
Decision neuroscience and neuroeconomics: Recent progress 
and ongoing challenges

Jeffrey B. Dennison, Daniel Sazhin, David V. Smith
Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA

Abstract

In the past decade, decision neuroscience and neuroeconomics have developed many new insights 

in the study of decision making. This review provides an overarching update on how the field has 

advanced in this time period. Although our initial review a decade ago outlined several theoretical, 

conceptual, methodological, empirical, and practical challenges, there has only been limited 

progress in resolving these challenges. We summarize significant trends in decision neuroscience 

through the lens of the challenges outlined for the field and review examples where the field has 

had significant, direct, and applicable impacts across economics and psychology. First, we review 

progress on topics including reward learning, explore–exploit decisions, risk and ambiguity, 

intertemporal choice, and valuation. Next, we assess the impacts of emotion, social rewards, 

and social context on decision making. Then, we follow up with how individual differences 

impact choices and new exciting developments in the prediction and neuroforecasting of future 

decisions. Finally, we consider how trends in decision-neuroscience research reflect progress 

toward resolving past challenges, discuss new and exciting applications of recent research, and 

identify new challenges for the field.
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1 | INTRODUCTION

Decision neuroscience and neuroeconomics seek to identify the neural processes that 

underlie decision making (Beck et al., 2008; Glimcher et al., 2009), particularly the 

subjective value of rewards (Levy & Glimcher, 2012), the uncertainty of different outcomes 

(Ma & Jazayeri, 2014), and how people make interpersonal decisions (Hackel & Amodio, 

2018). Although the terms “neuroeconomics” and “decision neuroscience” have been used 

interchangeably in the literature, we use the latter term throughout this review for greater 

clarity and breadth.

The field of decision neuroscience advanced quickly in its early years, identifying many 

brain regions involved in the valuation of rewards and social decisions. Despite the early 

advances of decision neuroscience, our initial review in 2010 identified several key questions 

and challenges that limited the field (Smith & Huettel, 2010). For example, how can we 

reconcile the frameworks of decision and cognitive neuroscience? What issues may require 

advancements in the techniques and technology of neuroscience? How can we integrate and 

link findings from different species and methodologies? Other challenges can even come 

from outside the laboratory, preventing meaningful impacts on people’s lives. For example, 

are neuroscientific results convincing enough to meaningfully contribute to economic 

policy? Taken together, these questions—which are centered on theoretical, methodological, 

and practical challenges—highlight critical considerations for the interdisciplinary field of 

decision neuroscience.

This review provides an overarching update on how the field has advanced since our 

initial review and identifies the varying degrees of progress made toward addressing these 

challenges. We extend on the original Smith and Huettel review to include literature 

from the past decade of reward prediction error, reward anticipation, risk, and ambiguity, 

explore–exploit choices, temporal discounting, emotional and social decision making, value 

comparison, and recent advances in understanding individual differences. We focus on new 

Dennison et al. Page 2

Wiley Interdiscip Rev Cogn Sci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developments to models, theories, methods, and concepts of value-based decision making 

that have made the greatest impact over the last 10 years. This approach may overemphasize 

recent trends and methods (e.g., human fMRI); however, it helps us to characterize how 

efforts have been spent and the incentives in the field of decision neuroscience. While there 

have been advances in value-independent and perceptual decision making related to sensory 

representation (Yeon & Rahnev, 2020), motor decisions, and option selection (Ota et al., 

2020; Parvin et al., 2018), we concentrate on choices related to value, social context, and 

emotion. After reviewing recent trends in decision neuroscience, we conclude our summary 

with a focus on recent research assessing individual differences. Here we reflect on decision 

making as a spectrum of behaviors and how they are related to demographic, developmental, 

and clinical variables. Finally, we consider how these recent trends reflect progress made on 

various theoretical, conceptual, methodological, empirical, and practical challenges (Huettel, 

2010; Smith & Huettel, 2010) in decision neuroscience. We argue that the field has achieved 

considerable and direct impacts across economics and psychology.

2 | VALUE: FROM REWARD LEARNING TO VALUE COMPARISON

Much of the early work in decision neuroscience had focused on reward learning, the 

explore–exploit dilemma, risky decisions, temporal discounting, and valuation. Earlier 

advances before 2010 had identified many of the brain regions involved in these processes. 

Meta-analyses have since confirmed the robust involvement of regions including the ventral 

striatum (VS), and the ventromedial prefrontal cortex (vmPFC) during different aspects 

of decision making such as valuation (Bartra et al., 2013; Clithero & Rangel, 2014), 

reward learning (Chase et al., 2015), reward consumption, and anticipation (Diekhof et 

al., 2012). We will review how the theories and constructs underlying these problems 

have progressed over the past decade. To help orient readers to the brain regions that are 

repeatedly mentioned throughout the review, we provide a statistical map describing the 

regions consistently involved in value-based decision making (Figure 1; (see Poldrack et al., 

2012 for details).

2.1 | Reward learning

The process of using feedback through positive and negative reinforcement, described as 

reward learning, is a fundamental component of value-based decision making. Simple 

reward learning involves calculating the difference between expected and observed 

outcomes. This difference between expected and observed outcome values is encoded 

through dopamine activity as reward prediction errors (RPE; Cannon & Bseikri, 2004; 

Watabe-Uchida et al., 2017; Wise, 1980). While reward learning is a well-established 

discipline, there have recently been several substantial advancements. Specifically, three 

major trends in reward learning during the past decade include research on biases in the RPE 

signal, investigating the role of the hippocampus and episodic memory in reward learning, 

and distinguishing between model-based and model-free learning.

Advances in reward learning research over the last decade have focused on teasing apart 

different influences on positive (better than expected) and negative (worse than expected) 

learning rates. A consistent set of results reflecting greater positive than negative learning 
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rates led to the interpretation of an optimism bias in reward learning (den Ouden et al., 2013; 

Niv et al., 2012; Sharot & Garrett, 2016). While there is little consensus as to why positive 

prediction errors are more heavily weighted, explanations include the influence of reward 

learning on risk preferences (Niv et al., 2012), exploratory behavior (Garrett & Daw, 2020), 

and psychological defense mechanisms (Sharot & Garrett, 2016). Others have suggested that 

the biases for positive prediction errors are driven by processes similar to sensory adaptation 

(Bavard et al., 2018, 2021). By using simulations, researchers have identified an adaptive 

role for separate learning rates for optimal learning across environments with high and low 

long run averages of rewards (Cazé & van der Meer, 2013). In other words, when the 

long run average of rewards is high, it can be beneficial to underweight negative prediction 

errors. However, when faced with differentially rewarding environments, humans do not 

adapt these separate learning rates as predicted in these simulations (Gershman, 2015). 

Strangely, there still may be a link between the long running rewards in an environment and 

an optimistic RPE. Tonic dopamine has been thought to encode the long-term average of 

rewards (Dayan, 2012; Niv et al., 2007) and studies increasing tonic dopamine through the 

administration of levodopa (L-Dopa) have found that it impairs learning specific to feedback 

that was worse than expected (Sharot et al., 2012). Other research has also shown that RPEs 

take into account feedback from unchosen options (Palminteri et al., 2015). These results 

together suggest a complicated relationship between the learned reward environment and an 

optimistic learning bias.

Understanding positive versus negative learning rates has been an effective tool to explore 

how we integrate learned information. Further, examining learning rates for obtained 

versus forgone outcomes (counterfactual learning; Palminteri et al., 2015) has revealed 

that optimism bias is not present for counterfactual learning (Chambon et al., 2020), and 

instead negative learning rates dominate the updating of counterfactual information. These 

combined results further suggest a general confirmation bias. Exploring traditional cognitive 

biases within the framework of reward learning has helped to alleviate earlier conceptual 

challenges through integrating decision and cognitive neuroscience (Doll et al., 2011; Jarcho 

et al., 2011; Kappes et al., 2020).

To investigate the mechanisms of reward learning in the brain, most reinforcement learning 

research has naturally focused on canonical reward sensitive regions such as the VS, 

vmPFC, and the VTA. However, there have been increased efforts to assess the relationship 

between reward learning and memory, with a focus on the role of the hippocampus 

(Kempadoo et al., 2016; Perez & Lodge, 2018). In particular, the hippocampus can alleviate 

two major problems for common classes of models that rely on RPE. First, the hippocampus 

supports reward learning when the outcome of our decisions are delayed (Tan et al., 2008). 

Second, the hippocampus may help distinguish rewarding elements when learning from 

stimuli with many features (Gershman & Daw, 2017), and generalize how those features 

may be relevant to future outcomes (Gershman & Daw, 2017).

The hippocampus can help to connect actions and outcomes that have been separated over 

time (e.g., associating study habits you have been developing over a long time period with 

better grades; Gershman & Daw, 2017; Tan et al., 2008). Although learning from immediate 

rewards is selectively impaired for individuals with striatal damage, they can still learn from 
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delayed feedback, a skill that is selectively impaired for those with middle temporal lobe 

and hippocampus damage (Foerde et al., 2013). Other work has shown that coordinated 

activity between the hippocampus, orbitofrontal cortex (OFC), and striatal regions (Miller et 

al., 2017; Stoianov et al., 2018; F. Wang et al., 2020) may provide a key link between lower-

level reward learning and the integration of high-level information in episodic memory to 

support future decisions.

Furthermore, the hippocampus can support learning when the outcomes associated with 

a stimulus depend on the combination of features present rather than each feature 

independently. For example, though the yellow feature of lemons and bananas indicates 

ripeness, we know that one fruit will be sour and the other one sweet. In these situations, 

the hippocampus can compute a sparse representation of the stimulus through a process 

of pattern separation and a value can be associated with the computed representation 

rather than each individual feature (O’Reilly & McClelland, 1994). Results from fMRI 

have confirmed this theory showing that patterns of activity in the hippocampus help to 

guide reward learning from stimuli with multiple features (Ballard et al., 2019; Niv et 

al., 2015). Combining fMRI and pharmacological techniques identified functional coupling 

between the midbrain and the hippocampus, which was modulated by dopamine activity 

(Kahnt & Tobler, 2016). This dopamine-dependent coupling was particularly important for 

similarity-based processing and generalizing outcome predictions across stimuli (Kahnt & 

Tobler, 2016). These results suggest that both episodic memory and reinforcement learning 

mechanisms work together to understand real-world outcomes. Both understanding complex 

stimuli with multiple features and properly associating delayed rewards are essential parts 

of real-world learning. Understanding how the hippocampus interacts with value and reward 

learning will be important to properly depict and model these processes.

The third trend within reward learning research in the past decade has attempted to identify 

different kinds of learning, their precise roles in various behavior, and whether different 

kinds of learning are supported by distinct or similar neural structures and functions. In 

particular, there has been considerable effort to understand model-based and model-free 

reward learning. Model-free learning only relies on feedback to update an expected reward 

associated with a stimulus or action and is often associated with habitual learning and 

Pavlovian conditioning. Model-based learning, however, allows learners to form a mental 

model of the environment and make predictions and updates based on their model. Model-

based learning is also often associated with goal-directed behavior (Huys et al., 2014). While 

model-free learning focuses on action-outcome associations, adaptive behavior requires 

humans to understand the interaction of states and actions to produce an outcome (i.e., 

model-based learning; Daw et al., 2011; Kurdi et al., 2019). The two-stage reward learning 

task (Figure 2) has been used ubiquitously to dissociate the weights of model-based and 

model-free learning (Daw et al., 2011). In this task, an initial decision leads to one of two 

possible outcomes where a second decision is made. By observing how individuals treat 

rare and common transitions from the first to second stage, we can estimate how heavily 

individuals rely on each strategy.

One potentially major confound to the original design was that some model-free behavior 

could appear to be model-based learning. Recent evaluations suggest that participant 
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misconceptions of the commonly used two-stage task may falsely appear as model-free 

learning, confounding the interpretations of model-free and model-based learning tasks 

(Feher da Silva & Hare, 2020). Initial alterations to the task to address these shortcomings 

included adding predictors in the analysis to capture the tendency to repeat correct choices 

and to map transition reversals from the first step choice (Akam et al., 2015). Further, Kool 

et al. identified five different factors that reduced the effectiveness of the two-stage task: 

the low distinguishability of second-stage probabilities, too low drift rate of second-stage 

probabilities, probabilistic (rather than deterministic) transition structure between stages, 

possibility of choice in second stage, and low informativeness of outcomes (Kool et al., 

2016). By accounting for these factors, the task better reflects the accuracy-demand tradeoffs 

of model-based and model-free learning. We invite the reader to review Kool et al., 2016 for 

a detailed analysis. Overall, these recent results suggest that a large set of model-based and 

model-free algorithms can mimic model-based actions.

