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One of the challenges of defining emergence is
that one observer’s prior knowledge may cause a
phenomenon to present itself as emergent that to
another observer appears reducible. By formalizing
the act of observing as mutual perturbations
between dynamical systems, we demonstrate
that the emergence of algorithmic information
does depend on the observer’s formal knowledge,
while being robust vis-a-vis other subjective factors,
particularly: the choice of programming language
and method of measurement; errors or distortions
during the observation; and the informational cost
of processing. This is called observer-dependent
emergence (ODE). In addition, we demonstrate that
the unbounded and rapid increase of emergent
algorithmic information implies asymptotically
observer-independent emergence (AOIE). Unlike
ODE, AOIE is a type of emergence for which
emergent phenomena will be considered emergent no
matter what formal theory an observer might bring to
bear. We demonstrate the existence of an evolutionary
model that displays the diachronic variant of AOIE
and a network model that displays the holistic
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variant of AOIE. Our results show that, restricted to the context of finite discrete deterministic
dynamical systems, computable systems and irreducible information content measures, AOIE
is the strongest form of emergence that formal theories can attain.

This article is part of the theme issue ‘Emergent phenomena in complex physical and
socio-technical systems: from cells to societies’.

1. Introduction
The challenge of formalizing the notion of emergence usually centres on the definition of what
the term ‘reducible’ (‘derivable’ or ‘predictable’) means when one says that a macro-level
phenomenon is not reducible to its micro-level parts or to its initial conditions. In order to
eliminate the possibility of one observer classifying a phenomenon as emergent while another
classifies it as reducible to its isolated parts (to the parts at a smaller scale or to initial conditions),
one approach is to define emergence as a property relative to the micro-level parts or to initial
conditions [2–5]. The mathematical and empirical problem is to guarantee that such a dependence
on the observer cannot occur even when formalizing emergence as a relative property [6]. In this
article, to tackle this problem in the context of finite discrete deterministic dynamical systems
(FDDDSs) (or computable systems in general), the act of observing is formally defined as an
interaction in which the system being observed perturbs the observer while the observer perturbs
the system being observed, where the observer is a particular type of system that can compute
functions and is equipped with a formal theory. Hence, we show that mathematical measures of
emergent behaviour as a relative property do depend on the formal theories that the observer
brings to bear.

We show that despite being dependent on the observer’s formal knowledge, the emergence
of algorithmic information is robust vis-a-vis variations of the arbitrarily chosen method of
measuring irreducible information content, errors (or distortions) in the act of observing and
variations of the algorithmic-informational cost of processing the information gathered from
the observed system in accordance with the observer’s formal knowledge. In other words, all
the subjective factors of language, measurement, information acquisition and processing are
embedded into the definition of emergence of algorithmic information in such a way the formal
theory (which the observer has brought to bear) is the only subjective characteristic that can
determine whether or not the future behaviour of the observed system will appear emergent.
This kind of emergence is called observer-dependent emergence (ODE).

Furthermore, we show that systems that display a sufficiently rapid increase of emergent
algorithmic information overcome such dependence on the observer. In other words, there are
systems whose behaviour eventually begins to display ODE for any observer. Although there
may be an observer that can explain or predict a finite-length state space trajectory of an
observed system, the sufficiently rapid increase of emergent algorithmic information guarantees
that this will eventually cease to happen. In this case, the emergence of algorithmic information
is guaranteed to be independent of any observer, but only at the asymptotic limit. This kind of
emergence is called asymptotically observer-independent emergence (AOIE). The definition of
AOIE inherits from ODE its robustness vis-a-vis the subjective factors of language, measurement,
information acquisition and processing. However, one aspect of AOIE that is remarkable is that,
unlike ODE, this is a type of emergence for which emergent phenomena will appear emergent no
matter what formal theory that one might bring to bear.

