovative solutions to accelerate progress depending 

on the disease’s severity and rarity. In many cases, rare disease patients and their families 

undergo a multi-year diagnosis odyssey as data, knowledge, and physicians specializing in 

their conditions are all hard to find.44,45 Researchers and physicians often develop their 

understanding of the disease working with new patients, especially for ultra-rare diseases. 

Parents and rare disease patients have frequently started foundations connecting patients, 

clinicians, and researchers that focus on fundraising to assist with studies that may help 

develop treatments.21,30 The National Organization for Rare Disorders (NORD) (http://

rarediseases.org/) provides recommendations for such organizations.

We briefly review drug repurposing case studies below to highlight the need to develop 

a systematized rare disease drug discovery pipeline. Lessons learned in these efforts can 

be translated into a reliable and reproducible workflow. One of the most famous cases 

is Augusto and Michaela Odone’s story, parents of Lorenzo Odone, who dedicated their 

lives to discovering a treatment for their son’s rare disease, adrenoleukodystrophy (ALD). 

Augusto and Michaela never had any formal medical training, but they found a cure for 

ALD and founded the Myelin Project, a non-profit research organization.46 ALD is a 

genetic disorder that causes the demyelination of neural fibers and degeneration of the 

adrenal gland, resulting in neurological instability and, ultimately, death.47 ALD causes 

the accumulation of saturated, long-chain fatty acids in the brain and adrenal cortex and 

leads to demyelination.47 Augusto and Michaela, with the help of researchers, eventually 

developed a treatment to break down these long-chain fatty acids by extracting acids from 

olive and rapeseed oils. This treatment was termed “Lorenzo’s Oil.” A study published in 

2005 showed that, in some instances, ALD patients could positively benefit from treatment 

with Lorenzo’s Oil that may prevent the progression of the disease.48
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More recently, Prof. Matthew Might, a computer scientist and father of a child with a 

rare disease involving NGLY1 deficiency, had to transition into a specialist in precision 

medicine and drug repurposing to find a treatment for his son’s rare disease. He discovered 

that, due to the NGLY1 deficiency, his son also lacked N-acetylglucosamine, a vital amino 

sugar. Further research proposed that NGLY1 deficiency could potentially be treated with 

endo-β-N-acetylglucosaminidase (ENGase) inhibitors.49 A structure-based screening of a 

drug database and an electrophoretic mobility shift assay revealed that several drugs, 

most notably proton pump inhibitors, could potentially be repurposed to treat the NGLY1 

deficiency.49 These studies provided a direction for drug development and discovery for 

NGLY1 deficiency and possibly suggested a generalizable avenue for drug repurposing for 

rare diseases. Indeed, recent studies in Dr. Might’s group led to developing a systematic 

knowledge mining approach termed mediKanren50 that the researchers have started using 

effectively to propose personalized pharmacotherapy.51

Accelerating drug repurposing for rare diseases.

Drug repurposing is a strategy to identify novel uses for approved or investigational 

drugs beyond the original therapeutic indication.12 Many drugs considered for repurposing 

have already been characterized with respect to their safety and pharmacokinetic profile. 

Therefore, these drugs are less likely to fail in clinical trials than a new molecule. For 

instance, researchers found out-of-pocket clinical costs per approved orphan drug to be 

43% cheaper than non-orphan drugs.52 In addition, the expected reduction in cost and time 

is essential not only to bring therapeutical options faster to patients but also to provide 

accessible treatment for people in economically disadvantaged areas of the world. Moreover, 

exploring a drug for potential repurposing may lead to the discovery of new targets.14 Drug 

repurposing is becoming a more widely used drug development method, with repurposed 

drugs making up about 30% of all drugs approved by the FDA in recent years.53

With recent technological advances, drug repurposing strategies have shifted from 

serendipitous observations to rational, computer-assisted methods.54 Computational 

approaches for drug repurposing include genetic association, pathway mapping, 

retrospective clinical analysis, molecular docking, virtual screening, signature patching, 

and LBD.14 Each of these approaches benefits from large-scale databases made publicly 

available in recent years. Even with technological advances, challenges for drug repurposing 

exist, especially for rare diseases.53 Fewer datasets exist for rare diseases since they have 

smaller markets and are not traditionally pursued by big pharmaceutical companies.11 