Most learners, however, are thought to use both model-based and model-free learning (Daw 

et al., 2011; Groman et al., 2019). This combined approach suggests that humans need 

to arbitrate between both approaches to learning. Neuroimaging work seems to suggest 

that these signals are balanced through the lateral prefrontal cortex as regions encoding 

model-free values (e.g., putamen and supplementary motor cortex) can be downregulated 

during functional coupling with the lateral PFC (Lee et al., 2014). This mechanism 

may help to arbitrate between model-based and model-free strategies by decreasing the 

influence of model-free learning on future decisions. The lateral PFC has also shown to 

be active during the arbitration of learning through imitation- and emulation-based social 

observational learning strategies (Charpentier et al., 2020), mirroring the involvement in 

model-based and model-free learning. While the lateral PFC seems to be key in both 

accounts, it is unclear whether these are distinct processes or whether the lateral PFC is 

a domain-general integrator of learned information. Finally, the successor representation 

algorithm has proposed a way to balance the flexibility of model-based learning and the 

efficiency of model-free learning without directly arbitrating between the two (Gershman, 

2018). Successor representations rely on stored predictions about future states rather 

than re-computing the value of every decision or using precomputed action values. By 

storing predictions about future states, successor representations can balance tradeoffs 

associated with model-free and model-based learning without requiring either (Momennejad 

et al., 2017). Still, many of the neuroscientific findings, such as work suggesting that 

dopamine encodes a reward prediction error, can be difficult to disambiguate from successor 

representations under which dopamine is thought to signal a similar temporal difference 

error (Gershman, 2018). Future work should aim to identify hypotheses that might falsify or 

disambiguate these classes of models.

Reward learning has been a significant area of research for much longer than the past 

decade. However, we have seen concepts and theories broaden to encompass larger domains 

of human behavior and begun to address the weaknesses of reward learning by investigating 

the interaction between reward learning and episodic memory. Finally, there has been 

considerable research into different types of learning, particularly as they relate to model-

based versus model-free strategies. Reward learning promises to be an exciting area of 
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research for the foreseeable future as it relates to the theoretical and conceptual challenges 

of decision neuroscience.

2.2 | The explore–exploit dilemma

When making sequential choices, we face a decision to exploit our current source of reward 

or explore new options. These decisions are significant in a variety of situations, such 

as choosing how much to invest in a stock or how a firm should allocate its resources. 

Some ways researchers study such situations include explore–exploit tasks, such as n-armed 

bandits (Daw et al., 2006) and foraging tasks (Stephens & Krebs, 1986). Research in the 

preceding decade started investigating the neural correlates of exploration, exploitation, and 

uncertainty in dynamic situations. This left the field with the major challenge of describing 

the trade-off between exploitation and exploration as a single problem addressed by a 

unitary or larger set of mechanisms in the brain (Cohen et al., 2007).

Exploratory behavior has been defined in several ways. One distinction is made between 

directed exploration which is driven by information-seeking and systematically exploring 

one’s options, and random exploration, which is driven by decision noise (Wilson, Geana, 

et al., 2014). Further, exploratory mechanisms and their effectiveness are critically affected 

by uncertainty in the environment, such as the probabilities of payouts of various choices 

in an n-armed bandit task (Daw et al., 2006), or the subsequent patches in a foraging task 

(Stephens & Krebs, 1986). Two major accounts explain explore–exploit behaviors, which 

are the interaction of several neural regions (e.g., dACC, dorsal striatum, lateral PFC, and 

VS; Donoso et al., 2014), or a dual-system driven by opponent processes in frontoparietal 

regions (Mansouri et al., 2017). Since these models seem to be unresolved, understanding 

how subcortical areas interact with frontopolar regions in explore–exploit decisions and how 

environmental uncertainty mediates this process may inform the underlying mechanisms of 

explorative and exploitative choices in a dynamic environment.

Newer evidence has suggested that subcortical areas and those implicated in dopaminergic 

transmission have a more substantial role in explore–exploit behaviors than previously 

realized (Chakroun et al., 2020), which complicates the understanding of what mechanisms 

drive these behaviors. Increased dopamine levels in the striatum promoted explorative 

behavior (Verharen et al., 2019) and influenced participants to leave patches in poor 

environments earlier in a foraging task (Heron et al., 2020). However, lower dopamine 

levels only attenuated directed exploration compared to random exploration (Chakroun et 

al., 2020), suggesting that varying dopamine may have disparate effects depending on the 

exploration strategy implemented. Further, exploitative compared to explorative decision 

making elicits greater activation in the ventral tegmental area (VTA; Laureiro-Martínez et 

al., 2015), suggesting that explore–exploit decisions are associated with reward regions.

Nonetheless, cortical regions also exert a clear and major role in explore–exploit decisions, 

specifically in representing the environmental uncertainty of new options (Badre et al., 2012; 

Navarro et al., 2016; Tomov et al., 2020). Uncertainty in an environment has been reflected 

in neural responses in several ways, with relative uncertainty in the right rostrolateral PFC 

driving directed exploration (Badre et al., 2012), and total uncertainty in the right dlPFC 

driving random exploration (Tomov et al., 2020). When deciding to switch from exploring to 
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exploiting, the activation of the vmPFC seems to impact three major constructs: uncertainty 

(Trudel et al., 2020), evidence accumulation in switching decisions (Blanchard & Gershman, 

2018), and the decision to leave a given patch to explore another in foraging problems 

(McGuire & Kable, 2015). Further, recent transcranial direct current stimulation (tDCS) 

used anodal and cathodal stimulation of the frontopolar cortex influencing participants 

to make slower exploratory and faster exploitative decisions, respectively (Raja Beharelle 

et al., 2015). Another study using the same approach found these changes in behavior 

were specific to directed but not random exploration (Zajkowski et al., 2017) indicating a 

causal relationship in frontopolar regions in modulating explore–exploit choices. Further, 

risk-taking in a sequential decision-making task was represented in the right lateral PFC 

(Holper, ten Brincke, et al., 2014), suggesting that assessing risk may be another feature 

of exploration. Next, exploitative decision making elicits greater activation in the ventral 

tegmental area (VTA) and PFC compared to exploration decisions (Laureiro-Martínez et al., 

2015), suggesting that explore–exploit decision making significantly interacts with reward 

regions. Finally, activation in the temporoparietal junction (TPJ), intraparietal sulcus (IPS), 

and anterior cingulate cortex (ACC) in explorative decision making suggest that explore–

exploit decisions may employ attentional processes, interacting with executive function 

(Laureiro-Martínez et al., 2015). Taken together, these findings reinforce the importance of 

both frontopolar and subcortical regions in explore–exploit decisions.

Recent research has revealed how subcortical regions contribute to reward learning and 

how frontopolar responses of environmental uncertainty contribute to explore–exploit 

decisions. Despite these advances, theoretical models of explore–exploit decisions remain 

unresolved because subcortical regions play a more substantial role than previously realized, 

complicating the ability to establish a unitary set of mechanisms that cut across multiple 

explore–exploit paradigms. This result has led to a more complex representation of explore–

exploit choices which integrate both model-based and model-free representation of the 

environment. Another complicating factor may be the lack of converging evidence over 

different kinds of tasks (von Helversen et al., 2018) and their apparent lack of ecological 

validity due to tasks lacking realistic tradeoffs found in the natural world (Mobbs et al., 

2018). Another unresolved challenge includes understanding how social context affects 

explore–exploit decisions, such as how teams initiate or terminate a project. However, 

current findings together have made significant inroads into understanding explorative 

and exploitative behavior. Future research into explore–exploit problems has promise for 

individuals and policymakers to provide valuable insights into how people explore and 

allocate resources in uncertain and dynamic environments.

2.3 | Risk and ambiguity

It is often challenging to predict the outcome of a decision. When faced with uncertain 

outcomes, decisions can be described in the form of a risky gamble. For example, a patient 

might need to weigh the probability and value of a treatment option. Although there is 

considerable heterogeneity in risk behavior across decision makers, decision neuroscience 

has focused on a small number of models to explain these processes. We focus on 

results from three of these models, including prospect theory (Kahneman & Tversky, 

1979), expected utility theory (Friedman & Savage, 1948; Knutson & Peterson, 2005), 
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and portfolio theory (Markowitz, 1991; Raggetti et al., 2017). The first model, prospect 

theory, describes risk aversion using diminishing returns for subjective value, accounts for 

preference reversals in losses (loss aversion), and weights subjective probabilities to explain 

how people behave in the face of uncertain outcomes (Barberis, 2013). Applying this theory 

allows researchers to estimate subjective value at an individual level with results indicating 

that the vmPFC, lateral PFC (Holper, Wolf, & Tobler, 2014; Schultz, 2010), and VS track 

the subjective value of risky prospects (Blankenstein et al., 2017; Levy, 2017; Levy et al., 

2010). These processes are likely supported by dopamine action in those regions (Castrellon 

et al., 2019; Morgado et al., 2015; Soutschek et al., 2020). Focusing on the differences in 

behavior between subjects with differences in neuroanatomy tends to highlight an alternate 

set of regions including the right posterior parietal cortex (Gilaie-Dotan et al., 2014) and 

amygdala (Jung et al., 2018). While the meaning of this discrepancy awaits further study, 

these differences could indicate potential sources for trait- and state-like risk behavior.

Although loss aversion and probability weighting, like subjective value, seem to be reflected 

in the striatum and vmPFC, there are different regions and neurochemistry that uniquely 

contribute to subjective probability. Specifically, subjective probability, the tendency to 

overweight low probabilities and underweight high probabilities (Kahneman & Tversky, 

1979; Tversky & Kahneman, 1992), is modulated by dopaminergic action (Burke et al., 

2018; Takahashi et al., 2010) and has been reflected in the activation of the dlPFC and PCC 

(Suter et al., 2015; Wu et al., 2011). Neural markers of loss aversion have been reported in 

the insula, and the amygdala (Bartra et al., 2013; Canessa et al., 2013, 2017; Sokol-Hessner 

et al., 2013), and have been related to both norepinephrine (Sokol-Hessner et al., 2015; 

Takahashi et al., 2013) and dopamine (Chen et al., 2020), suggesting that subjective value 

arises through the cooperation of multiple independent mechanisms.

Although we have emphasized prospect theory as the prevailing approach to risk taking 

in decision making, there are alternative models that also explain risk behaviors, including 

expected utility theory and mean–variance frameworks such as portfolio theory. While 

the expected utility is a simple model and explains a wide array of human decisions 

(Burghart et al., 2013), expected utility theory does not predict loss aversion or probability 

weighting. Alternatively, portfolio and other risk theories have focused on the variance 

and skew of risky outcomes (Markowitz, 1991; Raggetti et al., 2017). Both mean–variance 

and expected utility frameworks were difficult to disambiguate with behavior alone and 

it was hypothesized that neural information might give rise to better insights into the 

computations of risk (Tobler & Weber, 2014). However, current decision-neuroscience 

research has been unable to distinguish a leading model as neural signals consistent with 

both expected utility (Gilaie-Dotan et al., 2014; Levy et al., 2011; Lopez-Guzman et al., 

2018) and mean–variance frameworks (Grabenhorst et al., 2019; Holper, Wolf, & Tobler, 

2014; Symmonds et al., 2011) have been often observed within the regions thought to 

typically encode subjective value like VS, aIns, and PFC. Future work may attempt to 

reconcile mean–variance and expected utility approaches or find signals that are inconsistent 

with one of these frameworks.

While many day-to-day decisions involve risky choices, most do not have explicitly defined 

probabilities of success. When a person lacks an explicit description of the probability 
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of an outcome, they are experiencing a condition known as ambiguity (Ellsberg, 1961). 

Individuals tend to prefer options where the probability of different outcomes is known (i.e., 

risk) compared to options where the probabilities are unknown (i.e., ambiguity), often at 

the expense of potential rewards (Jia et al., 2020). Although these types of decisions are 

modeled differently, a large set of research has focused on whether ambiguous decisions 

were processed similarly to risky decisions or are supported by distinct mechanisms (Hsu 

et al., 2005; Huettel et al., 2006). Activation unique to ambiguity, as opposed to risk, has 

been associated with the AMY, PCC, temporal gyrus, and lateral PFC (I. Levy et al., 2010; 

Pushkarskaya et al., 2015). Although most individuals are averse to ambiguity, familiarity 

with a task can greatly decrease this bias (Denison et al., 2018; Grimaldi et al., 2015; 

Hayden et al., 2010; Lempert et al., 2015). One reason experience may reduce ambiguity 

is through reimagining ambiguous lotteries as compound lotteries. Compound lotteries are 

two-stage lotteries where the prize of the first lottery is the opportunity to participate 

in another lottery. For example, an urn might be filled with winning or losing tickets, 

determined by flipping a coin. Although the average urn will have equal amounts of winning 

and losing tickets, individuals seem to be sensitive to the statistical distribution of the urn’s 

composition, often described as the second-order probability (Halevy, 2007; Klibanoff et al., 

2009). Increased sampling of an unknown lottery reduces the variance of these second-order 

distributions and could reflect the relationship between experience and ambiguity aversion. 