We also compare these mathematical properties with previous models and definitions in the
literature that deal with emergence in discrete deterministic dynamical systems and computable
systems and with definitions of weak and strong emergence. We present an evolutionary
model that displays the temporal (or diachronic) variant of AOIE and a model for networked
systems that displays the holistic variant of AOIE. In particular, the latter model displays
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expected downward causation. Our results demonstrate that, restricted to the context of FDDDSs,
computable systems and irreducible information content measures, AOIE is the strongest form
of emergence that a formal theoretical approach can grasp. Further research is necessary for
investigating whether or not the results in the present article can be extended to other physical,
chemical or biological systems and other complexity measures.

In §2, we briefly present related work on emergence and information, focusing on the
necessary distinction between stochastic and non-stochastic processes that delimits the context
and conditions of our mathematical results. In addition, we introduce how the size of the
algorithmic information content is quantified in FDDDSs or computable systems. In §3, we
introduce the concepts of ODE and AOIE along with their underlying main ideas of observation
and algorithmic perturbation. In addition, we present previous mathematical models in the
literature that display ODE or AOIE. In §4, we compare these two kinds of emergence with
definitions of weak and strong emergence. Finally, §5 concludes the article.

2. Emergence and information in stochastic and deterministic processes
For systems composed of (or defined by) stochastic processes, emergence has been studied
in terms of statistical methods (for example, those based on entropy) and related complexity
measures [7,8]. If an independent and identically distributed (i.i.d.) stochastic process {Xi}, where
Xi is a random variable, produces sequences of (finite) states, one knows from the noiseless
source coding theorem that n H(X) gives a lower bound for the minimum expected number of
bits to encode a sufficiently long sequence generated by this stochastic process [9], where H(X)
is the entropy and n is the length of the sequence. In this context, due to such a minimality
displayed by the entropy value in pure stochastic processes, the emergence of novel irreducible
information can, for example, be understood as an entropy increase, as proposed in [7]. On the
other hand, when emergence is interpreted as the appearance of a macro-level property that
has greater efficiency of prediction than that of the micro-level states from which the macro-
states derive, emergence has been proposed to be measured by employing a ratio between excess
entropy and statistical complexity [8,10]. In the context of multivariate stochastic processes, causal
emergence and downward causation have been proposed to be measured by employing variants
of the unique information, which are based on the partial information decomposition [11] and
integrated information decomposition [12].

However, in the context of deterministic processes, statistics faces insuperable obstacles when
trying to quantify irreducible information content [13]. Being one of the well-known results
in algorithmic information theory (AIT) [1], any resource-bounded computational procedure
that tries to quantify the amount of irreducible information content in a single encoded object
returns distorted values in general. Although the entropy of its contiguous blocks of length
m is maximal, this distortion is, for example, seen in Borel-normal sequences of length n that
are in fact computable (and therefore logarithmically compressible) [14], where m � n. In the
context of networks and graphs, there are also highly compressible graphs in which the degree-
sequence entropy is maximal [15]. Thus, if one is interested in measuring irreducible information
content (or measuring the emergence of new irreducible information) in deterministic systems,
which are free of stochasticity, employing any fixed and computable measure based only on
finding and exploiting statistical patterns (in order to approximate the most compressed form that
computes the system’s behaviour) will exhibit limitations and face these obstacles in general. The
main limitation stems from the fact that most computable patterns are not periodic, the kind of
regularity that a statistical approach would be able to characterize. Computable but non-periodic
patterns will tend to have high statistical complexity (e.g. Shannon entropy with no access to the
underlying probability distribution) but low algorithmic complexity, meaning that a statistical
approach would assign them a random nature that, for all mechanistic and cause-and-effect
purposes, should not.