However, collaboration among different biotech companies, academia, and private and 

government organizations may streamline the process to compile more information about 

rare diseases to help with treatment development.45

Literature-based discovery presents an exciting way of fueling testable drug repurposing 

hypotheses. Using a bibliometric approach, Baker et al.55 showed that more than 60% 

of all approved drugs and drug candidates (ca. 35,000 molecules) had been studied in 

more than one disease and 189 drugs were each tested in more than 300 diseases. More 

than 30% of approved drugs have been tested during their lifetime for at least one 

additional indication. More recently, we performed an additional bibliometric analysis of 
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drug repurposing for rare diseases.56 In this analysis, we mined PubMed using earlier 

text-mining work57 to identify articles where a chemical entity was described in terms of 

its therapeutic association with a rare disease. We merged the rare disease list available 

in MalaCards58 with all the indications of drugs available in DrugBank59, which classifies 

drugs as approved, experimental (i.e., drugs that are at the preclinical or animal testing 

stage), and investigational (i.e., drugs that are in human clinical trials).60 As of 2021, 

there are more than 600 therapies approved for rare diseases.8 Our analysis integrating 

DrugBank and a combined list of rare diseases compiled from multiple sources showed 754 

approved therapeutics associated with rare diseases (Table 2). This analysis involves drugs 

approved for common diseases in the investigational or experimental stage for rare diseases. 

Therefore, there is a rough estimate of 100–150 therapeutics approved for common diseases 

under investigation for rare diseases. In total, there were 1,421 rare diseases associated with 

these treatments. However, considering that many of the approved treatments only ease these 

diseases’ symptoms, there is a strong need to expand research on developing novel therapies 

for rare diseases.

Many diseases share common targets. For instance, patients with Niemann-Pick Disease 

Type C (NPC), a rare disease, are deficient in either the NPC1 or NPC2 gene. As a result 

of this autosomal recessive genetic mutation, individuals afflicted with NPC cannot transport 

cholesterol or lipids inside of cells. Simultaneously, those with NPC1 gene mutations 

cannot contract filoviruses like Ebola, as NPC1 is integral for cellular entry of filoviruses.61 

There are enumerable potential interactions between genes and phenotypes of common and 

rare diseases. Using computational approaches, a deeper understanding of the biological 

networks and mechanisms underlying health and disease pathophysiology can be achieved.

Figure 1 summarizes major types of, and relationships between, basic and respective 

translational research that enable progress toward clinical intervention to provide care 

to rare disease patients. Key areas of basic research involve genotyping, clinical and 

pharmacological phenotyping, and knowledge mining, including computational modeling 

of biological targets and drug data. The respective translational tools include gene 

therapy, quality of life interventions, and (personalized, or precision) pharmacotherapy 

using repurposed or de novo developed drugs, including biologics. More specifically, the 

identification of rare disease genotypes allows the development of gene therapy medication. 

Establishing shared clinical and/or functional phenotypes between common and rare 

diseases can provide insights to propose both pharmacological and non-pharmacological 

interventions to improve the quality of life of rare disease patients. Computational 

approaches can be employed to connect the co-occurrence of phenotypes between common 

and rare diseases to identify possible novel targets for therapeutical intervention. This 

analysis can also identify approved drugs that can normalize disease phenotypes even at 

the level of individual patients (i.e., offer personalized pharmacotherapy), e.g., shift gene 

expression profile characteristic of the disease to those observed in healthy individuals, 

which can alleviate disease symptoms.

Another opportunity to accelerate the drug discovery and repurposing for rare diseases relies 

on polypharmacology, i.e., the effect observed when a therapeutic agent act on multiple 

targets or disease pathways, is often referred to as an innovative, potentially significant 
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approach to design more effective and safer therapeutic agents for complex diseases.62 

Several marketed drugs have been shown to have polypharmacological activity in cancer 

(e.g., sunitinib) and central nervous system diseases (e.g., clozapine).63 The rationale here 

is that a drug interacting with multiple key targets, with synergistic effects on biological 

pathways linked to a disease, may have higher efficacy at a lower dosage, limiting 

drawbacks arising from using a combination of various drugs. For this reason, multi-target 

drug design is posed as a promising approach for the discovery and development of drugs 

for rare diseases.64 Pierzynowska et al.65 suggested that the development of a therapeutic 

agent acting on multiple targets for several rare diseases may help economically for the 

development of drugs.