Research using fMRI has shown that the PCC and precuneus seem to track the second-order 

probabilities necessary to represent these compound lotteries (Bach et al., 2011; Paul et al., 

2015). This suggests that individuals do represent the complex second-order probabilities 

assumed by these models. A strong relationship between behaviors in the face of ambiguity 

and compound lotteries may provide avenues for linking behaviors under risk and ambiguity. 

However, it is still uncertain whether there is a strong relationship between individual 

preferences for compound lotteries and ambiguous decisions.

2.4 | Discounting and self-control

A hallmark of typical decision makers is their tendency to act impulsively. Within decision 

neuroscience, impulsivity has often been assessed by measuring tradeoffs between current 

rewards and future rewards, referred to as intertemporal choice. Seminal work by George 

Ainslie has demonstrated that people tend to devalue rewards hyperbolically at a consistent 

rate over time (Ainslie, 1975). However, a more recent “as soon as possible” model 

describes this hyperbolic discounting as relative to the soonest possible reward (Kable 

& Glimcher, 2010). While there is debate over which model best represents discounting 

behavior, it remains unclear how variations in self-control best explain intertemporal choices 

(Scheres et al., 2013). A significant question at the end of the preceding decade about 

temporal discounting was whether there was a value signal unique to discounting (Carter 

et al., 2010). Most of the recent advances in the field of intertemporal choice have been in 

acquiring a more nuanced understanding of what drives these decisions.

New findings have established clearer roles of prefrontal and subcortical regions in 

regulating discounting decisions, characterizing the ventral striatum (VS) as the driver of 

impulsivity, dlPFC as the brakes, and the vmPFC as the central arbiter between the two 

with a slight bias toward acting as the brakes. Subcortical structures exert an important role 
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in impulsive decisions, with heightened activity in the dorsal (Hamilton et al., 2020) and 

ventral striatum (de Water et al., 2017) among adolescents predicting impulsive choices. 

Framing intertemporal choice problems sequentially highlights opportunity costs and is 

associated with decreased impulsivity (Magen et al., 2008), which may be due to lower 

activity within the striatum in response to immediate rewards and a reduced activation of 

the dlPFC to facilitate the choice of larger later rewards (Magen et al., 2014). These results 

suggest that the valuation process is significantly modulated by projections from reward-

related subcortical structures. Further, some recent evidence suggests that intertemporal 

valuation converges in the vmPFC, consistent with its characterization as a valuation hub 

in other domains such as explore–exploit dilemmas and empathetic choices described 

elsewhere in the review. For example, discounting tendencies varied in several discounting 

tasks for different age groups but remained consistent when reduced to subjective value 

mapped in the vmPFC (Seaman et al., 2018).

However, recent investigations into the dlPFC and vmPFC in discounting decisions have 

found mixed findings with regard to their roles as the “brakes” and the “central hub” 

respectively. One investigation found that increased temporal discounting was linked to 

greater connectivity between both the dlPFC and the vmPFC; however, it was the increased 

activity in the vmPFC during decisions that were associated with a greater tendency to delay 

rewards (Hare et al., 2014). Stimulation of both the vmPFC (Cho et al., 2015), and dlPFC 

(He et al., 2016; Shen et al., 2016; Xiong et al., 2019) increased delay discounted choices 

for future larger rewards and disruption of the lateral prefrontal cortex increased impulsive 

choices (Figner et al., 2010), suggesting that both the dlPFC and the vmPFC together 

may serve to counter impulsivity. Surprisingly, another investigation found that stimulating 

the dlPFC (Kekic et al., 2014) did not increase delayed discounted choices. Nonetheless, 

the overall direction of recent studies suggests that increased activation of dlPFC is both 

necessary and sufficient to influence the delay of gratification and may be interpreted as 

a mirror to an impulsive drive though the vmPFC may also serve a modulating role in 

impulsivity above and beyond integrating the signal between the VS and the dlPFC. This 

interpretation seemed to be consistent with earlier work suggesting that while the VS was 

more sensitive to the magnitude of a reward, the dlPFC was more sensitive to the delay of 

rewards (Ballard & Knutson, 2009), with increased dlPFC activation associated with shorter 

delays. In sum, the weight of the evidence suggests that the vmPFC still seems to be the 

central hub of the valuation process as it integrates signals from both the dlPFC and VS, 

though it may also exert some “braking” influence on its own account.

The substantial role of the vmPFC in regulating intertemporal choice suggests that this 

brain region has an important role in computing the value of current and future rewards. 

However, integrating research in intertemporal choice, valuation, and emotion suggests that 

the vmPFC calculates value across many types of decisions, diminishing the likelihood 

that there is a value signal unique to discounting choices. Taken together, in the past 

decade researchers have increased the spatial specificity of the vmPFC and the dlPFC, 

their connectivity with reward regions, and developed a causal understanding of these 

relationships which sheds light on the valuation of current versus future rewards.
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2.5 | Valuation

One of the foundational ideas within decision neuroscience is that choice-related processes 

about actions and goods reduce to a single common value (Padoa-Schioppa, 2011; 

Wunderlich et al., 2012). To this end, many fMRI studies have looked for evidence of a 

brain region or network responsible for a “common currency” value signal. Early work 

looked for brain regions that encode subjective value independent of a task (reward learning, 

risk, temporal discounting, etc.) and the type of good (monetary, food, social, information, 

etc.), with results often converging on the vmPFC (Camille et al., 2011; McNamee et 

al., 2013; Smith & Huettel, 2010; Winecoff et al., 2013) and VS (Krastev et al., 2016; 

Tang et al., 2012; Vassena et al., 2014). Although some studies implicated the OFC as a 

possible source of a common currency (Charpentier et al., 2018; D. J. Levy & Glimcher, 

2012; Padoa-Schioppa & Conen, 2017), other accounts suggest that the OFC’s role is 

more specialized in the comparison process or representing the state space for decisions 

(Blanchard et al., 2015; Rudebeck & Murray, 2011; Wilson, Takahashi, et al., 2014).

To identify separate value signals, researchers have assessed the roles of the OFC in 

both social and general value processing, leveraged multivariate pattern approaches, and 

investigated connectivity between regions with mixed results. These methods have found 

patterns of responses that code for multiple values (Kobayashi & Hsu, 2019) and some 

that code specific reward values (Smith et al., 2016; Wake & Izuma, 2017). A multivariate 

analyses of OFC during food-based decisions found that overall subjective value of a 

particular food item is represented in patterns of neural activity in both medial and lateral 

parts of the OFC, despite that only the lateral OFC represented nutritional attribute of 

the item (Suzuki et al., 2017). These findings suggested that signals from lateral OFC 

were integrated into medial OFC to compute a common subjective value of the food item. 

Likewise, the computation of multiple values integrated into a common signal is necessary 

for social decisions (Ebner et al., 2018; Izuma et al., 2008; Rademacher et al., 2010; Wake 

& Izuma, 2017). Though these studies face many difficulties such as identifying a common 

currency when also accounting for nonvalue variables like attention, affect, salience, and 

premotor activation (O’Doherty, 2014; Rigney et al., 2018), these results have identified 

some of the organizing principles that describe how these signals are integrated (Suzuki 

& O’Doherty, 2020). To help overcome these weaknesses, some models represent value as 

an emergent process that incorporates these variables by integrating value from numerous 

regions (Hunt & Hayden, 2017). This value integration process compares between attributes 

of assets under consideration and assigns attribute salience in order to guide choice behavior 

(Hunt et al., 2014). Understanding and characterizing the consistent patterns of competition 

in this hierarchy for real-world stimuli could be a persistent challenge for the field.

Another major vein of research has explored the role of choice on the neural signals of 

value and preference. While some efforts have tried to separate value from choice (Louie & 

Glimcher, 2010), increasing evidence suggests that the act of choosing may itself have its 

own value (Ly et al., 2019). One way this has been studied is by presenting participants with 

agency or no agency situations. Using this approach, when participants were able to make 

their own choices in a gambling game they reported more favorable ratings and showed 

increased VS activation compared to watching a computer make selections for them (Leotti 
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& Delgado, 2014). Strikingly, given the choice between playing themselves and allowing the 

computer to play in their place, participants strongly preferred gambles with the agency even 

when it presented significant financial costs to themselves, with the degree of cost tracked 

by activation of the vmPFC (Wang & Delgado, 2019). Other studies have reported increased 

activation across multiple value-related regions for items that were previously chosen during 

difficult decisions (Jarcho et al., 2011). In particular, activity in the vmPFC, VS, and inferior 

frontal gyrus were associated with increased preference for chosen items after decisions 

were made.

Another method to study the value of choice has been to increase the number of choices 

available to a participant. In these tasks, as the number of choices increased, BOLD 

responses in the VS and ACC followed an inverted U shape suggesting a choice overload 

(Reutskaja et al., 2018). This pattern continued when participants were asked to reconsider 

their choices, initially increasing value for items chosen from a small set but decreasing 

again for items chosen from larger sets, where vlPFC activation reflected the influence 

of choice set size on revaluation (Fujiwara et al., 2017). Another study noted increased 

connectivity between vlPFC and PCC when individuals have more choice, particularly if 

they exhibited greater self-reported reward sensitivity (Cho et al., 2016). The combination 

of results displaying the value of control and choice overload presents an opportunity to 

understand when and why choice modulates value signals.

Another recent major trend has been the application of models that describe sensory 

perception, particularly drift-diffusion models (DDM; Ratcliff, 2002; Smith, 2000) and 

divisive normalization (Heeger, 1992; Louie et al., 2015) to value-based decision making. 

DDM and divisive normalization both draw parallels between valuation and perceptual 

cognition and attempt to explain when and why people have trouble discriminating between 

different values. These models are not mutually exclusive and work has been done to 

investigate how these effects may interact (Otto & Vassena, 2020). Although we hope that 

the following descriptions give the reader an intuition about these two models and why they 

have been so widely applied, the full extent of their contributions in risky decision making 

(Ma & Jazayeri, 2014; Peters & D’Esposito, 2020) and reward learning (Bavard et al., 

2018; Pedersen et al., 2017) cannot be contained here. Over the last decade, both DDM and 

divisive normalization have been applied in similar areas including multi-attribute choice 

(Chang et al., 2019; Fisher, 2017), temporal effects of value (Clay et al., 2017; Zimmermann 

et al., 2018), and investigating the role of attention in decision making (Gluth et al., 2020; 

Webb et al., 2020).

Drift diffusion models describe the valuation process as an accumulation of evidence 

between alternatives. As relative evidence accumulates for an option, it drives a decision 

toward a decision threshold associated with that option. A choice is made when the evidence 

passes the decision threshold. DDM has been used to account for the effects of timing and 

attention in the valuation process (Gluth et al., 2020; Krajbich et al., 2012; Mormann et al., 

2010). The DDM estimates four parameters: the starting point bias (pre-existing preferences 

for one response), the drift rate (evidence accumulation), decision threshold (linked to speed/

accuracy trade-offs), as well as nondecision time (Clay et al., 2017; Lerche & Voss, 2017). 

FMRI results suggest that evidence accumulation in value-based decisions is reflected in 
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the posterior-medial frontal cortex (Pisauro et al., 2017), which exhibits task-dependent 

coupling with the vmPFC and the striatum. Consistent with its role in integrating the 

evidence prior to reaching a decision, this region also exhibits task-dependent coupling 

with the vmPFC and the striatum, brain areas known to encode the subjective value of 

decision alternatives (Polanía et al., 2015; van Vugt et al., 2012). Additionally, stimulation 

of the dlPFC affected the strength of evidence accumulation showing a causal relationship to 

activity in these areas and the accumulation process (Maier et al., 2020).

Decision neuroscience has taken advantage of drift-diffusion and other sequential sampling 

models, extending these processes to examine the role of temporal dynamics (Luzardo 

et al., 2017), attention (Krajbich & Rangel, 2011), and multiple attributes (Fisher, 2021) 

in economic decisions. Through exploring the effects of time on decisions, researchers 

have shown that these processes are remarkably flexible. When given less time to make a 

decision, individuals experience a decreased decision threshold and increased noise in the 

slope of their drift process (Milosavljevic et al., 2010). Other results have indicated that the 

evidence accumulation process can begin at various times in a process guided by attention 

(Maier et al., 2020). Some drift-diffusion models have explicitly included the influence 

of attention in decision making, suggesting that evidence accumulation is amplified when 

certain features are being attended to (Krajbich & Rangel, 2011) and visual attention is 

crucial when choosing among large sets and familiar stimuli (S. M. Smith & Krajbich, 

2019). Incorporating both visual attention and varied temporal dynamics to DDM indicated 

that shifts in visual gaze under increased time pressure predicted more selfish choices among 

participants (Teoh et al., 2020). Taken together, DDM has been effectively applied across 

varying time horizons and in applications assessing the effects of attention on decision 

making.