The present article only addresses discrete deterministic dynamical systems (or computable
systems in general), and we quantify the irreducible information content of systems with
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Table 1. Table of mathematical notation and acronyms
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Iac(x) the size of the algorithmic information content of an encoded object x Section 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Iac(y|x) the size of the (conditional) algorithmic information content of an encoded
object y given an encoded object x

Section 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FDDDS acronym for finite discrete deterministic dynamical system Section 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c I constant that determines the equivalence class Iac(·) Section 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

St a single state of a FDDDSS at time instant t Section 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S �t′t a state space trajectory (St , . . . ,St′ ) ofS from the stateSt until stateSt′ Section 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P an algorithmic perturbation Section 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O an observer Turing machine, which is a particular type of two-tape Turing
machine whose first tape receives input and the second tape stores formal
knowledge

([1], Section 3.2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O a formal observer system, which is a particular type of FDDDS that simulates O Section 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S ′
t a single state of S at time instant t that occurs after S being

perturbed/observed at any time instant< t
Section 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cO constant that determines the minimum conditions for the observation to take
place

Section 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ODE acronym for observer-dependent emergence Section 3a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ce constant that determines the minimum conditions for observer-dependent
emergence

Section 3a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AOIE acronym for asymptotically observer-independent emergence Section 3b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P a sequence (or collection) of Turing machines Section 3b(i)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S a discrete deterministic dynamical systemwhose each contiguous subsequence
of its entire state space trajectory is a state space trajectory of a particular FDDDS
S (k)

Section 3b(ii)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S a macro-level discrete deterministic dynamical system whose micro-level
systems (or parts) cannot interact with each other

Section 3b(ii)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S′ a macro-level discrete deterministic dynamical system whose micro-level
systems (or parts) do interact with each other

Section 3b(ii)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

algorithmic information content. As pointed out by Burgin [16], we refer to algorithmic information
content of x as the minimum necessary and sufficient information for computably constructing
x such that this information can always be extracted from x by a fixed function at some Turing
degree. This way, the size Iac(x) of the algorithmic information content of x (see table 1 for a glossary
of terms) is measured by the equivalence class of integer values k ∈ Iac(x) in the interval

|K(x) − k| ≤ cI, (2.1)

where cI ∈ N is an arbitrary and sufficiently large object-independent constant and K(x) is the
(prefix) algorithmic complexity [17–20] (i.e. the length of the shortest prefix-free program x∗ that
outputs the string x in a universal prefix Turing machine U). Note that this applies analogously
to the size Iac(z |w) of the conditional algorithmic information content of z given w, which is an
equivalence class of values k ∈ Iac(z |w) in the interval

|K(z |w) − k| ≤ cI, (2.2)

where the conditional prefix algorithmic complexity of a binary string z given a binary string w,
denoted by K(z |w), is the length of the shortest program z∗

w such that U(
〈
w, z∗

w
〉
) = z and 〈·, ·〉



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20200429

...............................................................

denotes the arbitrarily chosen encoding of the pair (x, y), where x, y ∈ N. Note that 〈·, ·〉 can be
recursively extended to 〈·, · · · , ·〉 in order to represent the encoding of n-tuples. The constant
cI may depend on the choice of the observer (but not on the object) and it can be taken as
sufficiently large as possible so as to ensure that the constant-bounded equivalence class Iac(·)
becomes invariant and minimal with respect to a particular observer [1].

When dealing with other kinds of objects that are not strings, a mathematical object is said to
be encoded if it is univocally represented by structured data so that there is an algorithm which
can always recover or extract the original object from the structured data. This way, one can
equivalently define Iac(x) and Iac(z |w) when x, w and z are encoded objects instead of strings.

Moving to the context of discrete dynamical systems, let S = (XS, fS, ES, T) be a FDDDS
embedded in an environment E [5], where XS is the state space of S,

fS : XS × ES × T → XS

(St, eSt , t) 
→ St+1
(2.3)

is the function that defines the evolution rule of S, ES is the space of all possible surrounding
environmental states that constitute the boundary of S and T is the set of time instants. If the
cardinality of the set ES of a dynamical system S is finite, then the dynamical system is said to
have a finite boundary. If both sets XS and ES are composed only of discrete finite states, the finite-
boundary dynamical system is said to be finite and discrete. The environment E = (XE, rE, T) is a
FDDDS into which the systems S and their environmental surroundings ES are embedded, where
rE : XE × T → XE is the evolution rule of E. In case the evolution rule of a dynamical system is a
computable function, or computable relation, then the dynamical system is said to be computable.