Data sources for rare diseases

In recent years, there has been an explosion of different types of data for rare diseases, 

including chemical, biological, and health care data. We summarize several of these sources 

in Table 3. There is an FDA database consisting of 1055 FDA-approved drugs with 

their orphan indications and chemical structures (https://www.accessdata.fda.gov/scripts/

opdlisting/oopd/). A growing number of biomedical databases have added rare diseases 

registries, such as MalaCards58, Pharos66, ClinVar67, the Online Mendelian Inheritance in 

Man (OMIM)68, and others69. The GeneCards database has over 267,000 entries. We have 

examined the data in MalaCards database containing 12,863 rare disease names (many are 

subtypes of the same disease) and found that only about half of those (6,054 diseases) have 

genetic information in GeneCards. While efforts have been made to promote the sharing of 

information between multidisciplinary collaborations70, there is still a need to curate and 

adequately integrate all of this data.71

Many organizations seek to collaborate and integrate data on rare diseases. For example, 

The NORD provides education to patients and caregivers and supports research initiatives 

for rare diseases.21 The Rare Disease InfoHub (https://rarediseases.oscar.ncsu.edu/) portal 

is currently under development to provide information about rare diseases to patients 

and help researchers diagnose patients with rare diseases. The InfoHub addresses the 

critical knowledge gap for rare disease patients described via web scraping, data mining, 

bioinformatics data linkages, and various other computational processes. The InfoHub 

provides its users with: (i) aggregation of disease information about specific conditions from 

various biomedical databases; (ii) access to communities formed around both specific and 

general rare diseases; (iii) biomedical inference tools tailored to specific rare diseases; (iv) 

and access to names and locations of providers and research specialists, including the ability 

to use geographic data to locate therapists. In addition, InfoHub acts as a data platform, 

where it provides inference on drug/disease relationships and others in the community may 

access current data through an application programming interface.

Several translational research centers help driving research and development for rare 

diseases, including the National Center for Advancing Translational Sciences (NCATS) and 

the International Rare Diseases Research Consortium21. NCATS, specifically, has a program 

called the Genetic and Rare Diseases (GARD) Information Center, which aims to help all 

individuals who may be affected by rare diseases, including patients, doctors, researchers, 
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and patient advocates, by providing information about rare disease treatments, clinical trials, 

and other resources.

Another potential source of data for rare diseases is social media. Social media mining, also 

called “social listening,” has been used for pharmacovigilance72 as well as for estimating 

trends in disease outbreaks and symptoms.73 Therefore, it is a potential resource for drug 

repurposing hypotheses. In addition, social media may facilitate communications between 

providers, patients, and families. Data can be collected over social media through online 

surveys and information posted by users can promote fundraising and general awareness 

of rare diseases,34,45 which could bring these disorders to drug developers’ attention 

and identify potential study participants. Using social media to connect individuals with 

rare diseases across the world may expand clinical trial registries and spur research 

breakthroughs like determining the etiology and treatments for rare diseases.74

Data collection, curation, and integration

The growth of data for rare diseases is expected to boost respective computational drug 

discovery and development research. The collection and integration of data from disparate, 

heterogeneous sources create numerous challenges that could impact the content and 

knowledge discovery in the integrated datasets.75 When integrating multiple databases, the 

user must be aware of how to handle database collisions, i.e., when the same entry exists in 

both databases. Additionally, there is always concern over the validity of data. This concern 

can be addressed by data curation focusing on common types of errors found in many 

databases. The most common error is data duplication, which is often caused by differences 

in the naming nomenclature used by different original data sources (e.g., different names 

used for the same drug or the same gene), or it could also be different experimental 

measurements of the same property for the same compound (e.g., specific bioactivity or 

toxicity), or protein, or gene. The specifics of curation will vary based on the type of data 

presented.