However, it has been challenging to extend DDM toward decisions where people consider 

two or more attributes underlying the binary choices presented to them. For example, a 

person choosing between two cars may incorporate trade-offs between price, mileage, and 

horsepower when deciding which car they want to buy. While attentional DDM tends to 

model evidence accumulation to decide between binary alternatives (e.g., car one and car 

two), other models have described the evidence accumulation process occurring along with 

the attributes (e.g., price, mileage, and horsepower) instead (Bhatia, 2013; Trueblood et 

al., 2014; Tsetsos et al., 2012). To investigate how people model evidence accumulation 

along with attributes rather than alternatives, researchers introduce additional irrelevant 

alternatives to classic DDM problems, which reduced choice accuracy or even biased 

choices (Chau et al., 2020; Kaptein et al., 2016). Such results suggest that there are a 

variety of contextual distractor effects on decision making (Busemeyer et al., 2019). While 

one recent experiment was unable to reproduce the distractor effect, instead indicating that 

high-value distractors attracted greater attention and slower responses (Gluth et al., 2020), 

a reanalysis of the same dataset employing an alternate model of divisive normalization 

suggested that high-value distractors biased choices through splitting attention in multi-

attribute decisions (Webb et al., 2020). Taken together, DDM has had somewhat mixed 

applications when integrated with multi-attribute models, though has been successfully 

extended when accounting for attention and temporal dynamics.
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Another neural model of value-based decision making includes divisive normalization. The 

divisive normalization model was originally built to describe how the efficient coding of 

visual information affects perception. This model has since been applied to show how 

decision values are neurally coded in a given context relative to all of the options considered. 

Specifically, divisive normalization describes the encoding of an asset’s subjective value 

through a process that re-scales value proportionally to the sum of all values in the current 

choice set plus some constant (Louie et al., 2015). Activity from neural recordings in the 

lateral intraparietal cortex of rhesus monkeys was shown to reflect these normalized decision 

values as the value-related neural activity of each option was proportional to the values of 

other available alternatives (Louie et al., 2011). In addition, context-based fluctuations in 

value coding within the vmPFC and OFC seem to follow the divisive normalization rule and 

can explain a variety of irrational behaviors such as the decoy effect (Louie et al., 2011, 

2013; Rangel & Clithero, 2012). In sum, many argue that divisive normalization is optimal 

for the biological coding of d values across multiple domains (Landry & Webb, 2021; Louie 

et al., 2015; Steverson et al., 2019; Tsetsos et al., 2016).

Recent extensions of divisive normalization, like DDM, have focused on multi-attribute 

choice, temporal effects, and the role of attention. In multi-attribute choice, divisive 

normalization has been linked to the decoy effect and other irrational considerations of 

nonchosen options (Dumbalska et al., 2020; Soltani et al., 2012). This inclusion of irrelevant 

alternatives in the choice process arises from the simple neural dynamics of normalization 

circuits by using a model organism whose neural circuitry has been fully described, 

Caenorhabditis elegans (Cohen et al., 2019). However, normalization not only occurs over 

concurrent alternatives, but also over time. This temporal normalization decreases an item’s 

coded value after recently experiencing high-value items and increases the coded value after 

experiencing many low-value items (Khaw et al., 2017). Lastly, divisive normalization has 

been expanded to incorporate the modulation of choice by attentional processes (Reynolds 

& Heeger, 2009). Some suggested that while attentional modulation may primarily act on 

sensory areas, value-related modulation may drive decision-related activity in regions like 

lateral intraparietal cortex (Louie et al., 2011). However, demonstrations of how reward 

affects early visual processing have suggested that value and top-down attention engage 

overlapping mechanisms of neuronal selection (Stanişor et al., 2013).

The extensions we have described across DDM and divisive normalization help to highlight 

not only the utility of computational models to describe various cognitive processes but also 

the underlying mechanisms of attention and value, which have been of considerable interest 

to decision neuroscience as a whole. Despite advances in understanding the underlying 

processes of valuation, there needs to be further work to thoroughly disentangle the neural 

mechanisms affecting choice. Better descriptions of reward processing mechanisms may 

provide a foundation to understand real-world behaviors. However, despite the critical 

importance of valuation in the decision-making process, other factors such as emotional 

and social influences should be considered to understand human decision processes more 

fully.
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3 | EMOTIONAL AND SOCIAL MODULATORS OF DECISION MAKING

The effects of emotions and social influence on decision making constitute their own 

perennial topics for researchers interested in decision neuroscience, developing into fields of 

affective and social neuroscience respectively. Both domains have made significant inroads 

into understanding behavior during the 2000s to 2010s but were left with questions assessing 

whether cognition and emotion should remain distinct elements in psychology (Dalgleish 

et al., 2009) and how to integrate recent findings of the physiological elements responsible 

for social behavior (Norman et al., 2010). Most of this work has revolved around the 

interaction of value-related regions such as the VS and socially engaged areas (Figure 3) like 

the right-temporoparietal junction (rTPJ). However, the significant overlap of activation in 

regions like the vmPFC suggests that there is a degree of integration of social, value, and 

emotion-related information (Delgado et al., 2016). Nonetheless, recent findings suggest that 

emotional and social related regions such as the ACC and rTPJ can modulate the function 

of value related areas like the vmPFC during social and emotional decisions (Lockwood 

et al., 2015; Morelli et al., 2015; Smith, Lohrenz, et al., 2014; van den Bos et al., 2014). 

Recent research has made significant inroads into characterizing how neural representations 

of emotional and social information modulate the function of canonically cognitive regions 

(Smith et al., 2015). Both conceptual and empirical challenges remain in integrating these 

models with the broader literature; however, questions remain to what degree these factors 

interact with traditional reward processes.

3.1 | Emotion

While in the past, many have viewed emotions and rationality as conflicting processes, 

they are now seen as collaborative aspects of real-life decision making and either may 

augment or interfere with optimal decision making across decision frames (Li et al., 2017). 

Many consequential real-life situations involve making decisions in emotional contexts such 

as decisions under stress, and decisions where one’s choices affect others. As a result, 

there has been extensive research in decision neuroscience into factors such as stress and 

the experience of empathy for others as these factors can modulate preferences related to 

emotional decision-making and substantially affect one’s choices.

In particular, there has been extensive research on how stress modulates seemingly optimal 

decision making, with mixed findings. Acute stress impairs the ability to persist in the 

face of setbacks perceived as uncontrollable (Bhanji et al., 2016), influences people to 

make riskier less valuable choices (Wemm & Wulfert, 2017), contributes to participants 

overexploiting resources (Lenow et al., 2017), and make less model-based decisions when 

their working memory is taxed (Otto et al., 2013). As a result, it has been challenging 

to isolate patterns in how stress affects behaviors, sometimes hindering and at other times 

helping to make more optimal decisions. For example, moderate physiological stress may 

help participants make more optimal choices, augmenting learning to maximize long-term 

rewards from experience (Byrne et al., 2019). These stress effects seem to directly affect 

the core circuitry of reward processing, with regions including the dorsal striatum and 

OFC showing a decreased sensitivity to monetary outcomes in individuals who had just 

performed a cold pressor task (Porcelli et al., 2012). Taken together, these conflicting results 
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suggest that stress may act as a polarizing variable, eliciting stronger behaviors in somewhat 

unpredictable ways across several domains of research.

Assessing how stress affects economic measures of individual differences such as risk, 

uncertainty, and ambiguity aversion has led to mixed results. Although meta-analytic 

methods have suggested that stress increases risk-taking behavior (Starcke & Brand, 2016), 

stress has shown incredibly mixed effects on decision making under uncertainty. Some 

results only show an increased tolerance to ambiguity (FeldmanHall et al., 2016), while 

others find an overall increase in risk taking without ambiguity mediating this effect 

(Buckert et al., 2014). Others still have shown that acute physiological stress has no effect 

on risk attitudes, loss aversion, or choice consistency (Sokol-Hessner et al., 2016). These 

inconsistent results may reflect methodological variability across studies but also a nonlinear 

effect of stress on behavior in general (Peifer et al., 2014; Porcelli & Delgado, 2017; Salehi 

et al., 2010; Schilling et al., 2013). A possible explanation worth investigating is that acute 

stress may increase optimal behavior related to risk, uncertainty, and ambiguity in the short 

term, and results in degradation of optimal choices in longer terms. Taken together, the 

mixed behavioral results present a puzzle for future researchers to link the effects of stress 

on various domains of choice.

Although not an emotion itself, empathy, or the ability to recognize, understand, and share 

the thoughts and feelings of another can substantially impact decision making and ties 

together both social and emotional influences on choice behavior (Lockwood et al., 2016). 

Empathy is associated with generosity (Park et al., 2017), which is both an intuitive link and 

a quantitative measure of behavior. People who acted generously had slower reaction times 

(Hutcherson et al., 2015), greater self-reported happiness (Park et al., 2017) and stronger 

activation in the TPJ, VS (Hutcherson et al., 2015; Park et al., 2017), and the vmPFC 

(Hutcherson et al., 2015). Empathy has been further delineated into affective empathy, 

described as inferring the experience or feeling of others’ emotions, and cognitive empathy, 

which can be described as mentalizing or taking the perspective of another (Kerr-Gaffney 

et al., 2019; Zaki et al., 2012). Empathy requires considerable cognitive effort (Cameron et 

al., 2019) and while people act prosocially, they would rather exert more effort to benefit 

themselves (Lockwood et al., 2017), suggesting people differentiate the value of helping 

others compared to selfishly benefiting themselves. Studies attempting to separate affective 

and cognitive empathy using fMRI have shown that affective empathy was associated with 

activation in the Anterior Insula (AIns; Masten et al., 2011), whereas cognitive empathy 

was associated with activation in TPJ, suggesting two separate mechanisms for altruistic 

behavior (Tusche et al., 2016).

There are several theorized mechanisms that seem to drive cognitive and affective 

empathetic behavior, including mentalizing and emotionally experiencing the pain of others, 

respectively. One mechanism that may impact the mentalizing component of cognitive 

empathy includes value computations for the self versus others in the rostral dmPFC for 

modeled choices, and vmPFC for choices about to be executed (Nicolle et al., 2012). 

Further, watching others experiencing rewards is associated with trait empathy (Lockwood 

et al., 2015) and is encoded in the OFC and ACC in rhesus monkeys (Chang et al., 2013), 

and the ACC (Lockwood et al., 2015), vmPFC, and the VS in humans (Morelli et al., 
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2015). With respect to affective empathy, the driving mechanism may be experiencing the 

pain of others, which is associated with social pain regions such as the dACC and the aIns 

(Masten et al., 2011). Further, greater gray matter density in the aIns was also correlated 

with higher affective empathy scores (Eres et al., 2015). Next, the ACC has been robustly 

associated with various elements of social pain, which include self-reported distress and 

rejection (Rotge et al., 2015; Woo et al., 2014), further reinforcing its importance in the 

experience of affective empathy.

However, one common region that shares activation between vicarious and personal reward 

is the vmPFC (Harris et al., 2018; Morelli et al., 2015), suggesting that value associated 

with most empathic decisions may be computed in this region. Further, participants with 

vmPFC lesions gave less money to those who were suffering (Beadle et al., 2018), indicating 

that the vmPFC may be critical for regulating empathetic behavior. While distinctions are 

still made for cognitive and affective processes, the commonality of the vmPFC in both 

systems indicates that a connectivity-based approach across a gradient of activation may 

be a more accurate representation rather than a dual system of cognition versus emotion. 

Future directions include developing a causal understanding of empathetic mechanisms 

using brain stimulation methods. For example, one unresolved question is whether value 

in the vmPFC moderates affective processes, or is value assessed first, with empathetic 

processes moderating the subsequent value of a decision? Nonetheless, current findings 

indicate a more complex and robust understanding of both cognitive and affective empathy, 

and their respective neural correlates in both cortical and subcortical regions of the brain.

3.2 | Social context

Many decisions occur in social situations, which, along with emotional experiences can 

substantially modulate our choices. Social reinforcement is a potent reward in its own 

right (Distefano et al., 2018; Hackel et al., 2017; Wake & Izuma, 2017) and helps to 

explain human aversion to inequality (Fehr & Schurtenberger, 2018; Tricomi et al., 2010). 

