Skip to main content
. 2022 May 23;40(Suppl 2):217–229. doi: 10.1007/s40273-022-01143-9

Table 4.

Modelling results for the German EQ-5D-Y value set

Independent variables of the model Latent scalea Rescaledb
Coefficient SD Relative attribute importance (%) Value set
MO2 − 0.1778** (0.0767) 0.1650 (0.1233) 9.2 − 0.0242
MO3 − 0.8627*** (0.1236) 1.0468*** (0.0936) − 0.1175
SC2 − 0.1401** (0.0566) 0.4098*** (0.1359) 11.3 − 0.0191
SC3 − 1.0652*** (0.0849) 0.5188*** (0.1169) − 0.1450
UA2 − 0.6145*** (0.0548) 0.1687 (0.2060) 15.5 − 0.0837
UA3 − 1.4636*** (0.0845) 0.5726*** (0.0919) − 0.1993
PD2 − 0.9820*** (0.0594) 0.0632 (0.0881) 32.7 − 0.1337
PD3 − 3.0772*** (0.1323) 1.4831*** (0.0976) − 0.4190
AD2 − 0.9213*** (0.0581) 0.2160 (0.1664) 31.3 − 0.1254
AD3 − 2.9521*** (0.1220) 1.6490*** (0.0949) − 0.4019
Log-likelihood − 6094
Observations 30,900
Sample size 1030

Numbers in parentheses represent standard errors

AD feeling worried/sad/unhappy, cTTO composite time trade-off, DCE discrete choice experiment, MO mobility, PD having pain/discomfort, SC looking after myself, SD standard deviation, UA doing usual activities

***p < 0.01, **p < 0.05, *p < 0.1

aBased on a mixed logit model, with all parameters modelled as random and normally distributed, using 5000 Halton draws. Coefficients indicate the decrement from level 1 to the respective level

bRescaled using a linear mapping model between the DCE results and the adjusted mean values from the cTTO task