The approaches and protocols for biological and chemical curation of chemogenomics 

datasets have been proposed and extensively discussed by our group.71 Briefly, chemical 

structure curation includes several steps, including structural normalization of specific 

chemotypes, such as aromatic and nitro groups, and removal of inorganic salts 

and organometallic compounds. Structural standardization enables chemical duplicate 

identification and removal. In the process, concordance of bioactivity (or any reported 

quantity) and intra- and inter-laboratory variability of the reported properties are examined 

and data from unreliable sources are excluded.

Biomedical knowledge graph databases

In recent years, significant advances in data integration, visualization, and knowledge 

generation have been made through the use of graph databases.76 A traditional relational 

database collects and stores data based on predefined properties. So, an entry in a 

disease database may have information for name, symptoms, prognosis, genes, etc. To 

link databases, unique identifiers of other tables must be added as another column in the 

relational database. At run time, to find links between these databases, both datasets must be 
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searched. On the other hand, graph databases treat linkages between data points as first-class 

objects.76 A data point is mainly defined by the other data points to which it is linked. The 

benefits of this system are evident once datasets grow to the order of billions. For instance, 

searching for which genes are linked to a disease will only require to be executed once. 

Defining an upper-level ontology allows the avoidance of ambiguities and permits better 

knowledge derivation.77

Extracting meaningful information is a topic of particular concern for biomedical graph 

databases. Inferring meaningful relationships between two nodes in a graph could lead to 

new drugs or the discovery of previously unknown mechanisms of action. Unfortunately, 

these inferences are often extremely difficult to find due to the scarcity of data and the 

complexity of possible relationships that could be inferred from the graph.78

Embeddings, or techniques that seek to reduce the dimensionality of a graph by finding 

patterns in data, are particularly useful for database analytics.78 Once embedded, graph 

nodes can then easily be clustered. Clustering methods are unsupervised machine learning 

methods where algorithms are trained without a dependent variable to identify patterns 

in data sets based only on the features. This approach contributes to the identification of 

homogeneous subgroups among a heterogeneous dataset.79 Some well-known clustering 

techniques such as principal component analysis can be employed, but many are too 

computationally demanding to be useful in graphs with millions of data points. Many 

embedding algorithms that scale linearly with the number of nodes have been constructed. 

Of note, Node2Vec produces its embeddings by generating stochastic paths. These paths are 

then used to find a data point that is close to other data points.80 Leveraging these nearest 

neighbor calculations, inferences may be made on how various datapoints are interrelated. 

However, it is essential to acknowledge that the paucity of data in rare diseases may restrict 

the use of this approach.

Bioinformatics

Bioinformatics corresponds to the application of informatics techniques to analyze and 

model biological data.81 It has been estimated that more than 70% of the 6,172 rare diseases 

cataloged in Orphanet are genetic2 and, therefore, bioinformatics is a core application 

science for analyzing and extracting knowledge from these data.82,83 The genetic roots of 

a rare disease can serve as invaluable information for finding a cure or useful therapeutics. 

By way of example, a treatment for spinal muscular atrophy was developed by inserting 

a functional SMN1 gene.37 These types of therapies require an explicit understanding of 

disease/gene relationships. The disease’s genetic roots are uncovered using two methods: 

candidate genome analysis (CGA) and genome scans.84 Candidate genome analysis attempts 

to find an association between a genetic variation and the presence of a disease. The 

apparent issue with this method is that a researcher must have a genetic variance and disease 

before an analysis can be run. This limits the functionality of new hypotheses. The other 

method for relating genetics to disease is whole-genome searches. This entails collecting 

the entire genome of multiple individuals afflicted with the disease, with no preference for 

specific sections of the gene. Once these genomes are assembled, statistical analysis can be 

performed to find areas of the genome that most likely correlate with disease activity. An 
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issue with both methods is that the exact relation of genes to biological function is unknown 

for many genes. The GeneCards database identified only 19,168 genes out of the 332,121 

entries in their database to be associated with diseases.85

Cheminformatics

Cheminformatics is an interdisciplinary field of science that uses computer and information 

science resources to solve chemistry problems.86 More specifically, it deals with (i) 

representation, visualization, manipulation, and processing of chemical structures; (ii) 

organization of chemical structure databases; and, (iii) studies of quantitative structure-