Moreover, the presence of peers influences participant’s choices among adolescents (Powers 

et al., 2018; Somerville et al., 2019; Van Hoorn et al., 2017), which more generally seems 

to be the product of modulated social value signals (Fareri et al., 2012). Applying social 

contexts to decision making adds a crucial dimension to understanding human choices, as 

social situations such as being in the presence of a peer or negotiating at an auction can 

substantially affect behavior in ways that seem normatively inconsistent with economic 

models (Somerville et al., 2019; Van Hoorn et al., 2017). Moreover, while canonical 

decision-making models (e.g., reward learning) can certainly describe social behavior, 

violations of social expectations can attenuate these mechanisms (FeldmanHall et al., 2018), 

suggesting that social processes involve a separate and distinct decision-making system. 

Assessing how social situations affect behavior and how they are neurally represented can 

substantively inform how social context modulates choices such as when people decide to 

trust others.

One important aspect that may explain social behaviors includes how social rewards are 

encoded in the brain, with people deriving unique reward value from social interactions (Lin 

et al., 2012). Studies have shown that peers can enhance impulsivity (O’Brien et al., 2011) 
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and risky choice among adolescents, an effect tied to increased striatal responses to reward 

(Chein et al., 2011). In contrast, the presence of a mother can have the opposite effect, 

reducing risk-taking behavior among adolescents through blunted striatal responses and 

enhanced connectivity between the striatum and vlPFC (Telzer et al., 2015). The VS also 

responds to social rewards, such as social acceptance (Distefano et al., 2018; Wake & Izuma, 

2017), inequity (Tricomi et al., 2010), rewards given to in-group versus out-group members 

(Hackel et al., 2017), and social comparison (Bault et al., 2011). The VS plays a critical 

role in integrating social information by coding social context and rewards (Báez-Mendoza 

& Schultz, 2013). For example, striatal reward value signals are enhanced during rewarding 

experiences shared with a friend (D. Fareri et al., 2012), when self-disclosing to others 

(Tamir et al., 2015; Tamir & Mitchell, 2012), and when receiving positive feedback in social 

interactions (Jones et al., 2011; Simon et al., 2014; Sip et al., 2015). Receipt of social 

reward modulates connectivity between regions comprising reward circuitry (e.g., striatum 

and vmPFC) and social brain regions such as the TPJ (Smith, Clithero, et al., 2014; van den 

Bos et al., 2014).

Socially rewarding situations, such as trusting another person, evoke activation in regions 

that overlap with the default mode network (DMN), including the vmPFC, PCC, and TPJ 

(Acikalin et al., 2017; Mars et al., 2012). Building on these findings, recent work has shown 

that there is enhanced connectivity between the DMN, superior frontal gyrus, and superior 

parietal lobule when experiencing reciprocated trust from close social others (Fareri et al., 

2020). These findings suggest that DMN helps to integrate signals of the relative importance 

of positive experiences with close others and strangers. A meta-analysis identified that social 

conformity converges on activation including the VS, dmPFC, and aIns (Wu et al., 2016). 

Integrating these findings suggests that social contexts are inherently rewarding and that 

social reward circuitry, especially involving the VS, have robust impacts on social behavior 

(Bhanji & Delgado, 2014).

Social situations such as negotiations, or factors like trust and dishonesty, often require 

imagining the thoughts of one’s social partner. This act of mentalizing involves the 

temporal–parietal junction (TPJ) through tasks involving perspective taking (Martin et al., 

2020), with the disruption of the TPJ decreasing the perceived harm of hurting others 

(Young et al., 2010). Further, the TPJ was associated with the discounting of delayed and 

prosocial rewards (Soutschek et al., 2016, 2020), predictive of social actions (Carter et al., 

2012), and even the development of social relationships between players during a public 

goods game (Bault et al., 2015). While many of these findings reflect an increased activation 

in the TPJ for close social others, there have also been reports of reduced r-TPJ activity 

after negative interactions with a friend (Park & Young, 2020). Overall, the weight of recent 

research points toward the TPJ exerting a strong role in social contexts.

However, while the TPJ exerts a strong role in social situations, other regions such as the 

amygdala, VS, and vmPFC also exert an important modulating role in social contexts. For 

example, small self-serving instances of dishonesty can escalate over time, with a resulting 

reduction in amygdala response (Garrett et al., 2016). Moreover, a recent finding suggested 

that the computation of social value, contingent upon social closeness with a partner, in 

the VS and mPFC drive collaboration in a trust task (Fareri et al., 2015). Nonetheless, 
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while manipulations of strategic games with human and computer opponents often show 

increased activation across numerous regions including the vmPFC, and PCC (Kätsyri et 

al., 2013), the TPJ showed the most distinctive social bias (Carter et al., 2012). During 

these social decisions, the TPJ has been shown to functionally couple with the vmPFC 

and influence the encoding of subjective value, with reduced TPJ activation after negative 

interactions associated with smaller decreases in social closeness (Makwana et al., 2015; 

Strombach et al., 2015). Although many investigations point toward the TPJ as necessary for 

social decisions, it remains unclear whether this region computes social-specific information 

or contributes toward generalized perspective taking that is integrated into other processes 

during social decisions.

Further investigations are necessary to investigate the precise role of the TPJ and other brain 

regions in mentalizing, social closeness, and its associations with experiencing trust. Given 

perceived social distance and trustworthiness of others, these factors may affect how people 

interpret the fairness of another person’s actions and how they act in their own self-interest. 

In social interactions and bargaining situations, people have strong attitudes toward fairness, 

which may be explained through inequity version and a perceived value for punishing norm 

violators (Mendes et al., 2018). Rejecting a partner who has acted unfairly in the Ultimatum 

Game has been associated with increased nucleus accumbens activation (Strobel et al., 2011; 

White et al., 2013), indicating that choosing to punish can itself be rewarding and resulted in 

increased activity in the dmPFC and bilateral aIns (Bellucci et al., 2018; White et al., 2013), 

forming elements of a punishment network. Moreover, transcranial direct current stimulation 

to the lateral PFC significantly affected both voluntary and sanction-based compliance in a 

variant of the Ultimatum Game (Ruff et al., 2013), suggesting that compliance may be due 

to fear of punishment.

Another explanation for discrepancies between Dictator and Ultimatum Game choices may 

be due to variability in participant strategic reasoning and potentially mediated by Emotional 

Intelligence (Sazhin et al., 2020). Furthermore, social norms tend to be more strongly 

enforced when a third party was perceived to be treated unfairly, rather than as an individual 

(FeldmanHall et al., 2014), suggesting that the variability in individual choices in the 

Ultimatum Game may incorporate other factors than punishment to enforce social norms. 

However, the aIns was found to be involved in decisions associated with harm done to 

self, whereas the amygdala was associated with punishment done to others (Stallen et al., 

2018). Since unfair choices seem to reliably elicit aIns responses in the Ultimatum Game, 

the fear of punishment seems to at least partially explain this behavior. Nonetheless, a 

reliable finding is that cortical regions are recruited in balancing social rewards, with the 

vmPFC encoding immediate expected rewards in a public goods game as an individual 

utility while the lateral frontopolar cortex encodes the group value (Park et al., 2019). Taken 

together, these results indicate that people delicately balance social rewards and the threats 

of punishment in their choices, and recent research has been able to pinpoint the respective 

neural correlates of these decisional processes.

In summary, recent evidence has converged on several mechanisms to explain decisional 

processes in emotional and social contexts. One common theme is that situations involving 

empathy and trust are interconnected with the VS and vmPFC. These networks are further 
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mediated by the TPJ, aIns, and ACC depending on the emotional or social context. Current 

and future challenges should assess whether these factors should continue to be viewed as 

simply modulators of decision making, or whether they should constitute unique parameters 

in a decision-making model. While these factors have shown robust effects in many studies, 

it remains unclear how much more variance they explain when integrated with canonical 

decision-making models associated with RPE and Valuation. Moreover, it remains unclear 

how strong these effects are outside of the lab. Finally, research into the role of social 

dynamics in decision making has placed a large emphasis on adolescents, especially in the 

realm of peer influence. These sample biases and the reliance on college-aged individuals 

heighten the need for understanding individual and demographic differences in decision 

making. These and future findings could provide a deeper understanding of bargaining 

behavior, which is relevant for understanding behavior in negotiations and auctions, clinical 

research into emotion/social disorders, and can lead to better predictions of social behavior.

4 | INDIVIDUAL VARIABILITY: AGE DIFFERENCES AND CLINICAL 

EXTENSIONS

Understanding individual variability in decision making is a central goal of decision 

neuroscience (Smith & Delgado, 2015; K. S. Wang et al., 2016; Yoon et al., 2012). In 

particular, the field has made progress toward linking typical neurological development 

across the lifespan (Samanez-Larkin & Knutson, 2015) with changes in decision making as 

well as applications to psychopathology (Baskin-Sommers & Foti, 2015). Changes across 

the lifespan have focused on topics from the seemingly hasty decisions of adolescence to 

how decisions may reflect symptoms of mild cognitive impairment associated with old age 

(Lempert et al., 2020). In addition to strides made toward characterizing how responses to 

decision variables change across the lifespan, the field of computational psychiatry (Huys 

et al., 2016) has helped to incorporate decision neuroscience into contemporary models 

of psychiatric or mental disorders. In particular computational psychiatry, has focused on 

formal models of brain function to understand the mechanisms of psychopathology (Friston 

et al., 2014; Gillan et al., 2015; Montague et al., 2012).

Clinical applications hold promise for the practical utility of decision-neuroscience research. 

For example, task-dependent connectivity between the striatum and medial prefrontal cortex 

(MPFC) has been linked to prosocial value (Distefano et al., 2018; Hackel et al., 2017; Sul 

et al., 2015; Wake & Izuma, 2017). Other work has shown that prosocial decisions may 

be linked to gender differences in striatal activation and social preferences (Soutschek et 

al., 2017). Beyond social decision making and social preferences, understanding individual 

variability can also provide insight into how people perceive advertising campaigns 

(Venkatraman et al., 2015), with ventral striatal activation being a relatively strong predictor 

for how different people rate various 30-s TV advertisements. Further, a recent study 

demonstrated that the effect of price on an individual’s expectations and perceptions of 

product quality, referred to as the marketing placebo effect, was linked to gray matter 

density in the striatum and insula (Plassmann & Weber, 2015). A deeper understanding of 

consumer preferences and behavior is of great interest to marketers and may inform more 

effective targeting strategies for advertising campaigns.
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Although these examples illustrate how decision neuroscience has begun to characterize 

individual variability in decision making in healthy adults, a wealth of other studies 

have extended this basic approach to consider variation across the lifespan (Mohr et al., 

2010; Van Duijvenvoorde & Crone, 2013). One important area of research relates to 

adolescent decision making (Bjork & Pardini, 2015; Blakemore & Robbins, 2012; Hartley 

& Somerville, 2015). For instance, an influential early study suggested that adolescent risky 

choice is driven by tolerance to ambiguity (Tymula et al., 2012). Risk-taking behavior in 

adolescents has been linked to heightened reward sensitivity and VS reactivity (Braams et 

al., 2015; Somerville et al., 2010) and also reduced functional connectivity between the 

MPFC and vlPFC (Qu et al., 2015). Building on these findings, recent work has shown that 

increased cognitive control and integration of future-oriented thoughts reduces impulsivity 

in adolescents (van den Bos et al., 2015). Taken together, these findings have generally 

supported a model wherein adolescent risk-taking behavior and impulsivity are characterized 

by an imbalance of prefrontal and subcortical activity (Meyer & Bucci, 2016; Somerville et 

al., 2011) [but see (Romer et al., 2017) for an alternative perspective].

Yet, studies on adolescent decision making have extended these findings by considering 

individual differences in response to social reward and social context (Steinberg, 2008). For 

example, one study demonstrated that participants who showed increased VS responses to 

monetary rewards for their family—a prosocial reward—exhibited decreased risk-taking 

behavior 1 year later (Telzer et al., 2013). Given that much of adolescent risk-taking 

occurs in the presence of peers, other work has examined the role of social context in 

risk-taking behavior. Recent work has demonstrated that individual differences in adolescent 

risk-taking behavior are linked to peer conflict, with greater risk-taking behavior among 

adolescents with more peer conflict and low social support (Telzer et al., 2014). Although 

these studies are beginning to shine a light on the neurocognitive mechanisms that shape 

risky behavior among adolescents, large-scale longitudinal datasets are needed to examine 

individual differences in neurodevelopmental trajectories (Foulkes & Blakemore, 2018).

