cumA, a Gene Encoding a Multicopper Oxidase, Is Involved in Mn²⁺ Oxidation in *Pseudomonas putida* GB-1

GEERT-JAN BROUWERS,¹* JOHANNES P. M. DE VRIND,¹ PAUL L. A. M. CORSTJENS,¹ PIERRE CORNELIS,² CHRISTINE BAYSSE,² AND ELISABETH W. DE VRIND-DE JONG¹

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 R.A. Leiden, The Netherlands¹ and Flanders Interuniversity Institute of Biotechnology, Department of Immunology, Paracytology and Ultrastructure, Vrije Universiteit Brussel, B-1640 Sint Genesius Rode, Belgium²

Received 21 August 1998/Accepted 15 January 1999

Pseudomonas putida GB-1-002 catalyzes the oxidation of Mn^{2+} . Nucleotide sequence analysis of the transposon insertion site of a nonoxidizing mutant revealed a gene (designated *cumA*) encoding a protein homologous to multicopper oxidases. Addition of Cu^{2+} increased the Mn^{2+} -oxidizing activity of the *P. putida* wild type by a factor of approximately 5. The growth rates of the wild type and the mutant were not affected by added Cu^{2+} . A second open reading frame (designated *cumB*) is located downstream from *cumA*. Both *cumA* and *cumB* probably are part of a single operon. The translation product of *cumB* was homologous (level of identity, 45%) to that of *orf74* of *Bradyrhizobium japonicum*. A mutation in *orf74* resulted in an extended lag phase and lower cell densities. Similar growth-related observations were made for the *cumA* mutant, suggesting that the *cumA* mutation may have a polar effect on *cumB*. This was confirmed by site-specific gene replacement in *cumB*. The *cumB* mutation did not affect the Mn^{2+} -oxidizing ability of the organism but resulted in decreased growth. In summary, our data indicate that the multicopper oxidase CumA is involved in the oxidation of Mn^{2+} and that CumB is required for optimal growth of *P. putida* GB-1-002.

The Mn cycle in nature is strongly determined by the redox state of the metal. Generally, reduced Mn [Mn(II)] forms soluble salts, and oxidized Mn [Mn(III and IV)] precipitates as highly insoluble oxides and oxyhydroxides. Interconversions between reduced and oxidized forms are usually catalyzed by microorganisms, which strongly influence the Mn cycle (20).

Work in our laboratory has focused on the process of bacterial Mn^{2+} oxidation, which is a widespread phenomenon that occurs in many different environments and is catalyzed by a variety of microbial species. Many different oxidation mechanisms are recognized, including indirect mechanisms (which act through changes in the pH or E_h of the environment) and direct mechanisms (which involve the mediation of macromolecules, such as proteins or protein-polysaccharide complexes). The fact that macromolecules are directly involved in Mn² oxidation suggests that this process has a physiological function, but its functional significance remains unclear, even though several possibilities have been suggested. For example, Mn^{2+} oxidation may supply energy for growth (19, 28) or may be involved in scavenging of harmful oxygen species (4, 29), or accumulated Mn oxides may serve as terminal electron acceptors that support anaerobic growth (15, 16, 18). Other possible functions of Mn^{2+} oxidation include improving competition for dissolved Mn^{2+} , prolonging the viability of manganese-encrusted cells (1), and lysing of complex humic substances in order to provide small organic substrates for growth (35). A major difficulty in elucidating the mechanisms and functional

* Corresponding author. Mailing address: Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 R.A. Leiden, The Netherlands. Phone: 31 71 5274707. Fax: 31 71 5274537. E-mail: brouwers@chem.leidenuniv.nl. significance of bacterial Mn^{2+} oxidation stems from the diversity of the species capable of Mn^{2+} oxidation. Common properties and unifying principles that underlie the oxidizing processes were not found until recently.

Recent application of molecular genetic techniques appears to have revealed a common element of the Mn^{2+} -oxidizing systems of two bacterial species. *Leptothrix discophora* SS-1, a freshwater proteobacterium, secretes an Mn^{2+} -oxidizing factor into media (2, 7). A putative *L. discophora* SS-1 operon was identified in which one of the genes, which supposedly encodes a structural component of the oxidizing factor, encodes a protein homologous to multicopper oxidases (13). *Bacillus* sp. strain SG-1, a marine gram-positive spore-forming bacterium, produces spores that are capable of oxidizing Mn^{2+} (16, 33). A sporulation-dependent operon of SG-1 was found to encode, inter alia, a protein homologous to several multicopper oxidases, and transposon mutagenesis of this operon resulted in a non-Mn-oxidizing phenotype (38).

Pseudomonas putida is a freshwater proteobacterial species, and two strains of this species (MnB1 and GB-1) have been shown to oxidize Mn^{2+} (14, 22, 31). When supplied with Mn^{2+} , the cells deposit Mn oxide outside the outer membrane in the early stationary growth phase (31). The oxidation appears to be catalyzed by an enzyme (31). Transposon mutagenesis of these two *P. putida* strains has yielded several mutants that are defective in Mn^{2+} oxidation or in secretion of the oxidizing factor(s) across the outer membrane (8, 10, 17). An analysis of a number of these mutants indicated that cytochrome *c* is involved in the oxidation of Mn^{2+} and that the specific protein secretion pathway is involved in transport of the oxidizing factor.

Analysis of another nonoxidizing transposon mutant of strain GB-1 localized the mutation in a partially sequenced open reading frame (ORF) encoding, inter alia, two consensus Cu²⁺-bind-

TABLE 1. Bacterial strains and plasmids

P. putida strains GB-1	Relevant characteristics ^a	Reference
P. putida strains		
GB-1	Wild type, Ap ^r Cm ^r	11
GB-1-002	Spontaneous mutant of GB-1, Ap ^r Cm ^r Sm ^r	17
GB-1-007	Non-Mn ²⁺ -oxidizing Tn5 mutant of GB-1-002, Ap ^r Cm ^r Sm ^r Km ^r	17
GB-1-010	Site-directed <i>cumB</i> gene replacement mutant of GB-1-002, Ap ^r Cm ^r Sm ^r Km ^r	This study
E. coli strains		
DH5a	$\Delta lacU169$ (F80lacZM15) recA1	34
GJ23	recA derivative of AB1157 + pGJ28	37
Plasmids		
pBR322	ori ColE1, Apr Tcr, narrow host range	6
pBR322::Tn5	ori ColE1, Ap ^r Tc ^r Km ^r , narrow host range	17
pUC19	ori ColE1, Ap ^r , <i>lacI</i> 80d <i>lacZ</i> , narrow host range	40
pPLH7	11.3-kb <i>Eco</i> RI fragment (Km ^r , Tn5) from GB-1-007 cloned in pUC19	This study
pPLH114A+B	<i>Eco</i> RI- <i>Bam</i> HI fragments from	This study
pPLH70	5.2-kb <i>Eco</i> RI fragment containing	This study
pPLH75	5.2-kb <i>Eco</i> RI fragment from pPLH70 containing kanamycin cassette in- serted in <i>Bsa</i> AI site of <i>cumB</i> , cloned in pBR322	This study