activity relationships (QSAR).86,87

QSAR modeling is a fundamental computational approach widely employed by pharma 

and academia for the discovery of novel compounds with desired properties and for 

those lacking experimental activity. Nowadays, QSAR studies mainly employ machine 

learning algorithms to develop predictive models. The major challenge of applying this 

approach to discovering novel chemical probes for rare diseases is the lack of experimental 

chemogenomics data for most of the conditions.88 However, as data becomes available in the 

literature or in online repositories such as ChEMBL or PubChem, these data can be used to 

develop QSAR models. Once a target is known, and an experimental protocol is established, 

a large amount of data can be produced by applying High Throughput Screening (HTS) 

campaigns.89 Ekins et al.11 summarize several drugs discovered through HTS campaigns, 

such as riluzole, used to treat amyotrophic lateral sclerosis. The genesis of a chemical 

dataset with biological data obtained either from HTS or low-throughput screening may 

allow the development of QSAR models. For instance, after the Ebola virus outbreak, an 

original series of compounds blocking the entry of the Ebola virus into human cells were 

identified.90 Subsequently, Capuzzi et al.91 used this library to generate QSAR models 

and employed virtual screening of more than 17 million compounds. They identified 14 

compounds with IC50 values under 10 μM, including several sub-micromolar inhibitors and 

more than 10-fold selectivity against host cytotoxicity. In another study, a database of FDA-

approved compounds with activity against Ebola92 was used to generate a QSAR model that 

identified compounds to possess in vivo activity in mice93. A recent example from our group 

used repurposing for a rare disease which used published datasets for chordoma to build a 

Bayesian machine learning model that was used to score clinical candidates for testing and 

identified several compounds with promising in vitro activity.94

Health informatics

Health informatics, often called biomedical informatics95, uses computer and information 

science resources to collect, process, analyze, model, and interpret clinical data.96 Data-

driven approaches are posed to help diagnose and develop interventions to address patients’ 

needs better and evaluate the impact of those interventions.97 The diagnosis of a rare 

disease may take several years.98 Patients and physicians might benefit from an integrated 

computational analysis of electronic health records (EHRs) to forecast the diagnosis of rare 

diseases.99 By running queries in the EHR database, it is possible to filter patients meeting 

specific parameters (e.g., phenotypic, laboratory, genotypic, treatment, etc.).100 Furthermore, 

patient registries for rare diseases exist through several consortiums or centers like The 
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Orphan Disease Center (https://orphandiseasecenter.med.upenn.edu/) and Pulse Infoframe 

(https://www.pulseinfoframe.com/). These patient registries are used to collect demographic, 

clinical, laboratory, and outcomes data from patients with rare diseases to help researchers 

better understand rare diseases.

Employing deep learning for rare diseases

Deep learning (DL) refers to any supervised, semi-supervised, or unsupervised machine 

learning system composed of neural networks with multiple layers of non-linear processing 

capable of learning data representations.101 The architecture of this algorithm is represented 

by “neurons” or interconnected nodes that compute input data and release transformed 

output data. DL methods have been around for decades, but overfitting problems and 

data dependency often render them unused.102 In the last decade, DL has become a hot 

topic in biomedical research due to its availability as easier-to-model algorithms and faster 

computers with GPU acceleration, combined with the availability of more extensive data 

sets.103

In particular, DL has become popular in cheminformatics for the generation of QSAR 

models, which, as any other machine learning algorithm, can be used to predict the 

bioactivity of compounds lacking experimental data.17,87 In addition, due to its particular 

approach to learning representations of data with multiple levels of abstraction, DL 

has been employed to help diagnose genetic disorders.104 A phenotype-based machine 

learning system named The Rare Diseases Auxiliary Diagnosis system can help clinicians 

diagnose rare diseases using four diagnostic models.105 More recently, a study reported 

an improvement in rare disease diagnoses by 20–89% by employing a deep convolutional 

neural network trained on more than 17,000 patient images combined with genetic and 

patient data.106 DL can also drive the implementation of precision medicine.107

Integrative mining approaches

Mining of available biomedical data allows knowledge extraction to identify and develop 

new or repurposed drug candidates.55 The underlying biological pathways of diseases 

and potential drug treatments are described primarily in the biomedical literature.108 