Some decision-making processes change as people age into middle and older adulthood 

(Mohr et al., 2010). Over the past decade, a host of studies within decision neuroscience 

have sought to characterize age differences in decision making in the laboratory and the 

real world (Samanez-Larkin, 2015). These studies have provided critical insights into the 

cognitive, affective, motivational, and neurobiological factors that shape decision making 

across older adults (Samanez-Larkin & Knutson, 2015). For example, older adults exhibit 

reduced striatal responses to reward prediction errors but not reward outcomes (Samanez-

Larkin et al., 2014). These differences in reward learning appear to be mediated by 

individual differences in frontostriatal white matter integrity (Samanez-Larkin et al., 2012) 

and could also be linked to reduced dopaminergic receptors and transporters (Karrer et al., 

2017). In addition, older adults are generally less risk-seeking than younger adults, though 

there is significant variation across domains and individuals (Josef et al., 2016). Building on 

these results, a recent study demonstrated that reduced temporal discounting in older adults 

is associated with richer perception-based details of autobiographical memory, an effect that 

may be linked to entorhinal cortical thickness (Lempert et al., 2020).
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Importantly, individual differences across older adults have been linked to maladaptive 

decision making and negative real-world outcomes. For example, individual differences in 

striatal responses have been associated with suboptimal decisions in the Iowa Gambling 

Task (Halfmann et al., 2015) and biases toward accepting lotteries with a small chance of a 

large win (i.e., positively skewed; Seaman et al., 2017). Other studies have sought to extend 

these findings beyond the laboratory by examining real-world financial decision making. 

For example, one study demonstrated that financial literacy is associated with increased 

white matter integrity between temporal–parietal brain regions (Han, Boyle, Arfanakis, et 

al., 2016). In addition, other work has examined risk factors for financial exploitation. These 

studies have implicated a host of individual differences that contribute to risk for financial 

exploitation, including enhanced emotional arousal (Kircanski et al., 2018), reduced short-

term memory, and positive affect (Ebner et al., 2018). Financial exploitation in older adults 

has also been linked to mild cognitive impairment (Han, Boyle, James, et al., 2016), reduced 

gray matter in hippocampal and temporal regions (Han, Boyle, Yu, et al., 2016), and altered 

functional connectivity with the default-mode and executive control networks (Spreng et 

al., 2017). Taken together, these observations show that individual differences across older 

adults can have important real-world consequences that can be studied through the lens of 

decision neuroscience.

Beyond age-related differences in decision making, a host of other studies have related 

variability in neural responses to reward and decision making to psychopathology (Zald 

& Treadway, 2017), borderline personality disorder (Hallquist et al., 2018), and substance 

use (Luijten et al., 2017; Mackey et al., 2019), and ADHD (Sonuga-Barke & Fairchild, 

2012). For example, a recent meta-analysis demonstrated that major depressive disorder 

is characterized by distinct abnormalities in reward processing: blunted VS responses and 

heightened OFC responses to reward (Ng et al., 2019). Blunted striatal responses to reward 

are also a hallmark of apathy in patients with schizophrenia (Kirschner et al., 2016), 

which may be tied to accompanying reward learning abnormalities (Butler et al., 2020). 

Other, insights from decision neuroscience have been used to understand other maladaptive 

behaviors (Diehl et al., 2018). For example, a recent study demonstrated that attempted 

suicide is linked to impaired value comparison during the choice process (Dombrovski et al., 

2019). Taken together, these studies illustrate how insights from decision neuroscience can 

be applied to individual differences in health outcomes and maladaptive behaviors.

Characterizing individual differences in decision making and reward processing across the 

lifespan and health outcomes has the potential to lead to improved public policy and clinical 

interventions. Notably, decision-neuroscience research has swayed a recent US Supreme 

Court ruling regarding the criminal culpability of juveniles, resulting in relaxed sentencing 

guidelines and the elimination of the death penalty for most cases involving minors (Cohen 

& Casey, 2014; Steinberg, 2013). In a similar vein, understanding how cognitive changes 

can result in vulnerability to financial exploitation among older adults can lead to improved 

public policies that mitigate risks to these populations (Spreng et al., 2016; Wood & 

Lichtenberg, 2017). Realizing these potential applications will require continued progress 

on understanding individual differences more broadly in decision neuroscience (Dubois & 

Adolphs, 2016; Lebreton et al., 2019).
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5 | BEYOND INDIVIDUAL DIFFERENCES: PREDICTION AND 

NEUROFORECASTING

Characterizing individual variability in brain–behavior relationships establishes an important 

foundation for efforts that seek to predict individual choices and forecast group behavior. 

Over the past decade, studies within decision neuroscience have shown that valuation 

systems including the VMPFC and VS can predict future choices and preferences, even 

in the absence of conscious awareness (Tusche et al., 2010) and overt choice (Levy et al., 

2011; Smith et al., 2010; Smith, Clithero, et al., 2014). In addition, other studies have shown 

that VS responses associated with reward anticipation predict future problematic drug use 

in adolescents (Büchel et al., 2017) and also relapse among individuals with substance use 

disorder (MacNiven et al., 2018). Taken together, these studies illustrate how findings within 

decision neuroscience can be used to predict future preferences and maladaptive behavior 

(Sazhin et al., 2020).

Yet, an open and important question relates to whether neuroscientific tools can access 

“hidden information” beyond traditional behavioral measures that enable forecasting 

aggregate behavior, thereby integrating individual choices to predict effects on larger groups 

or whole economies (Ariely & Berns, 2010; Karmarkar & Yoon, 2016; Smidts et al., 2014). 

This approach—known as “neuroforecasting” (Knutson & Genevsky, 2018) or “brain as 

predictor” (Berkman & Falk, 2013)—has become increasingly popular since our original 

review (Smith & Huettel, 2010). In a seminal fMRI study, researchers asked whether MPFC 

and NAcc responses to unfamiliar music clips related to the eventual cultural popularity of 

the music, as indexed by subsequent sales of albums including those songs over 3 years. 

Strikingly, the researchers found that aggregate sales (i.e., total sales across the population) 

were associated with activation in NAcc but not the vmPFC or behavioral ratings of liking 

(Berns & Moore, 2012). This seminal fMRI study provided the first evidence that neural 

measures can forecast aggregate preferences and behavior above and beyond conventional 

behavioral measures.

Similar neuroforecasting results have been obtained across a range of other contexts. For 

example, MPFC responses to persuasive messages have been shown to predict the success 

of public health campaigns (Falk et al., 2012, 2016). Other studies have shown that 

NAcc responses to advertisements predict eventual success beyond traditional behavioral 

measures (Kühn et al., 2016; Venkatraman et al., 2015). Although these studies provide 

insights into which advertisements might subsequently be successful, it is still essential 

for advertisers to determine which advertisements will be seen and attended to among the 

myriad of competing stimuli. To examine this issue, a recent study used a neuroforecasting 

approach to assess aggregate viewing frequency and duration. Importantly, the researchers 

found that increased NAcc and decreased aIns activation forecasted time allocation (view 

frequency and duration) in an internet attention market (Tong et al., 2020). Building on these 

findings, a related line of neuroforecasting studies has extended these advertising and video 

engagement findings to the domain of microlending and crowdfunding campaigns on the 

internet. Notably, NAcc responses to loan appeals forecast aggregate loan appeal (Genevsky 

& Knutson, 2015). Subsequent work on micro-lending and crowdfunding demonstrated 
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that NAcc responses to funding appeals forecast future funding success, above and beyond 

choices, and affect ratings (Genevsky et al., 2017).

Other studies have successfully used EEG as a tool for neuroforecasting (Telpaz et al., 

2015; reviewed in Hakim & Levy, 2019). Although EEG cannot easily detect signals from 

the VS (Cohen et al., 2011; Seeber et al., 2019), this method is cheaper and more widely 

available than fMRI, potentially making it more applicable in a consumer context (Hakim 

& Levy, 2019). Neuroforecasting studies using EEG have shown that increased inter-subject 

correlations (i.e., the degree to which participants respond similarly) while viewing relevant 

stimuli (e.g., advertisements, movie trailers, etc.) is predictive of subsequent aggregate 

preferences for those stimuli (Barnett & Cerf, 2017; Dmochowski et al., 2014). Likewise, 

other EEG work has found that beta and gamma oscillations can forecast the commercial 

success of movies, over and beyond traditional preference measures (Boksem & Smidts, 

2015).

Although in principle neural data would not improve predictions of aggregate behavior 

with sufficiently large and representative samples, neuroforecasting has been able to provide 

powerful insight into aggregate choice behavior using the samples that are common in 

human subjects’ research and applied efforts in marketing that seek to benefit from small 

focus groups (Knutson & Genevsky, 2018). Taken together these examples illustrate how 

neuroscientific tools such as EEG and fMRI can provide access to “hidden information” that 

enables forecasting of aggregate behavior, sometimes more so than conventional behavioral 

measures. Yet, whether and how neural data can provide predictive information above 

and beyond behavioral measures in other contexts and scenarios remains to be seen. 

For example, recent work has examined the role of emotion regulation in the context of 

neuroforecasting. The researchers examined the extent to which a neural pattern indicative 

of emotion regulation was engaged while participants viewed antismoking messages. They 

found that the expression of this neural pattern tied to emotion regulation moderated the 

extent to which vmPFC and AMY forecasted aggregate behavior (Doré et al., 2019). 

Neuroforecasting efforts could also potentially be improved by capitalizing on distributed 

information across brain regions (Kragel et al., 2018). Although these recent advances 

signal great promise for future neuroforecasting, we believe future work should go beyond 

traditional and conventional behavioral measures tied to choice, effort, or ratings (Lopez-

Persem et al., 2017). For instance, ratings that incur a cost may provide a more honest 

metric of appeal in the population as a whole (Tchernichovski et al., 2019); similarly, latent 

variables derived from computational models may provide more insight into the preferences 

of the general population (Clithero, 2018a, 2018b). While neuroforecasting may prove to be 

a powerful tool for predicting consumer choice, it also opens several ethical considerations 

regarding the proper role of fMRI in these types of applications (for further consideration of 

ethical issues, see “Practical Challenges” subsection).
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6 | ADDRESSING CHALLENGES: RECENT PROGRESS AND FUTURE 

CONSIDERATIONS

After reviewing the most recent influential topics of decision neuroscience, we can judge 

how the field has made progress across the challenges that were originally posed, those 

where limited progress has been made, and what new challenges are now on the horizon. 

These challenges raise important questions for the field and have been centered around 

barriers posed around the development of theory, linking together concepts, growing 

methods, and practical applications of decision neuroscience. What have been the most 

successful links between decision neuroscience and other scientific disciplines? How have 

models for decision making changed and how have the methods of decision neuroscience 

contributed to our understanding? Does the increased descriptive power of the neuroscience 

of value and decision making translate into practically usable policies, either personal or 

organizational? This broad review of the advances and interests of the past 10 years can 

speak to how well the field has risen to meet the theoretical, conceptual, methodological, 

empirical, and practical challenges described at the beginning of the preceding decade.

6.1 | Conceptual and theoretical challenges

Over the last decade, decision neuroscience has developed theories and models of value 

and decision making, helping to reconcile past theoretical challenges, as well as reaching 

across other fields and domains to make considerable progress on the various conceptual 

challenges. Here we will review some of the progress made toward reconciling past 

theoretical and conceptual challenges and discuss the barriers that decision neuroscientists 

still contend with.

One notable theoretical challenge in the past decade was deconstructing the dual-systems 

mindset, where one system is slow but logical and the other efficient but hasty (Huettel, 

2010). This dual-systems mindset has declined in popularity in favor of more multi-

dimensional approaches that better reflect the neural mechanisms of choice at the expense 

of losing the simplicity of dual-systems (Melnikoff & Bargh, 2018). Yet, vestiges of dual 

process theories remain. For example, the distinction between model-based and model-free 

learning is often still presented as opponent processes; however, it is well recognized that 

this characterization is an artificial heuristic because many processes rely on both (Etkin et 

al., 2016). Additionally, research in the last decade has proposed numerous mechanisms for 

integrating and balancing multiple value signals such as uncertainty-based arbitration (Lee et 

al., 2014) and judgment-specific connectivity to ensure dominance of currently task-relevant 

value signals (Weber et al., 2018), which further extend the dual theory process approach 

in model-based and model-free learning. The field of decision neuroscience may be at a 

critical juncture, with some researchers arguing that dual system models still hold utility 

in their broad application if not their empirical descriptiveness (Grayot, 2020). Progress 

on other theoretical challenges such as understanding the “description-experience” gap has 

been less clear. For example, two canonical effects related to the description-experience gap 

appear to be at odds with each other: loss aversion during risky decision making entails 

overweighting negative outcomes; and in contrast, optimism bias during reward learning 

entails underweighting negative outcomes (Canessa et al., 2013; Lefebvre et al., 2017). 
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Attempts to understand the description-experience gap have been limited (Garcia et al., 

2021; Heilbronner & Hayden, 2016; Wulff et al., 2018).