^{*a*} Ap^r, ampicillin resistance; Km^r, kanamycin resistance; Tc^r, tetracycline resistance; Sm^r, streptomycin resistance; Cm^r, chloramphenicol resistance.

ing regions (17). This finding suggests that GB-1 and other Mn^{2+} -oxidizing pseudomonads also depend on a Cu^{2+} -binding protein for Mn^{2+} oxidation. In this paper we describe a detailed analysis of the mutation site in the transposon mutant and the effect of Cu^{2+} on the Mn^{2+} -oxidizing activity of *P. putida* GB-1.

MATERIALS AND METHODS

Bacterial strains and plasmids. The bacterial strains and plasmids used in this study are listed in Table 1. *P. putida* GB-1 (which was first described by Corstjens et al. [11]) was kindly provided by K. H. Nealson (Jet Propulsion Laboratory, Pasadena, Calif.). This organism is resistant to ampicillin (17) and chloramphenicol. *P. putida* GB-1-002 is a spontaneous streptomycin-resistant (Sm⁻) mutant of GB-1 (17) that was used to generate transposon mutants with Sm^r as an extra phenotypic marker. The transposon-containing plasmid pBR322::Tn5 was constructed by T. Goosen (Department of Genetics, Wageningen Agricultural University, Wageningen, The Netherlands). This construct does not replicate in *P. putida* GB-1.

Media and culture conditions. *P. putida* GB-1 was grown at room temperature in LD (*L. discophora*) medium as described previously for *L. discophora* SS-1 (7). To measure the effects of copper, nickel, and zinc on growth and/or Mn^{2+} oxidizing activity, CuCl₂, ZnCl₂, and NiCl₂ were added at concentrations ranging from 0 to 100 μ M. Cell growth was monitored by determining the optical density at 600 nm. *Escherichia coli* DH5 α and GJ23 were cultured in Luria-Bertani medium (27) at 37°C. Solid media contained 1.8% (wt/vol) agar (Gibco BRL).

Selection markers were used at the following concentrations: ampicillin, 100 μ g/ml; kanamycin, 50 μ g/ml; tetracycline, 25 μ g/ml; streptomycin, 100 μ g/ml; and chloramphenicol, 50 μ g/ml. **Determination of Mn²⁺-oxidizing activity.** The Mn²⁺-oxidizing activity of

Determination of Mn^{2+}-oxidizing activity. The Mn^{2+} -oxidizing activity of *P. putida* GB-1-002 was determined quantitatively with the redox dye Leucoberbelin blue (LBB) as described previously for *L. discophora* SS-1 (7). LBB is oxidized by Mn with valences of +3 or higher, which results in a blue product. *P. putida* cells were harvested from a liquid culture by centrifugation. They were rinsed once with 1 volume of 10 mM HEPES buffer (pH 7.5). Eventually, the cells were resuspended in 1 volume of 10 mM HEPES (pH 7.5). Oxidation reactions were started by adding MnCl₂ (final concentration, 100 μ M) to equal

amounts of cells or lysate. At regular intervals 100-µl samples were added to 500 µl of LBB. The cell material was removed by centrifugation, and 200-µl aliquots of the supernatants were transferred to a microtiter plate. The absorbance at 620 nm was measured with a Titertek Multiskan apparatus. KMnO₄ was used as the standard. In the LBB assay, 240 µM KMnO₄ is equivalent to 600 µM MnO₂. In all cases, LBB was oxidized only after Mn²⁺ was added to the samples.

All Mn²⁺ oxidation assays were performed at room temperature.

Molecular genetic techniques. Transposon mutagenesis of *P. putida* GB-1-002 was performed as described previously (17). One of the nonoxidizing mutants obtained was designated GB-1-007. An 11.0-kb Tn5-containing *Eco*RI fragment of the genomic DNA of mutant GB-1-007 was cloned in pUC19, resulting in plasmid pPLH7 (Fig. 1). A 5.9-kb *Bam*HII-*Eco*RI fragment and a 5.1-kb *Bam*HII fragment (3.1 kb of Tn5 plus 2.8 kb of *Pseudomonas* DNA and 2.7 kb of Tn5 plus 2.4 kb of *Pseudomonas* DNA, respectively) were cloned in vector pUC19, yielding plasmids pPLH114A and pPLH114B, respectively. The subcloning procedure allowed the nucleotide sequences adjacent to Tn5 to be determined with a primer (5'-CCG-TTC-AGG-ACG-CTA-CTT-GT-3') specific for the inverted repeats of Tn5. Subsequently, sequences were determined by using M13/pUC19 forward and reverse primers and primer walking. A sequence analysis was performed by using automated dideoxy chain termination technology. The resulting nucleotide sequences were analyzed further with programs of the Wisconsin Genetics Computer Group (version 8.1) and the Pseudomonas Genome Project.

Construction, screening of the genomic library of *P. putida* GB-1-002 to select constructs that hybridized with digoxigenin-labeled pPLH7, and complementation were performed as described previously (8, 17). To obtain a *P. putida* GB-1 *cumB* mutant (Fig. 1), the 5.2-kb hybridizing *Eco*RI fragment from one of the constructs selected was cloned in pUC19, resulting in pPLH70 (which was identical to pPLH7 lacking Tn5 [Fig. 1]). A unique *Bsa*AI site in *cumB* was used to insert a 1.2-kb kanamycin cassette (Pharmacia Biotech) after the 3' overhang was removed by using T4 DNA polymerase. The *Eco*RI fragment containing the kanamycin cassette was subcloned in pBR322, resulting in pPLH75. This construct was mobilized to *P. putida* GB-1-002 by using *E. coli* GJ23 as described by Van Haute et al. (37). The *P. putida* GB-1002 *cumB* mutants were selected on the basis of kanamycin resistance (recombination) and chloramphenicol resistance (loss of *E. coli* GJ23). Tetracycline sensitivity was used to select for double recombination events. *cumB* gene replacement was confirmed by PCR by using

Nucleotide sequence accession numbers. The nucleotide sequences determined in this study have been deposited in the GenBank database under accession no. AF086638.