Text mining of published studies could confirm connections between drugs, their targets, 

underlying biological pathways, and diseases, including enabling new inferences of such 

connections.109 Swanson’s ABC approach was the first attempt to systematically extract 

novel hypotheses from existing literature.110 The proposed methods look for connections 

between two unlinked concepts, referred to as A and C, through some additional concept, 

called B. By looking at paper citations, Swanson formed links between papers. To ensure 

linkages had not already been hypothesized and debunked, no articles about concept A 

should have cited any papers about concept C. Similarly, no papers about C should have 

cited A. Further processes of ensuring no linkages are discussed in this paper. Examples 

of Swanson’s ABC method have been generated for many diseases, such as Parkinson’s 

disease111 and cancer112. This approach has also been used to elucidate adverse drug 

effects.18
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This method is far from perfect, however. Finding valid candidates for A, B, and C 

is left up to manual curation. As stated, “[the trial and error] search strategy proposed 

is neither a recipe nor an algorithm. Success depends entirely on the knowledge and 

ingenuity of the searcher in forming hypotheses about potential logical connections”.110 

An additional issue comes in the form of the number of connections to explore. As of 2021, 

approximately thirty-two million publications have been published in PubMed, accounting 

for approximately 1015 potential connections.

Inspired by the Swanson’s ABC method, our group designed and built Chemotext113 to help 

users find connections by mining existing biomedical literature. This tool uses every article 

indexed by PubMed with a Medical Subject Headings (MeSH) term. MeSH terms provide 

a systematic summary of the essential topics discussed in the publication. Chemotext’s 

functionality can be viewed as an inverse of Swanson’s ABC method. In Chemotext, the 

user selects two MeSH terms, viewed as concepts A and C, which they seek to connect. 

Chemotext then returns a list of possible intermediate terms, viewable as Swanson Method’s 

B concept. But unlike the Swanson’s method, which disregards B connections that relate 

A-C as already explored and therefore uninteresting, Chemotext weighs interconnected ideas 

higher. Intermediate connections are ranked by the total number of papers, including A, B, 

and C as MeSH terms.

Swanson’s method makes two problematic assumptions: (1) all medical professionals are 

completely up to date on every breakthrough and publication in their field and (2) an 

existing connection between two topics is tantamount to well-known and well-explored 

knowledge. Unfortunately, these two assumptions are very often untrue for large fields with 

thousands of publications per year. Enabling inference and exploration of already-existing-

but-underexplored connections is, thus, a valuable contribution.

To expand Chemotext capabilities, our group at UNC has partnered and collaborated 

with other groups to develop ROBOKOP (Reasoning Over Biomedical Objects linked in 

Knowledge Oriented Pathways)114, an specialized knowledge graph database that develops 

and deploys data science cyberinfrastructure. ROBOKOP generates nodes (biomedical 

concepts) and edges (linkages between the concepts). Various sources must be consulted and 

standardized across fields. These genes, chemicals, and biomedical databases are extracted 

from medical publication abstracts, which could ultimately be used to explore a disease’s 

knowledge landscape and propose interesting new targets.

Graph databases belong to the category of non-relational, or NoSQL, databases.115 This 

unique structure allows storing extensive data with complex interrelationships as nodes 

(objects) and edges (known relationships between objects). ROBOKOP is a recent example 

of a biomedical knowledge graph that was developed utilizing the Neo4J graph database 

management system.114 The underlying system enables users to insert and query stored 

data systemically. By running queries against the established ROBOKOP database, the user 

can request dynamic and complex pattern queries from the database. An example of this 

would be the query “What are the genes associated with chordoma?”. This query will search 

the database for all genes associated with the condition chordoma and find all biological 

processes related to those genes.

Alves et al. Page 13

Drug Discov Today. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All databases suffer from incomplete and incorrect information, especially as our scientific 

knowledge grows and evolves, and Knowledge Graphs are no exception. It is unavoidable 

that errors may occur within a robust graph database leveraging the data from dozens of 

external sources. These errors may come from outdated or false information in primary 

sources. In addition, integrating the sources is challenging due to an incomplete graph 

ontology, which hampers the ability to map all the incoming knowledge. These errors can 

be mitigated in a number of ways. Several algorithms have been proposed to complete 

and correct information within the database.116,117 In addition, it is important to assign 

confidence level to graph edges. These confidence values can be derived from various 

sources, such as experiments or the number of publications supporting an edge.