Beyond addressing theoretical challenges, there has been considerable progress toward 

reconciling conceptual challenges and differences between decision and cognitive 

neuroscience. Even for a fundamentally interdisciplinary field, decision neuroscience 

has made a lot of inroads and reached across many sub-disciplines (Levallois et 

al., 2012). Recent work in clinical psychology has especially incorporated decision-

neuroscience research including reward learning, risk aversion, and delay discounting 

toward understanding mental disorders (Huys et al., 2016; Robson et al., 2020; Zald & 

Treadway, 2017). Likewise, neuroeconomic methods have been used to understand human 

development and growth across the lifespan (Samanez-Larkin & Knutson, 2015; Sharp, 

2012; Van Duijvenvoorde & Crone, 2013). As mentioned earlier, the increase of risky 

behavior usually associated with adolescence seems to be driven mostly by ambiguous 

rather than pure risk preferences creating an important way to tie these sub-disciplines 

together (Blankenstein & Crone, 2016; Tymula et al., 2012; van den Bos & Hertwig, 2017). 

Although many concepts of interest between decision making and fields of psychology 

remain to be explored, the previous success that decision neuroscience has had collaborating 

with other disciplines is reassuring for future progress.

6.2 | Methodological challenges

Decision neuroscience both provides notable insights through its sophisticated methods and 

is challenged due to their complexities and inherent limitations. Recent research continues to 

employ a diverse set of methods across human and animal studies. Although animal studies 

remain essential for characterizing the neuronal mechanisms that underlie choice, human 

studies using fMRI and EEG have become more prevalent than they were a decade ago (e.g., 

increased focus on individual differences). In addition to these methods, functional near-

infrared spectroscopy (fNIRS) has been used for measuring brain functioning by measuring 

changes in oxygenated and deoxygenated hemoglobin (León-Carrión & León-Domínguez, 

2012) and provides portability, ease of application, and the low purchase and operation 

costs that can make it an attractive method (Scholkmann et al., 2014). Within decision 

neuroscience, fNIRS has been used to study branding (Krampe et al., 2018), risk-taking 

behavior (Cazzell et al., 2012; Holper, ten Brincke, et al., 2014; Holper, Wolf, & Tobler, 

2014), and purchasing behavior (Cakir et al., 2018).

Yet, as discussed in our original review (Smith & Huettel, 2010), it is challenging to 

integrate results across different methods because they measure different aspects of brain 

functioning (i.e., hemodynamic and electrophysiological) at different temporal (milliseconds 

to seconds) and spatial (single cells to millimeters) scales. While these differences continue 

to make it challenging to integrate results across methods, the field has made some limited 

progress in this important area. For example, multimodal EEG-fMRI studies have found 

that reward-related electrocortical responses (i.e., the feedback negativity) are correlated 

with VS and MPFC responses to reward consumption (i.e., win > loss; Carlson et al., 

2011). Similar results have been observed with the P300 event-related potential and reward 

anticipation (Pfabigan et al., 2014). Other studies have begun using fMRI in monkeys, which 
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has helped pinpoint discrepancies between the roles of VLPFC and OFC in value-based 

learning paradigms (Fouragnan et al., 2019; Kaskan et al., 2016).

A second methodological challenge relates to reconciling results across species. Our original 

review noted key differences between human and animal studies (Smith & Huettel, 2010). 

For example, studies using nonhuman primates use liquid rewards and the tasks involve 

choices whose options are presented symbolically and learned over thousands of trials 

(Wallis, 2012). This approach creates a significant challenge for decision neuroscience 

because monkeys can learn value information only through experience (Garcia et al., 

2021). As noted by Garcia and colleagues, this methodological difference may explain 

why monkeys only rarely exhibit similar risk preferences as humans (Garcia et al., 2021). 

There have been efforts to use fMRI with animals to make results to human studies more 

comparable (Fouragnan et al., 2019; Kaskan et al., 2016). However, using fMRI to measure 

BOLD responses in macaque vmPFC has shown a negative relationship between activation 

and subjective value, an effect that is opposite to what is seen in humans (Papageorgiou 

et al., 2017). In addition, some types of studies within decision neuroscience are currently 

limited to humans because individual differences require large samples and neuroforecasting 

requires an aggregate out-of-sample behavior to forecast. Between confounded results and 

training difficulties, it remains a challenge to integrate animal and human findings.

A third methodological challenge is moving from correlational to causal models of decision 

making and reward processing. Much of the work in decision neuroscience relies on 

measuring neural responses and then essentially correlating those responses with variables 

linked to decision making and reward processing. Although animal studies can go beyond 

correlational approaches using techniques that directly manipulate neuronal activity (e.g., 

via microstimulation; Doi et al., 2020) analogous studies using invasive brain stimulation 

in humans are rare and limited to patient samples (Ramayya et al., 2014). Recently, 

however, the inclusion of noninvasive brain stimulation techniques, such as transcranial 

magnetic stimulation (TMS) and transcranial electrical stimulation (TES), in human studies 

are becoming more prevalent (Polania et al., 2018). These studies can help develop causal 

models of decision making and reward processing by selectively modulating activity in 

regions implicated in a given process and assessing changes in behavior. For example, TMS 

applied to the TPJ has been shown to alter social interactions in strategic situations (Hill et 

al., 2017). In addition, TES—which can be applied via direct or alternating currents—can 

also be used to modulate decision making and reward processing. For instance, transcranial 

alternating current stimulation applied over frontoparietal regions selectively disrupts value-

based decision making (Polanía et al., 2015) and reversal learning (Wischnewski et al., 2016, 

2020). Yet, a key problem for noninvasive brain stimulation in humans is in modulating 

deeper, subcortical brain regions such as the striatum and midbrain. While some studies have 

suggested that these subcortical structures can be stimulated by targeting their connections 

with prefrontal cortex (Chib et al., 2013), recent technological developments have indicated 

that subcortical regions can be targeted directly using transcranial focused ultrasound 

stimulation (Folloni et al., 2019). Taken together, these observations highlight how decision 

neuroscience is making progress toward developing causal models of decision making and 

reward processing.
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In addition to electrical and magnetic brain stimulation, recent work has also used other 

approaches to noninvasively modulate brain function and alter decision making. Many of 

these approaches in humans opted for the application of pharmacological methods to make 

causal claims about the effects of specific neurotransmitters (Rogers, 2011). For example, 

manipulating dopamine levels promotes model-based over model-free choice (Wunderlich 

et al., 2012), helps restore reward learning deficits associated with old age (Chowdhury et 

al., 2013), and increase the choice of options involving risky gains but not losses (Rutledge 

et al., 2015). Pharmacological techniques have also been used to manipulate serotonin (den 

Ouden et al., 2013) and norepinephrine (Lempert et al., 2017). While pharmacological 

interventions have demonstrated the causal roles of specific neurotransmitters, they have 

been less popular than imaging techniques, likely due to a stronger interest in identifying the 

structures involved in decision making.

Another key form of neural manipulation has come in the form of neurofeedback, often 

performed with either fMRI or EEG. Neurofeedback studies measure a neural signal, often 

BOLD for fMRI or local field potential in EEG, and present it back to a subject in real-time 

(e.g., in the form of a bar that moves up or down). The subject is instructed to learn to 

increase or decrease this signal on their own to manipulate brain activity. This technique has 

been used to reduce the fear associated with a conditioned stimulus by having participants 

increase patterns of activation related to the conditioned stimulus unpaired to any outcomes 

(Koizumi et al., 2016). Others have shown that neurofeedback, as a supplement to cognitive 

behavioral therapy, can have a positive impact on the implementation of therapy skills 

measured up to 4 weeks later (MacDuffie et al., 2018). Neurofeedback has seen some 

success as a neuroscience method. As opensource tools for neurofeedback (MacInnes et al., 

2020) are developed and shared with the greater community we can expect further adoption 

and refinement of neurofeedback methods.

A final methodological challenge is centered on the interpretation and aggregation 

of neuroimaging results. Over the past decade, methods and approaches within the 

neuroimaging community have significantly improved and have become increasingly 

transparent (Poldrack et al., 2017). Yet, recent work has called attention to two critical 

issues. First, the flexibility of neuroimaging analyses affords a near-limitless array of 

analytical decisions, including different software packages (Bowring et al., 2019) and 

preprocessing pipelines (Carp, 2012). This problem contributes to variability in reported 

results (i.e., thresholded statistical maps) across analyses of a single neuroimaging dataset, 

despite substantial agreement in unthresholded statistical maps (Botvinik-Nezer et al., 

2020). To address this problem, researchers in decision neuroscience are encouraged 

to submit preregistrations (Gorgolewski & Poldrack, 2016; Nosek et al., 2018), share 

thresholded and unthresholded statistical maps (Gorgolewski et al., 2015; Smith & Delgado, 

2017), and use standardized preprocessing and analysis pipelines to help maximize 

computational reproducibility (Esteban et al., 2019; Gorgolewski et al., 2017). Second, 

efforts to characterize individual differences are hampered by small sample sizes (Button 

et al., 2013; Poldrack & Gorgolewski, 2017; Yarkoni, 2009). Although sample sizes have 

been steadily increasing in neuroimaging (Poldrack et al., 2017), efforts to openly share 

standardized neuroimaging data will afford an opportunity to examine novel questions 

related to individual differences (Gorgolewski et al., 2016; Poldrack et al., 2013; Poldrack & 
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Gorgolewski, 2017). Nevertheless, characterizing individual differences is also negatively 

impacted by the poor reliability of neuroimaging signals (Vul et al., 2009). Although 

a recent study demonstrated that some univariate task signals have poor test–retest 

reliability (Elliott et al., 2020), other work has demonstrated that NAcc responses linked 

to reward anticipation have much greater test–retest reliability (Wu et al., 2014). Moreover, 

moving beyond univariate analyses and examining multivariate pattern-based information 

in neuroimaging data can maximize effect sizes (Reddan et al., 2017) and yield significant 

boosts in test–retest reliability (Kragel et al., 2020). Taken together, these observations are 

encouraging: while the neuroimaging community has identified key problems that hinder 

interpretation and aggregation of results, they have also developed improved practices that 

have the potential to significantly strengthen the next decade of neuroimaging results within 

decision neuroscience and beyond.

6.3 | Practical and empirical challenges

One major challenge for the interdisciplinary fields of decision neuroscience and 

neuroeconomics is applying empirical findings in a way that generalizes outside of the 

laboratory and into other disciplines such as economics. Research tackling aspects of 

this challenge have been conducted over the past decade, but recently more findings and 

experiments have started to be used outside of the laboratory. One way to make applicable 

research is through generating biologically plausible models and through the technique 

of mechanistic convergence (Clithero et al., 2008). This method studies behavior that is 

hard to understand through simple observations, correlates it with brain activity, and uses 

these findings to inform a deeper understanding of the behavior observed (Clithero et al., 

2008). Moreover, relating decision-neuroscience concepts to ethological sources may also 

ground research in ways that are more directly applicable to real-world behavior (Mobbs 

et al., 2018). Further, the results from neural forecasting research show that results from 

inside of an fMRI scanner can predict aggregate behaviors outside of the lab (Knutson & 

Genevsky, 2018). Given research that has promise for application outside of the laboratory, 

these findings should use evidence-based practices to follow up with implementation studies 

that can forecast future behavior (Knutson & Genevsky, 2018) and scale up these results 

to determine if they are robust in the real world (Bauer et al., 2015). In sum, using these 

methods, decision neuroscience during the past decade has made numerous inroads toward 

applicability in economics, clinical psychology, and other domains.

At the end of the preceding decade, there was a strong sentiment that neural data was 

a distraction to the field of economics and that behavior alone was both necessary and 

sufficient to confirm or falsify economic theory (Gul & Pesendorfer, 2008). However, 

decision-neuroscience’s applicability to economics has been through reexamining models 

of behavior to ultimately make better predictions. Examples include using mechanistic 

convergence to understand overbidding behavior, which was revealed to be correlated with 

loss signals in the brain and led to increased overbidding when an auction was reframed as 

a loss (Delgado et al., 2008). Using similar techniques, researchers used subjective value 

as a utility signal to predict behavior (Smith, Lohrenz, et al., 2014), solving the free-rider 

problem (Krajbich et al., 2009), and identifying speculative traders (Smith, Clithero, et al., 
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2014). Such methods provide more grounded explanations for asset bubbles and seemingly 

irrational financial decisions among managers (Frydman & Camerer, 2016).

Another means of meeting the practical challenge of applying decision neuroscience toward 

economics is through considering the constraints imposed by neurobiology, leading to the 

development of predictions about choice behavior using biologically plausible models. 