RESULTS

Analysis of the Tn5 insertion site in the nonoxidizing mutant GB-1-007. Transposon mutagenesis of *P. putida* GB-1-002 resulted in several classes of nonoxidizing phenotypes, some of which were defective in secretion of the Mn^{2+} -oxidizing factor and some of which were completely devoid of Mn^{2+} -oxidizing activity (17). One of the latter mutants was designated GB-1-

FIG. 1. Map of the Tn5-containing *Eco*RI fragment from the *P. putida* mutant GB-1-007. The triangle indicates the site of the Tn5 insertion (length of Tn5, 5.8 kb). The open arrows indicate predicted gene locations and orientations. The vertical bars in *cumA* indicate consensus Cu^{2+} -binding regions. The solid arrow-heads indicate the locations of the forward and reverse M15/pUC19 primers and the Tn5 sequence primer. The small vertical arrows indicate restriction enzyme sites used in constructing pPLH7 and pPLH114A+B. Abbreviations for restriction enzymes: E, *Eco*RI; B, *Bam*HI; Bs, *Bsa*AI (site of kanamycin cassette insertion). The *Bam*HI restriction site in the MCS of pUC19 is indicated by B*. The GenBank accession number of the *E. col*i sequence is X61396.

1280	ACG V <-	FGT(S orf:	CGAC S X - X	GCA. K	AGC P	CGC P	CTG A	CCA T	CTA' I	FCG. E	AGT W	GGG. E	AAT. *	AAG'	TTG.	AGC	CAC.	AAG	GGC	GCC
1340	GTA	AGG	CGCC	CCT	TGT	GGŤ	ATC	TGT	TTC	CTG	TGC	TGG	ccc	GGT	CGG	GGT	AAA	ACC	GTG	AAC
1400	ccc	CCA	GCAG	CAG	GCC	GAT	ACA	AGA	CTT	CAC	TTA	ATC'	TTT	CCC.	ATT	TGC	AGG	TGT	ATC	GTΑ
1460	TTC	GCC	CTTO	CAT	CGC	CAG	CCA	ATG	CTG	GCA	GCT	TGA	TTG	CGC.	AGA	ACA	C <u>GA</u>	<u>GG</u> T	ACC	CGC
1520	ACC	GAT	STC	CTT	CAC	CCĢ	TCG	ACA	AAT	GCT	CAA	GGG	сст	CAC	TGG	ССТ	GGT	TGT	GGT	TGG
cum	₽ ->	М	S	F	Т	R	R	Q	М	L	К	G	L	Т	G	L	V	V	V	G
1580	CCT L	<u>GGG</u>	CGCC A	CGG G	TGG G	CGC A	GGC A	GCG R	TTA Y	CTG W	GCT L	GGG G	CAA K	GGT V	CGA E	AGA D	TGA D	CAA N	CGC A	CGG G
1640	CCA H	CGA(D	Y	IGA E	GCT L	GAT I	TGC A	AGC A	GCC P	CCT L	gga D	CGT V	CGA E	ATT L	GGT V	GCC P	GGG G	CTT F	CAA K	GAC T
1700	CGA	GGC	CTGO	GGC	ATT	CGG	CCC	GTC	GGC.	ACC	GGG	TAC	CGA	GCT	GCG	CGT	GCG	CCA	GGG	CAC
	E	A	W	A	F	G	P	S	A	P	G	T	E	L	R	V	R	Q	G	T
1760	CTG	GTT	GCG(GGT	ACG	CTT	CAT	'CAA	CCA	CCT	GCC	GGT	CGA	GAC	CAC	CAT	CCA	TTG	GCA	CGG
	W	L	R	V	R	F	I	N	H	L	P	V	E	T	T	I	H	W	H	G
1820	CAT	CCG	CCTO	GCC	GCT	GGA	аат	GGA	CGG	CGT	GCC	CTA	TGT	CTC	gca	ACT	GCC	AGT	CAA	GCC
	I	R	L	P	L	E	М	D	G	V	P	Y	V	S	Q	L	P	V	K	P
1880	GGG	CGA	GTA	TTT	CGA	TTA	CAA	GTT	CCG	CGT	ACC	GGA	CGC	CGG	CAG	CTA	CTG	GTA	TCA	CCC
	G	E	Y	F	D	Y	K	F	R	V	P	D	A	G	S	Y	W	Y	H	P
1940	GCA	TGT	CAG	CAG	CTC	CGA	AGA	IGCT	GGG	CCG	TGG	CCT	GGT	TGG	GCC	GCT	GAT	CGT	CGA	AGA
	H	V	S	S	S	E	E	L	G	R	G	L	V	G	P	L	I	V	E	E
2000	GCG	CGA	ACC(GAC	TGG	CTT	CCT	TCA	TGA	GCG	CAC	GCT	GAG	CCT	gaa	GAA	CTG	GCA	TGT.	AGA
	R	E	P	T	G	F	L	H	E	R	T	L	S	L	K	N	W	H	V	D
2060	CGA	GCA	GGG(CGC	CTG	GCT	GCC	CTT	CAG	CAT	CCC	GCG	TGA	GGC	CGC	GCG	TAA	CGG	CAC	CGC
	E	Q	G	A	W	L	P	F	S	I	P	R	E	A	A	R	N	G	T	A
2120	CGG G	GCG R	CTT(L	GAT I	CAC T	CAT	CAA N	TGG G	CCA Q	GGC A	CGA D	CTC S	GGT V	CAC T	CGA E	GCT L	GCC P	GGC A	CGG G	CCA Q
2180	GGT	GGT	GCG(GGT	GCG	TCT	GCI	'GAA	CCT	GGA	CAA	CAC	CTG	GAC	CTA	.CCG	CCT	CAA	TCT	CAA
	V	V	R	V	R	L	L	N	L	D	N	T	W	T	Y	R	L	N	L	K
2240	GGG	CAA	CTG	CGA	.GGC	GAA	LAA.	CTA	TGC.	CCT	GGA	CGG	CAA	CCC	AGT	GAC	CCC	ACG	GCC	ATT
	G	N	C	E	A	K	I	Y	A	L	D	G	N	P	V	T	P	R	P	L
2300	GGA E	AGA D	CGA D	CTA Y	CTG W	GCT L	TGG G	CCC P	CGG G	CAT M	GCC R	TAT I	CTG C	CCT L	GGC A	TAT I	CCG R	CAI	TCC P	CCA Q
2360	AGC	GGG	TGA	GGA	AAT	CTC	CCI	GCG	CGA	CGG	TTT	CGT	GCG	CTT	GGG	CAC	CCT	GCG	TTC	AGT
	A	G	E	E	I	S	L	R	D	G	F	V	R	L	G	T	L	R	S	V
2420	GGC	CAG	CAA'	TGA	.CGC	GCC	AAG	GCGA	ICTG	GCC	ACC	AGC	GCT	GCC	ACC	CAA	CCC	GAT	rcgc	CGA
	A	S	N	D	A	P	S	D	W	P	P	A	L	P	P	N	P	I	A	E
2480	GCC	AGA	CCT	GGA	GAA	TGC	CGA	AAA	GCT	CAA	CTI	CAA	TTT	CGA	GTG	GGC	GGC	GAG	CGT	CAC
	P	D	L	E	N	A	E	K	L	N	F	N	F	E	W	A	A	S	V	T
2540	GGT	TAC	CCC	TGA	000	CGA	CAA	ACC	GTC	CAG	CA]	GTG W	GCA	GAT	CAA	.cgo	CCA	.GGC	CTG	GGA