Case study

To demonstrate the utility of the approaches mentioned above, we have highlighted a 

case study in which we search for novel drug repurposing hypotheses aimed at treating 

chordoma. Chordoma is an umbrella term for carcinomas of the spinal cord. As a whole, 

chordomas represent a unique class of rare diseases, for which there are limited standardized 

treatment protocols established.118 Metformin is an antihyperglycemic drug used to control 

glycemic levels in type II diabetes patients.119 Its use has been investigated to treat multiple 

diseases, including several types of cancer.120 Metformin is currently in clinical trials for 

treating different types of sarcomas121,122 and similar reasoning could be put forward as a 

hypothesis for metformin as a potential treatment for chordoma.

Using the terms “metformin” and “cancer” to query ROBOKOP, we found that there were 

numerous links between this drug and chordoma. To investigate this hypothesis, we first 

queried ROBOKOP for “metformin” and “chordoma”, but no published literature directly 

described these connections. Then, we queried for graphs connecting “drugs” to “genes” to 

“chordoma” in ROBOKOP using the template question “Find a drug to treat chordoma by 
finding treatable diseases sharing genetics”. This query yielded multiple unique subgraphs, 

consisting of various combinations of 21 drugs connected to KIT and TSC1 genes linked to 

“chordoma” in the ROBOKOP database. Still, no direct connection between metformin and 

chordoma was found. The next approach was to query ROBOKOP using a more complex 

question: “What is the clinical outcome pathway for metformin and chordoma?”. Figure 

2 shows the relationships between metformin and chordoma. Figure 2A details multiple 

connections between metformin, genes, pathways, cells, and chordoma. We focused on 

the catalase (CAT) gene as a prime example since it was related to only two types of 

cells (osteoblast and somatic cell). The edges highlighted in Figure 2B provide links to 

publish papers linking the two terms in the nodes. Analyzing these references, we found 

evidence that metformin increases CAT activity in mice without increasing its expression.123 

CAT has shown to be essential for osteoblast growth.124 Chordoma is characterized 

by uncontrolled proliferation and maintenance of undifferentiated osteoblasts and proper 

osteoblast differentiation was found to reduce the development of chordoma cells.125
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Final remarks

Rare diseases are a global phenomenon, with some countries affected more than others 

by distinct rare diseases due to genetic variations between national populations worldwide. 

Therefore, we face a challenge to develop a unifying definition of what constitutes a rare 

disease since the widely used definitions promoted by the United States and the European 

Union are exclusive of their own population. Finding treatments for patients with rare 

diseases is much more severe in developing countries than in the developed world. Even 

though treatments for rare diseases might reach the United States and the European Union 

market, these therapies are likely out of financial reach for other countries until they come 

off patent.

The primary challenges facing rare diseases are related to discovering new treatments and 

making them readily available to patients. Global efforts to address this disparity are needed 

to make drugs available more broadly and cost-effectively. Over the past several decades, 

the scientific community has identified genes associated with many rare diseases, with more 

than 3,000 genes recently mapped against over 4,000 monogenic rare diseases.126 However, 

the number of FDA approved therapies remains very limited, roughly just over 600.8

Drug discovery for rare diseases continues to be challenging due to natural reasons such 

as the uniqueness of each disease, which requires years of focused research, prohibitively 

high cost of drug development, and lack of financial incentives given the small number 

of patients who can eventually benefit from such drugs. Consequently, the discovery and 

development of drugs for these diseases cannot be accomplished without a comprehensive 

approach integrating data and knowledge across genomics, chemogenomics, and EHRs.