Even well-known decision-making biases such as risk aversion (Khaw et al., 2021), 

the overweighting of small probabilities (Steiner & Stewart, 2016), and decoy effects 

(Woodford, 2020) have been linked to perceptual or cognitive limitations introduced due 

to noisiness in the neural processing of information. Some of these processes have been 

linked to the role of attention. Different formalizations have shown that attention can help 

to trade off the processes of satisficing and information accumulation (Gossner et al., 2021) 

and that attention reflecting an optimal accumulation strategy can reproduce several choice 

biases found in the literature (Callaway et al., 2021).

Another manner biological constraints have been imposed on economic models is through 

considering the need for efficient neural encoding in subjective valuation (Polania et al., 

2018), explaining inconsistent economic choices and preference reversals through naturally 

skewed distribution of neural activity (Kurtz-David et al., 2019). One manner of studying 

valuation uses divisive normalization models and DDM, which are inherently built on 

principles of biological plausibility (Gao & Vasconcelos, 2009; van Ravenzwaaij et al., 

2012). Using DDM can make improved out-of-sample choice predictions (Clithero, 2018a) 

and be an optimal model for value-based choices (Tajima et al., 2016). Further, using 

divisive normalization modeling for multi-alternative decisions can account for violations 

of independence of irrelevant alternatives and other irrational behaviors (Tajima et al., 

2019). Next, the random utility model (Walker & Ben-Akiva, 2002), a common model from 

economics, was reexamined by including decision times. This reexamination showed that a 

random utility model could be rebuilt by starting with a bounded class of accumulation such 

as DDM (Webb, 2019). In sum, these examples highlight how decision neuroscience and 

neuroeconomics have met the practical challenge of using insights and models derived from 

biologically plausible neural models to inform economic theory.

Advances in decision neuroscience have been applied to other fields such as clinical 

psychology and medical decision making (Ferrer et al., 2015; Zikmund-Fisher et al., 2010), 

showing how human heuristics and biases undermine optimal health outcomes. For example, 

patients with slow-growing and low-risk cancer may be better off tracking the progress 

of their condition, however many instead elect for risky surgeries and radiotherapy with 

substantial side effects that can decrease their quality of life (Reyna et al., 2015). Future 

research has great promise to disambiguate clinical pathologies, leading to more targeted 

interventions. For example, the neural signatures associated with downregulating negative 

emotions through reappraisal techniques were associated with increased choices for healthy 

foods (Maier & Hare, 2020; Morawetz et al., 2020), which may affect approaches toward 

treating obesity. By assessing differences in neural reward sensitivity, researchers have been 

able to predict for a vulnerability to either motivational anhedonia or approach-related hypo/

manic symptoms, which have been difficult to differentiate behaviorally (Nusslock & Alloy, 

2017). Such findings may then allow for interventions like noninvasive brain stimulation, 
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which may be able to ameliorate underlying neurological and psychiatric diseases (Polania 

et al., 2018). Taken together, decision-neuroscience research has matured to the point that 

findings are beginning to be applied outside of the laboratory.

While decision neuroscience has made significant inroads demonstrating its utility toward 

findings for the real world, the current landscape has posed practical challenges to ensure 

interpretation and implementation of these insights for the public good. For example, while 

neuroscience is becoming better known and referenced in the media, the overwhelming 

focus of media articles is on “brain optimization” and “brain boosting,” rather than 

recent peer-reviewed neuroscience work (O’Connor et al., 2012). On the other end of the 

spectrum, neuroscience results can artificially create the impression that recent insights 

are immediately ready for policy applications (Weisberg et al., 2015). This disconnect in 

the public’s awareness of neuroscience research can lead to limited success and greater 

difficulty in recognizing and applying relevant results. Further, while neuroscience has 

blossomed into a variety of subdomains, such as neuropolitics (Schreiber, 2011), neuroethics 

(Levy, 2007), neuromarketing (Hammou et al., 2013), neuroaesthetics (Chatterjee & 

Vartanian, 2014), and neurofinance (Miendlarzewska et al., 2019), it remains unclear to 

what degree neuroscience has advanced far enough to provide practical insights in other 

disciplines. For example, the defense team in a murder case attempted to use fMRI as 

mitigating evidence (Hughes, 2010); however, it is debatable to what degree associating 

physiological abnormalities can or should be used as evidence for the lack of culpability. 

Next, fields such as consumer neuroscience can potentially provide incentives for research 

that is dubious for the public good, for example using EEG to assess the efficacy of TV 

messages for political purposes (Vecchiato et al., 2010). However, using similar types of 

research, governments have also moved to create “Nudge Units” aiming to increase election 

participation, charitable giving, and reducing medical prescription errors. As researchers, 

we should question what kind of guardrails could be established to ensure that decision-

neuroscience research is applied responsibly and ethically. Finally, as decision neuroscience 

expands and can better predict individual and group behavior, application of this research 

will have greater practical and ethical implications (Stanton et al., 2017) for researchers, 

participants, policymakers, and for society as a whole.

6.4 | Future challenges

While significant progress has been made, the number of interests and topics studied through 

a decision-neuroscience lens has kept pace with that progress. To accommodate the growing 

breadth of theories and concepts we identify two frameworks to resolve future challenges 

that can be broadly applied rather than identify challenges specific to a topic or theory (e.g., 

describing the neural mechanisms of self-control; Huettel, 2010). Specifically, we focus on 

the axiomatic approach to science and David Marr’s levels of analysis (Marr & Poggio, 

1976), how these frameworks can be applied to identify challenges, and why the field may 

consider adopting these frameworks.

The axiomatic approach to science defines the most basic assumptions that underlie a 

model or theory and rigorously tests those assumptions. Assessing and testing axioms 

develops testable qualitative predictions that must be true for a theory to be plausible. 
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Although testing these axioms can make decision models more tractable lines of research, 

this approach has met only limited adoption (Caplin & Dean, 2008; Rutledge et al., 

2010). Pairing the axiomatic approach with BOLD activation (Rutledge et al., 2010) and 

voltammetry to measure reward-evoked dopamine (Hart et al., 2014) has confirmed that VS 

dopamine can encode RPE signals. However, Rutledge et al. also falsified the possibility 

of RPE within multiple other regions including the vmPFC, yet meta-analyses show that 

correlative approaches consistently report activation in these regions as reward prediction 

errors (Fouragnan et al., 2018; Garrison et al., 2013). Concentrating on the few axioms of 

RPE encoding that are broken in the PFC learning could help us understand why this signal 

seems so prevalent and understand what it is doing during reward learning. The axiomatic 

approach can also help reduce concerns around falsifiability, one of the major touchstones 

of the scientific method (Hempel, 1970; Popper, 1979). Although falsifying neuroeconomic 

models and theories is not a strictly new challenge, many studies within the decision and 

cognitive neuroscience literature are not well-designed to falsify a particular model. For 

example, evidence for common currency often attempts to verify that regions like the 

vmPFC or VS encode multiple varieties of reward. However, to show that two rewards are 

not encoded within the same regions requires an acceptance of the null hypothesis, which 

is problematic in its own right (Edgell, 1995; Frick, 1995; Nichols et al., 2005) [but see 

(Keysers et al., 2020) for a Bayesian solution to this problem]. Increasing progress through 

the identification and testing of axioms that decision processes rely on can create an explicit 

set of goals and open problems by which to measure the success and progress of decision 

neuroscience.

Another framework for resolving future challenges includes David Marr’s levels of analysis 

(Marr & Poggio, 1976). This framework suggests that the goals (computations), rules 

(algorithms), and physical instantiations (implementations) of a behavior must be described 

to truly understand that behavior. The three levels in this framework are characterized 

as computational, algorithmic, and implementational, representing different orders of 

description. This framework has become increasingly popular, used to argue for the 

importance of behavioral work in neuroscience (Krakauer et al., 2017), how we might 

identify specialized social processes (Lockwood et al., 2020), and the success of reward 

learning models (Niv & Langdon, 2016). Each level can present a different challenge across 

the topics of decision neuroscience. For instance, one goal of most decision processes can 

be described as obtaining rewards and avoiding punishments. While some work has posited 

that rewards are defined through their ability to bring about or predict homeostatic balance 

(Sescousse et al., 2013), other work has shown that even when it cannot be acted upon, 

information can be considered valuable or punishing (Levy, 2018). This apparent conflict in 

behavior represents just one of the challenges worth addressing that we can identify by using 

this framework.

7 | CONCLUSIONS

To judge how the field has met the challenges posed in our original assessment, we have 

reviewed some of the most compelling research produced within decision neuroscience over 

the past decade. Recent advances in decision neuroscience have made significant strides 

in resolving past challenges. First, with connectivity-based approaches, the dual-systems 
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mindset has been deconstructed or at least challenged in many popular models such as 

temporal discounting, empathetic decisions, and model-based/model-free learning, and is 

instead viewed through a gradient of activation, mediated by valuation processing in the 

vmPFC. Recent trends to incorporate a variety of individual differences, such as a larger 

diversity of age groups and clinical factors have greatly increased the generalizability of 

neuroscience findings and established composite factors. Finally, these advances have inched 

the field forward to providing better generalizability outside of the laboratory. However, 

significant challenges remain in distinguishing forms of uncertainty, which may be resolved 

through new behavioral and modeling approaches, such as exploring ambiguity through the 

lens of compound lotteries. Further challenges remain in determining the neural basis for 

meta-decision processes, such as assessing cognitive switching over trends in time.

Early work often focused on how human decision making veers from normative and 

prescriptive models of decision making. However, the complexity of human decisions 

and their underlying implementations suggest human processes are not always shortcuts 

or mistakes, but rather mechanisms that grow to fit human needs. The social world 

humans inhabit makes it necessary to consider how we should weigh the value of social 

approval or fairness against options that seem suboptimal from a narrow self-interested 

view. Moreover, as our understanding of choice becomes more nuanced, it will allow us 

to explore ever more complex forms of decision making. For example, many studies of 

risk, uncertainty, and explore–exploit decisions assume a fairly static decision environment. 

Introducing studies that track how the trend of information affects decisions made over 

time may provide more ecologically valid measures of behavior and help us understand 

how choices are made in more dynamic contexts. Next, by observing variations in decision 

making and reward processing, we have been able to identify how these processes can 

become maladaptive and consider potential policies and interventions to remediate these 

negative effects. Finally, findings within decision neuroscience can be used to predict future 

preferences, maladaptive behavior, and inform targeted interventions (Sazhin et al., 2020). 

Overall, the interdisciplinary nature of the field and methodological advances across both 

animal and human work have been a boon to researchers attempting to understand the 

neurobiological underpinnings of choice. Despite decision neuroscience’s maturation as a 

field, many challenges remain unresolved, along with new challenges that have recently 

developed.

Early hopes for understanding the biological foundations of choice, would allow 

neuroscience to help inform specific economic policy and choice theory (Camerer, 2008; 

Schultz, 2008). However, as the field has grown it has had a bigger role in understanding 

the wider lens of maladaptive behaviors. Future research will continue to chip away at the 

theoretical, conceptual, and methodological challenges that arise. However, the continual 

advancement of scientific insight needs to be met by advances in applications to encourage 

human flourishing. To achieve this end, decision neuroscience should ensure that its research 

is reproducible, falsifiable, and augment our ability to scale up applications outside the lab.
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FIGURE 1. 
Brain regions associated with decision making. The association test for an automated 

meta-analysis of value-based decision-making studies provided by the Neurosynth platform. 

Key regions highlighted include the ventral striatum (VS), ventromedial prefrontal cortex 

(vmPFC), dorsal anterior cingulate cortex (dACC), posterior cingulate cortex (PCC), and 

anterior insula (aIns). The figure was generated through Neurosynth by using an association 

test for an automated meta-analysis of value-based decision-making studies
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FIGURE 2. 
General schematic for the two-stage model-based learning task. In the first stage, 

participants choose one of two gray boxes, with a Tibetan character to identify it. Depending 

on the chosen box, participants transition with different probabilities to a second-stage 

state, either the red or the blue state. In this example, each box preferentially transitions 

participants to a particular state (red or blue) with a 70% chance and with the remaining 

chance (30%) to the opposite state. In the second stage, participants choose between two 

boxes (with identifying Tibetan characters) and receive a reward or do not. Each box in the 

second stage has a different reward probability which changes throughout the experiment
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FIGURE 3. 
Brain regions associated with social processes. The association test for an automated 

meta-analysis of social interactions provided by the Neurosynth platform. Key regions 

highlighted include the ventromedial prefrontal cortex (vmPFC), dorsomedial prefrontal 

cortex (dmPFC), ventral striatum (VS), and right temporoparietal junction (rTPJ)
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