007. The location of Tn5 in GB-1-007 and the nucleotide sequences of the adjacent regions were determined (Fig. 1). The translation products of some of the ORFs detected are shown in Fig. 2. The transposon was inserted in an ORF identified as a gene encoding a protein homologous to multicopper oxidases based on the presence of predicted Cu²⁺-binding regions (Fig. 2 and 3). This gene was designated cumA (Cu protein involved in manganese oxidation). Multicopper oxidases are found in a wide variety of organisms and are characterized by their conserved Cu^{2+} -binding sites (Fig. 3). The predicted cumA translation product is a 459-amino-acid protein that has a molecular weight of approximately 50,500 and contains an N-terminal signal peptide (Fig. 2). The overall level of identity with an ORF of Pseudomonas aeruginosa (referred to below as orfA), as determined on the basis of the amino acid sequence, was 67%. cumA is preceded by a possible Shine-Dalgarno sequence (Fig. 2). Upstream of cumA an ORF designated orfX was detected. orfX exhibited homology to guaA, which codes for GMP synthase (level of identity with 400 amino acids encoded by the 3' end of the gene encoding the Bacillus subtilis GMP synthase [GenBank accession no. P29727] [25], 55%). Immediately downstream from orfX strong second-

2600	CA	FCA	CCG.	ACA	AGA	CCT	GCG	CCG	ACCO	GCC	CCA	TCG	CTA	CGT	TGC	AGA	AGG	GCA	AGA	JCTA
	I	Т	D	K	Τ	° C	A	D	R	Ρ	Ι	A	. т	L	Q	K	G	к	S	Y
2660	CAT	FTT	TCG.	AGC	TGA	AGA	ACA	TGA	ccc;	AGT.	ACC	AGC	ACC	CGA	TCC	ACC	TGC	ATG	GCA.	ГGAG
	I	F	Е	L	К	. N	М	Т	Q	Y	Q	н	l P	I	н	L	н	G	M	S
										∇	7									
2720	CT	rΩ	AGG	TCA	TCG	сст	CCA	ձԾԸն	see			тса	ACC	AGC	CGT	сат	TCA	cca	aca	ста
	F	K	V	I	G	S	N	R	Н	D	I	K	E E	F	W	F	T	D	Т	Y
2780	CC	rgc'	TGG	SCA	AGA	ACG	AGC	GCG		AGG	TTG	CAC	TGG	TGG	CGG	ата	ACC	CAG	TATE	CTG
1,00	L	L	G	K	N	E	R	A	0	v	A	L	. v	A	D	N	I P	G	T	W
									-											
2840	GA?	ΓGT	TCC.	ATT	GCC	ACG	TCA	TCG	ACCA	AÇA	ТGG	AAA	CCG	GCC	TGA	TGG	CCG	CGA'	ГСG	IGGT
	М	F	н	с	Н	v	I	D	н	М	Е	Т	G	L	M	А	. A	Ι	Α	V
	00				— ——		~~~	0 3 m			~~~	~~~		m		amm		000	200	
2900	UD V		GMI	ara	ICC	GCA	GAI	CHI	LGA.	100	CAG	CCG	ICGM	AUCH	UmB	>	CAT:	P	T	2 DJJJ
	v													C	una		м	К	ы	A
2960	CTO	GC	GCT	GGC	TGC	CGA	GGG	cgc	AGCO	GTT	GGG	CGA	GGT	GCC	GGT	GGG	TGC	GGT	ATTO	GTG
	L	Α	L	А	А	Е	G	А	А	L	G	Е	V	Ρ	V	G	А	V	L	V
3020	CAG	GCA'	TGG	GCA	GGT	GAT	TGG	CCA	GGG	CTT	CAA	CCG	GCC	GAT	CAT	CGA	CAG	CGA	seco	GAGT
	Q	н	G	Q	V	Ţ	G	Q	G	F.	Ν	R	Р	1	T	D	S	D	Р	S
3080	GCC	-	TGC	TGA	аат	GGT	GGC	CAT	reg	- GC	AGC	GGC	GAA	AGC	GGC	CAG	CAA	ста	2000	CTG
	A	Н	A	E	М	v	A	I	R	A	A	A	K	A	A	S	N	Ŷ	R	L
							_													
							•													
3140	CCC	CGG	CAG	CAC	CCT	'GT'A	CGT	GAC	CCTC	GGA	GCC	GTG	CAG	CAT	GTG	TGC	AGG	GCT	GAT	CGTG
	Р	G	S	т	L	Y	v	т	L	Ε	Ρ	С	S	М	С	Α	G	L	I	V
			~~~			~ ~ ~ ~			_											
3200	CA:	CTC(	GCG	GGT)	GAT	GCG	GGD	GGT	31°1°.	rgg	CGC	GCT	GGA	GCC	CAA	GGC	GGG	GAT	CGTA	ACAG
	п	3	R	v	м	ĸ	v	v	L.	Ģ	А	ь	E	P	ĸ	А	G	T	v	Ŷ
3260	AGO	CA	GGG	GCA	GTT	CTT	CGG	CCA	AGG	3TT	TCT	GAA	CCA	CCG	GGT	GAT	AGT	GGA	GGG	GGG
	S	Q	G	Q	F	F	G	0	G	F	L	N	Н	R	V	I	V	E	G	G
3320	GTO	GCT	GGC	GGA	GGC	GTG	CGG	GCA	GAT	CCT	CAG	CGA	CTT	CTT	CAA	GGC	CCG	CCG	GCC	CAAA
	v	L	А	Е	А	С	G	Q	Ι	L	S	D	F	F	K	А	R	R	А	К
	000	-		n a m	2 000		there a	a												
0000	G	*	ACC	rer.	MIL	99C	ттĄ	، د ب	±υυ											
FIC	Э. 2	2. ľ	Jucl	eot	ide	seq	uen	ce o	f pa	irt (	of tl	ne 1	1.0	·kb	pPL	H7	Ecc	RI	frag	ment
<b>F1</b>			: .1					41			. 1						-1	1-		D

FIG. 2. Nucleotide sequence of part of the 11.0-kb pPLH7 *Eco*RI fragment. The amino acid sequences of the potential gene products are also shown. Possible Shine-Dalgarno sequences are underlined. Inverted repeats which might represent transcription terminators are indicated by arrows. The predicted CupA and CumB signal peptides are enclosed in boxes, and the predicted copperbinding regions are indicated by boldface type. The site of transposon insertion is indicated by an open arrowhead, and the kanamycin cassette insertion site in *cumB* is indicated by a solid arrowhead.

ary structures indicate that a transcription termination site is present (Fig. 2).

Downstream from *cumA*, two other ORFs, designated *cumB* and *orfY*, were identified (Fig. 1 and 2). *cumB*, which is preceded by a possible Shine-Dalgarno sequence, is located next to *cumA*. Since *cumB* and *orfY* have the same orientation and

0	05	2 3	1.20	3 3	201	1 2 3		313 1 1
CUINA	95	THMHGT	130	WIHPHV	391	HPIHLHGM	442	HCHAIDHWELGT
Pcum	93	IHWHGI	134	WYHPHL	390	HPIHLHGM	440	HCHVIDHMETGL
MofA	304	IHLHGG	384	WYHDHT	1174	HPVHFHLL	1279	HCHILGHEENDF
MnxG	527	MHIHFV	572	FFHDHL	281	HVFHYHVH	334	HCHLYPHFGIGM
Fet3	8	MHFMGL	52	WYHSHT	341	HPFHLHGH	411	HCHIEWHLLQGL
CopA	99	IHWHGL	140	WYHSHS	542	HPIHLHGM	590	HCHLLYHMEMGM
PcoA	99	IHWHGI	140	WYHSHS	537	HPIHLHGM	586	HCHLLYHMEMGM
Lacc	78	VHWHGL	121	WYHSHY	508	HPIHKHGN	585	HCHIASHQMGGM
Нср	119	FHSHGI	178	IYHSHI	994	htvhfhgh	1039	HCHVTDHIHAGM

FIG. 3. Alignment of the amino acid sequences of the copper-binding sites in CumA, the *P. aeruginosa* PAO1 homologue, and several other multicopper oxidases. The copper-binding residues are designated 1, 2, and 3 on the basis of the types of copper which they potentially bind. Abbreviations: CumA, *P. putida* GB-1 CumA (this study); Pcum, *P. aeruginosa* PAO1 CumA homologue (*Pseudomonas* Genome Project); MofA, *L. discophora* SS-1 MofA (GenBank accession no. Z25774) (13); MnxG, marine Bacillus sp. strain SG-1 MnxG (GenBank accession no. P38993) (5); CopA, *P. syringae* copper resistance protein (GenBank accession no. M19930) (26); PcoA, *E. coli* plasmid pRJ1004 copper resistance protein (GenBank accession no. M13699) (21); Hcp, human ceruloplasmin (GenBank accession no. M13699) (23).