The continuing accumulation and integration of such data coupled with the development 

of novel knowledge mining tools such as knowledge graph mining provide hope that at 

least some of the rare disease patients can benefit from drugs approved for other diseases, 

i.e., repurposed drugs. Furthermore, innovative knowledge mining and molecular modeling 

approaches can accelerate the discovery and characterization of novel targets for rare 

diseases and prioritize and expedite the development of respective drug candidates. We hope 

that the ongoing process of accumulating clinical and biomedical data and translating data to 

knowledge and knowledge to action in the form of data-driven and testable drug discovery 

hypotheses will enable the expedited and inexpensive development of new therapeutics for 

rare diseases in the near future. This challenge should not be left to the next generation of 

scientists. There is a huge opportunity to move the field and make scientific discoveries that 

can potentially make a remarkable impact on the lives of people suffering from rare diseases.
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Figure 1. 
Key types of interrelated basic and translational research to enable clinical interventions for 

rare disease patients.
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Figure 2. 
Knowledge graph illustrating the relationship of metformin and chordoma. A) Complete 

knowledge graph of the ROBOKOP query showing multiple relationships between 

metformin, genes, cells, and chordoma (https://bit.ly/3w3gNG6). B) Putative clinical 

outcome pathway linking metformin and chordoma showing that metformin increases CAT 

activity, which is involved in osteoblast differentiation in the musculoskeletal system.
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Table 1.

A summary of approved and investigational treatment modalities for some rare diseases.

Disease State Approved Treatments Investigational Treatments

Multiple sclerosis Ofatumumab (monoclonal antibody)127 Fenebrutinib (small molecule)128

Primary biliary cholangitis Obeticholic acid (small molecule)129 Elafibranor (small molecule)130

Cystic Fibrosis Elexacaftor-tezacaftor-ivacaftor (small molecules)40 Approved CFTR modulators are being studies for non-
approved cystic fibrosis genes.131

Hemophilia Emicizumab-kxwh (monoclonal antibody)132 Valoctocogene roxaparvovec (gene therapy)133

Narcolepsy Pitolisant and Solriamfetol (small molecules)134 FT218, JZP-258, reboxetine, and THN102 (small 
molecules).134

Spinal muscular atrophy Onasemnogene abeparvovec-xioi (gene therapy)37, 
risdiplam (small molecule)135, nusinersen 
(oligonucleotide)136

SRK-015 (monoclonal antibody)137

Osteogenesis imperfecta Bisphosphonates (small molecules)134 Somatropin (growth hormone)27

Sickle cell anemia Hydroxyurea (small molecule)134 LentiGlobin BB305 (gene therapy), ARU-1801 (gene 
therapy)29

Huntington Disease Tetrabenazine (small molecule)134 Cellavita HD (stem-cell therapy)28

Amyotrophic lateral sclerosis Riluzole (small molecule)138 Autologous MSC-NTF cells
(stem-cell therapy)139
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Table 2.

Drugs associated with 1421 rare diseases and their DrugBank label in 2021 found using Abstract Sifter.

Status
Drug modality

Small molecules Biologics

Approved only 350 27

Approved and investigational 335 17

Approved and experimental 18 0

Approved, experimental, and investigational 6 1

Investigational 133 18

Experimental 135 6

Withdrawn 11 0
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Table 3.

A summary of data sources for rare diseases.

Dataset Description URL

FDA Orphan Drug 
Designations and Approvals

Collection of Drugs and their respective FDA Orphan 
Designations.

https://www.accessdata.fda.gov/scripts/
opdlisting/oopd/

MalaCards Database of human diseases, with ontological descriptors, 
associated genes, and other related diseases.

https://www.malacards.org/

Pharos Targets associated with diseases. https://pharos.nih.gov/

ClinVar Collection of gene variations and conditions known to be 
associated with.

https://www.ncbi.nlm.nih.gov/clinvar/

Online Mendelian Inheritance 
in Man (OMIM)

Collection of both human genes and genetic disorders cross-
linked by association.

https://omim.org/

GeneCards Collection of information on genes, including summaries and 
genomics data.

https://www.genecards.org

National Organization for Rare 
Disorders (NORD)

Summary, early signs, and symptoms for rare diseases. https://rarediseases.org/

Rare Disease InfoHub Symptoms of rare diseases, including experts and funding 
opportunities.

https://rarediseases.oscar.ncsu.edu/

Genetic and Rare Diseases 
Information Center (GARD)

Collection of synonyms, summary, and symptoms for rare 
diseases.

https://rarediseases.info.nih.gov/
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