FIG. 4. (A) Manganese-oxidizing activities of *P. putida* GB-1-002 and GB-1-007 and *cumB* mutant GB-1-010 in LD medium containing 100  $\mu$ M MnCl₂. (B) Same three samples after the redox dye LBB was added.

because the short intergenic region does not contain a transcription termination site, these genes are assumed to be part of an operon (designated Cum). The predicted cumB translation product is a 145-amino-acid protein that has an estimated molecular weight of 16,000 and contains a potential signal peptide (Fig. 2). CumB exhibited homology (level of identity, 67%) with the protein encoded by the ORF (orfB) downstream from orfA in P. aeruginosa (Fig. 1). It also exhibited homology with Orf178 of E. coli (level of identity, 52% [32]) (Fig. 1) and Orf74 of Bradyrhizobium japonicum (level of identity, 45%; GenBank accession no. L34743 [39]). The orientation of orfY is opposite that of cumA and cumB, and its predicted translation product (length, 485 amino acids; estimated molecular weight, 53,500) exhibited homology (level of identity, 65%) with the product of the P. aeruginosa ORF (orfY) downstream from orfB (Fig. 1). This protein also exhibited homology with Orf360 of E. coli (level of identity, 38% [32]), but in contrast to both P. putida and P. aeruginosa, E. coli does not contain a cumA homologue preceding orf178.

Screening of the *P. putida* genomic library with digoxigeninlabeled pPLH7 resulted in isolation of 12 positive clones. The DNA inserts of nine of these clones contained a 5.2-kb *Eco*RI fragment that hybridized with pPLH7. Mobilization of these nine constructs to mutant GB-1-007 did not result in restoration of Mn²⁺-oxidizing activity.

As complementation did not succeed, we could not eliminate the possibility that inhibition of  $Mn^{2+}$  oxidation in the mutant GB-1-007 resulted from a polar effect of the Tn5 insertion in *cumA* on *cumB*. A gene replacement study was performed to eliminate the possibility that *cumB* is involved in the oxidation of  $Mn^{2+}$ . The mutant obtained (designated GB-1-010) was tested for  $Mn^{2+}$ -oxidizing activity, and the growth rate was compared to the growth rates of the wild type and mutant GB-1-007. GB-1-010 retained the ability to oxidize  $Mn^{2+}$  (Fig. 4), but growth defects similar to those of mutant GB-1-007 were observed (data not shown).

Effect of  $Cu^{2+}$  on the  $Mn^{2+}$ -oxidizing activity of *P. putida* GB-1-002 and on the growth rates of *P. putida* GB-1-002 and

**GB-1-007.** The effect of a mutation in a gene (*cumA*) encoding a multicopper oxidase on  $Mn^{2+}$  oxidation in *P. putida* may indicate that  $Mn^{2+}$  oxidation is  $Cu^{2+}$  dependent. Therefore, we cultured cells with different concentrations of exogenously added  $Cu^{2+}$  and determined the  $Mn^{2+}$ -oxidizing activities of the cultures in the early stationary growth phase. We observed that  $Cu^{2+}$  had a clear stimulating effect on the oxidation of  $Mn^{2+}$  (Fig. 5). A maximum  $Mn^{2+}$  oxidation rate of 0.52 nmol/ ml  $\cdot$  min was observed in the presence of 40  $\mu$ M  $Cu^{2+}$ , which was approximately fivefold greater than the rate observed in medium without extra  $Cu^{2+}$ . At  $Cu^{2+}$  concentrations greater than 40  $\mu$ M the stimulating effect decreased.

To determine whether stimulation of the oxidizing activity was specific for  $Cu^{2+}$  ions and not for addition of divalent cations in general, the effects of  $Zn^{2+}$  and  $Ni^{2+}$  were studied (Fig. 5). Stimulation of the oxidation of  $Mn^{2+}$  was not observed. In contrast, at  $Zn^{2+}$  concentrations greater than 20  $\mu$ M a decrease in oxidation was observed. The effect of  $Ni^{2+}$  was even more pronounced. A decrease in  $Mn^{2+}$  oxidation was observed at an  $Ni^{2+}$  concentration of 10  $\mu$ M. These results indicate that  $Cu^{2+}$  is specifically involved in oxidation of  $Mn^{2+}$  in *P. putida*.

Because the  $Mn^{2+}$ -oxidizing activity of *P. putida* is growth phase dependent (31), the effects of  $Cu^{2+}$  on the growth rates of both the *P. putida* wild type and the mutant were determined (Fig. 6). No significant differences in the growth rate of the wild type were detected with  $Cu^{2+}$  concentrations up to 100  $\mu$ M. Cells entered the logarithmic growth phase at approximately the same time after inoculation and reached the stationary growth phase simultaneously. Similar results were obtained with the mutant. However, compared to the wild type, the mutant had a longer lag phase and reached a lower maximum cell density (independent of the  $Cu^{2+}$  added). Addition of  $Zn^{2+}$  or Ni²⁺ at concentrations up to 100  $\mu$ M did not have any effect on the growth rate of either the wild type or the mutant (data not shown).

# DISCUSSION

Previous studies have indicated that  $Mn^{2+}$  oxidation in *P. putida* GB-1 is catalyzed by an outer membrane enzyme or, more likely, an enzyme complex (8, 17, 31). Electrophoretic analyses of cell extracts (12, 31) revealed the presence of  $Mn^{2+}$ -oxidizing factors with molecular weights ranging from 250,000 to 130,000, which were assumed to represent the oxi-



FIG. 5. Effects of different  $Cu^{2+}(\blacksquare)$ ,  $Zn^{2+}(\blacktriangle)$ , and  $Ni^{2+}(\blacktriangledown)$  concentrations on the  $Mn^{2+}$  oxidation rate of *P. putida* GB-1, as determined by the LBB assay. For experimental details see the text.



FIG. 6. Effects of no  $Cu^{2+}$  (**I**) and 100  $\mu$ M  $Cu^{2+}$  (**I**) on the growth rates of *P. putida* GB-1-002 (——) and GB-1-007 (–––). For experimental details see the text. OD600, optical density at 600 nm.

dizing complex or parts of the oxidizing complex. We propose that an important constituent of the oxidizing complex is a Cudependent oxidase, the product of *cumA*. The genomic organization of the regions adjacent to cumA indicates that this gene constitutes an operon with the downstream ORF cumB. cumA is preceded by inverted repeat sequences that are able to form a stem-loop structure, the transcription termination site of the preceding gene, orfX, which is a homologue of the GMP synthase gene. We propose that the DNA region between orfXand cumA contains the promoter sequence. As the short intergenic region between cumA and cumB does not contain transcription termination sequences, these genes are probably transcribed from the same promoter. *cumB* is followed by an ORF (orfY) that clearly belongs to another operon in view of its opposite orientation. Transposon insertion in cumA abolished the Mn²⁺-oxidizing activity of the organism, whereas mutation of cumB had no such effect, clearly indicating that cumA is involved in Mn²⁺ oxidation. The gene product CumA contains a signal sequence, in accordance with the outer membrane location of the oxidizing factor. We found that growth of cells on media with exogenously added Cu2+ stimulated the Mn²⁺-oxidizing activity compared to the activity of cells grown with no  $Cu^{2+}$  addition, whereas neither  $Zn^{2+}$  nor  $Ni^{2+}$  enhanced the activity. The suggestion that a  $Cu^{2+}$ -dependent oxidase is involved in Mn²⁺ oxidation in *P. putida* is supported by evidence that the multicopper oxidases MofA and MnxG are involved in Mn²⁺ oxidation in two other oxidizing organisms, L. discophora SS-1 and Bacillus sp. strain SG-1, respectively (13, 38). In the latter organism the oxidizing activity could also be stimulated by adding  $Cu^{2+}$  (38). In L. discophora SS-1, the effect of Cu²⁺ on Mn²⁺ oxidation has not been studied yet.

We demonstrated that the opportunistic pathogen *P. aeruginosa* PAO1 contains an ORF (*orfA*) that is very similar to *cumA* of *P. putida* GB-1. Preliminary experiments in our laboratory showed that in principle, logarithmic liquid cultures of *P. aeruginosa* are able to oxidize  $Mn^{2+}$  (data not shown), although it was difficult to reproducibly demonstrate this activity. In spite of the uncertainty, it is tempting to correlate this oxidizing activity with the presence of the *cumA* homologue *orfA*.

The data obtained in this study strongly support the notion that involvement of multicopper oxidases in  $Mn^{2+}$  oxidation is common in  $Mn^{2+}$ -oxidizing bacteria (36). However, several questions remain to be answered. The first question is related to the fact that complementation of the mutant has not been

successful so far. In a previous study (17) we found a single transposon insertion in the mutant GB-1-007, which showed that the lack of complementation cannot be due to other possible insertions. The transposon insertion is located near the 3' end of *cumA* between two copper-binding regions. It is possible that this location of the transposon still allows production of large amounts of almost complete CumA which may compete with CumA expressed from the complementing fragment (for instance, in the formation of the oxidizing complex). Because the essential fourth copper-binding region is missing in mutated CumA, a nonfunctional  $Mn^{2+}$ -oxidizing complex should be formed. We will use site-specific gene replacement in *cumA* to resolve this question.

The site-directed gene replacement in *cumB* eliminated the possibility that cumB is involved in  $Mn^{2+}$  oxidation and confirmed that the decreased growth rate of the mutant GB-1-007 was the result of a polar effect of the transposon on *cumB* transcription, which supported the suggestion that cumA and cumB are cotranscribed from the same promoter. The involvement of cumB in growth is consistent with the observation that a cumB homologue in B. japonicum, orf74, is required for optimal free-living growth (39). Like the mutant GB-1-007 and the cumB mutant, mutants in which orf74 was disrupted had a longer lag phase and reached a lower cell density than the wild type. In E. coli, another cumB homologue (orf178) seems to be involved in the cell-killing function of members of the gef gene family in a manner that so far is not known (32). P. putida GB-1 is sensitive to the gef gene family (32), which may be the result of the product of *cumB*. This gene has not been found in P. putida GB-1 previously.

A second question to be resolved concerns the stimulating effect of  $Cu^{2+}$  on  $Mn^{2+}$  oxidation in *P. putida*. We found that the presence of low amounts of  $Cu^{2+}$  in the culture medium specifically enhanced the oxidizing activity of the cells. However, it is not clear yet whether the stimulating effect should be ascribed to Cu²⁺-enhanced transcription of the oxidizing factor (presumed to be encoded by cumA), to production of a more active factor as a result of optimal  $Cu^{2+}$  incorporation, or to a combination of these effects. Why stimulation of Mn²⁺ oxidation decreased at  $Cu^{2+}$  concentrations higher than the optimum concentration (40  $\mu$ M) also must be explained. It is possible that at supraoptimal concentrations,  $Cu^{2+}$  ions also occupy  $Mn^{2+}$ -binding sites. Competition for  $Mn^{2+}$ -binding sites and/or Cu2+-binding sites may explain the inhibiting effects of  $Zn^{2+}$  and  $Ni^{2+}$  on  $Mn^{2+}$  oxidation. Studies of the effect of  $Cu^{2+}$  on the expression of *cumA* and the effects of specific Cu²⁺-chelating agents on Mn²⁺ oxidation followed by reconstitution experiments should provide more insight into these questions.

Finally, it is possible to speculate about the physiological functions of multicopper oxidases in  $Mn^{2+}$ -oxidizing bacteria. Multicopper oxidases occur in a wide variety of organisms and can have different cellular functions. The multicopper oxidase family includes the CopA proteins of *Pseudomonas syringae* (26) and *Xanthomonas campestris* (24) and the PcoA protein of the *E. coli* plasmid pRJ1004 (9), all of which are involved in  $Cu^{2+}$  resistance. The *P. putida* GB-1 CumA protein probably is not involved in  $Cu^{2+}$  resistance, as mutation of the corresponding gene did not result in  $Cu^{2+}$ -sensitive growth of mutant cells. Other members of the multicopper oxidase family are the *Saccharomyces cerevisiae* Fet3 protein (5) and the human ceruloplasmin (23), both of which act as ferroxidases involved in high-affinity iron uptake. White rot fungi produce the multicopper oxidase laccase, which produces strongly oxidizing Mn(III) chelates that are used in the oxida-

tion of lignin compounds (3). Production of strong oxidizing agents that release nutrients from resistant organic compounds may be an important function of Mn²⁺-oxidizing multicopper oxidases in nutrient-poor environments (35). However, metabolically inert structures, like the Mn²⁺-oxidizing spores of Bacillus sp. strain SG-1, do not obviously benefit from such a process. It is possible that the multicopper oxidases of Mn2+-oxidizing bacteria have primary cellular functions other than Mn²⁺ oxidation. These oxidases may have the ability to oxidize  $Mn^{2+}$ , which allows the bacteria to use the products depending on the organism and circumstances and thus to gain a selective advantage. Such an advantage may be exploited at the cellular level (by generation of nutrients, production of alternative electron acceptors, etc. [see above]), but an advantage at the ecological level may also be envisaged. In some environments, oxidation and reduction of  $Mn^{2+}$  (and  $Fe^{2+}$ ) are coupled to oxidation and reduction of carbon, which permits efficient cycling of nutrients and reduction equivalents in stable ecosystems (30). Mn²⁺-oxidizing bacteria play an important role in such ecosystems by guaranteeing the supply of an electron sink to the reducing zones. This may contribute to the widespread occurrence of Mn²⁺-oxidizing bacterial species in nature.

## ACKNOWLEDGMENTS

We thank Theo Goosen for supplying pBR322::Tn5 and Nora Goosen and Eric Vijgenboom for fruitful discussions during the course of this work.

### REFERENCES

- Adams, L. F., and W. C. Ghiorse. 1985. Influence of manganese on growth of a sheathless strain of *Leptothrix discophora*. Appl. Environ. Microbiol. 49: 556–562.
- Adams, L. F., and W. C. Ghiorse. 1987. Characterization of extracellular Mn²⁺-oxidizing activity and isolation of an Mn²⁺-oxidizing protein from *Leptothrix discophora* SS-1. J. Bacteriol. 169:1279–1285.
- Archibald, F., and B. Roy. 1992. Production of manganic chelates by laccase from the lignin-degrading fungus *Trametes (Coriolus) versicolor*. Appl. Environ. Microbiol. 58:1496–1499.
- Archibald, F. S., and I. Fridovich. 1981. Manganese and defense against oxygen toxicity in *Lactobacillus plantarum*. J. Bacteriol. 145:442–451.
- Askwith, C., D. Eide, A. van Ho, P. S. Bernard, L. Li, S. Davis-Kaplan, D. M. Sipe, and J. Kaplan. 1994. The Fet3 gene of *S. cerevisiae* encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403– 410.
- Bolivar, F., R. L. Rodriguez, P. J. Greene, M. C. Betlach, H. L. Heyneker, H. W. Boyer, J. H. Crosa, and S. Falkow. 1977. Construction and characterization of new cloning vehicles. II. A multiple cloning system. Gene 2:95–113.
- Boogerd, F. C., and J. P. M. de Vrind. 1987. Manganese oxidation by Leptothrix discophora. J. Bacteriol. 169:489–494.
- Brouwers, G. J., J. P. M. de Vrind, P. L. A. M. Corstjens, and E. W. de Vrind-de Jong. 1998. Genes of the two-step protein secretion pathway are involved in the transport of the manganese-oxidizing factor across the outer membrane of *Pseudomonas putida* strain GB-1. Am. Mineral. 83:1573– 1582.
- Brown, N. L., S. R. Barrett, J. Camakaris, T. O. Lee, and D. A. Rouch. 1995. Molecular genetics and transport analysis of the copper-resistance determinant (*pco*) from *Escherichia coli* plasmid pRJ1004. Mol. Microbiol. 17:1153– 1166.
- Caspi, R., B. M. Tebo, and M. G. Haygood. 1998. *c*-Type cytochromes and manganese oxidation in *Pseudomonas putida* MnB1. Appl. Environ. Microbiol. 64:3549–3555.
- Corstjens, P. L. A. M., J. P. M. de Vrind, P. Westbroek, and E. W. de Vrind-de Jong. 1992. Enzymatic iron oxidation by *Leptothrix discophora:* identification of an iron-oxidizing protein. Appl. Environ. Microbiol. 58:450– 454.
- Corstjens, P. L. A. M. 1993. Bacterial oxidation of iron and manganese, a molecular-biological approach. Ph.D. dissertation. Leiden University, Leiden, The Netherlands.
- Corstjens, P. L. A. M., J. P. M. de Vrind, T. Goosen, and E. W. de Vrind-de Jong. 1997. Identification and molecular analysis of the *Leptothrix discophora*

SS-1 mofA gene, a gene putatively encoding a manganese oxidizing protein with copper domains. Geomicrobiol. J. **14**:91–108.

- DePalma, S. R. 1993. Manganese oxidation by *Pseudomonas putida*. Ph.D. dissertation. Harvard University, Cambridge, Mass.
- de Vrind, J. P. M., F. C. Boogerd, and E. W. de Vrind-de Jong. 1986. Manganese reduction by a marine *Bacillus* species. J. Bacteriol. 167:30–34.
- de Vrind, J. P. M., E. W. de Vrind-de Jong, J.-W. H. de Voogt, P. Westbroek, F. C. Boogerd, and R. A. Rosson. 1986. Manganese oxidation by spores and the spore coats of a marine *Bacillus* species. Appl. Environ. Microbiol. 52: 1096–1100.
- de Vrind, J. P. M., G. J. Brouwers, P. L. A. M. Corstjens, J. den Dulk, and E. W. de Vrind-de Jong. 1998. The cytochrome *c* maturation operon is involved in manganese oxidation in *Pseudomonas putida* GB-1. Appl. Environ. Microbiol. 64:3556–3562.
- de Vrind-de Jong, E. W., J. P. M. de Vrind, F. C. Boogerd, P. Westbroek, and R. A. Rosson. 1990. Manganese transformations by marine *Bacillus* species, p. 489–496. *In* R. E. Crick (ed.), Origin, evolution and modern aspects of biomineralization in plants and animals. Plenum Press, New York, N.Y.
- Ehrlich, H. L. 1984. Different forms of bacterial manganese oxidation, p. 47– 56. *In* W. R. Strohl and H. Tuovinen (ed.), Microbial chemoautotrophy. Ohio State University Colloquium no. 8. Ohio State University Press, Columbus.
- 20. Ehrlich, H. L. 1996. Geomicrobiology. Marcel Dekker, New York, N.Y.
- German, U. A., G. Muller, P. E. Hunziker, and K. Lerch. 1988. Characterization of two allelic forms of *Neurospora crassa* laccase: amino- and carboxyterminal processing of a precursor. J. Biol. Chem. 263:885–896.
- Jung, W. K., and R. Schweisfurth. 1979. Manganese oxidation by an intracellular protein of a *Pseudomonas* species. Z. Allg. Microbiol. 19:107– 115.
- Koschinsky, M. L., W. D. Funk, B. A. van Oost, and R. T. MacGillivray. 1986. Complete cDNA sequence of human preceruloplasmin. Proc. Natl. Acad. Sci. USA 83:5086–5090.
- Lee, Y.-A., M. Hendson, N. J. Panopoulos, and M. N. Schroth. 1994. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from *Xanthomonas campestris* pv. *juglandis*: homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 176:173– 188.
- Mäntsälä, P., and H. Zalkin. 1992. Cloning and sequencing of *Bacillus subtilis purA* and *guaA*, involved in the conversion of IMP to AMP and GMP. J. Bacteriol. 174:1883–1890.
- Mellano, M. A., and D. A. Cooksey. 1988. Nucleotide sequencing and organization of copper resistance genes from *Pseudomonas syringae* pv. tomato. J. Bacteriol. 170:2879–2883.
- Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Nealson, K. H., B. M. Tebo, and R. A. Rosson. 1988. Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33:299– 318.
- Nealson, K. H., R. A. Rosson, and C. R. Myers. 1989. Mechanisms of oxidation and reduction of manganese, p. 383–411. *In* T. J. Beveridge and R. J. Doyle (ed.), Metal ions and bacteria. John Wiley & Sons, New York, N.Y.
- Nealson, K. H., and C. R. Myers. 1992. Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl. Environ. Microbiol. 58: 439–443.
- Okazaki, M., T. Sugita, M. Shimizu, Y. Ohode, K. Iwamoto, E. W. de Vrind-de Jong, J. P. M. de Vrind, and P. L. A. M. Corstjens. 1997. Partial purification and characterization of manganese-oxidizing factors of *Pseudomonas fluorescens* GB-1. Appl. Environ. Microbiol. 63:4793– 4799.
- Poulsen, L. K., N. W. Larsen, S. Molin, and P. Andersson. 1992. Analysis of an *Escherichia coli* mutant strain resistant to the cell-killing function encoded by the *gef* gene family. Mol. Microbiol. 6:895–905.
- Rosson, R. A., and K. H. Nealson. 1982. Manganese binding and oxidation by spores of a marine *Bacillus*. J. Bacteriol. 151:1027–1034.
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Sunda, W. G., and D. J. Kieber. 1994. Oxidation of humic substances by manganese oxides yields low-molecular weight organic substrates. Nature 367:62–64.
- 36. Tebo, B. M., W. C. Ghiorse, L. G. van Waasbergen, P. L. Siering, and R. Caspi. 1997. Bacterial mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies, p. 225–266. *In* J. F. Banfield, K. H. Nealson, and P. H. Ribbe (ed.), Reviews in mineralogy, vol. 35. Mineral Society of America, Washington, D.C.
- 37. Van Haute, E., H. Joos, M. Maes, G. Warren, Van Montagu, and J. Schell. 1983. Intergenic transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti

- plasmids of *Agrobacterium tumefaciens*. EMBO J. **2:**411–417. 38. van Waasbergen, L. G., M. Hildebrand, and B. M. Tebo. 1996. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J. Bacteriol. 178:3517-3530.
- 39. Weidenhaupt, M., M. Schmid-Appert, B. Thöny, H. Hennecke, and H.-M.

Fischer. 1995. A new Bradyrhizobium japonicum gene required for free-living growth and bacteroid development is conserved in other bacteria and in plants. Mol. Plant Microbe Interact. 8:454–464.
40. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage

cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene **33**:103–119.