We define the measure of the size of the algorithmic information content of a FDDDS
S = (XS, fS, ES, T) from time instant t until time instant t′ by Iac(S �t′

t ), where S �t′
t is just a notation

for an arbitrary encoding of the sequence (St, S1, . . . , St′ ) of states (i.e. a state space trajectory of S

from t ∈ T until t′ ∈ T).
It is known that Turing machines can be simulated by computable FDDDSs. For example, one

can construct an elementary cellular automaton employing Rule 110 that simulates a Turing machine
[21]. Moreover, the decision problem of one is reducible to the decision problem of the other and
the time complexity of the Turing machine simulation by elementary cellular automata can be
improved to a polynomial time overhead [22].

Furthermore, in instances where the system S is simulating an arbitrary Turing machine w and
the decision problem of S until t is Turing equivalent to the decision problem of U(w), one can
equivalently measure the algorithmic information content of S by Iac(y) instead of Iac(S �t

0), where
U(w) = y ([1], Lemma 2.1). And the conditional case Iac(·|·) applies analogously.

Algorithmic information-based approximation methods to the size of the irreducible
information content are proved to be accurate in the asymptotic limit when the computational
resources are unbounded. In addition, due to the property of always existing ‘room for
improvement’ in resource-bounded compression algorithms, empirical applications of the
theoretical results presented in this article are agnostic with respect to the chosen compression
algorithm. These properties hold because: (i) since for any arbitrarily chosen encoding method or
universal prefix-free programming language, its value can only vary by a constant that does not
depend on the object, algorithmic complexity is an invariant measure of irreducible information
content [17–20]; (ii) it also is minimal because, for any arbitrarily chosen formal method of
assigning a probability distribution μ(·) to the infinite discrete space of computably constructible
objects, the value − log(μ(x)) can only be smaller than the algorithmic complexity K(x) up to an
object-independent constant [19,20], where x is an encoded object; and (iii) the exact value of
K(x) is not computable in general, but there are always new algorithms that are able to produce
better approximations than previous algorithms. Thus, although perceiving the behaviour of a
particular system as emergent depends on the observer’s formal knowledge, one of the important
contributions of this article is that the values of algorithmic information content remain invariant
and minimal with respect to this observer [1].
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Future research is necessary for investigating in which conditions the theoretical results in the
present article can be extended to stochastic processes and other complexity measures.

3. Dependence on the observer in emergent phenomena
The introduction of perturbation (or intervention) analysis, in the context of algorithmic
information content, enables the investigation of the underlying computable causal effectiveness
of its parts (or elements) [23,24] and offers a solution to the inverse problem of finding the best
generative model [25]. A generative model in the context of algorithmic information means a
step-by-step computable model (which in turn means being able to be carried out by a Turing
machine) that generates the object, data sample or system to be analysed. Such an introduction of
perturbation analysis led to the introduction of algorithmic information dynamics (AID) [26],
based on the (expected) universal optimality of algorithmic probability [1] and stems from
the demonstrated high convergence rate of computable generative models to their algorithmic
probability [13]. This is a rate stable to radical changes to the model of computation, that produces
a stable distribution in particular for low complexity and thus high algorithmic frequency
(probability) objects. (Note that the ultimate convergence is guaranteed by the invariance theorem
[17–20].) We show in this article that one of the paradigm shifts brought about by AID vis-a-vis
previous methods based on computability and information theory is that perturbation analysis
guarantees that our results hold, even if we allow the very act of observing to substantially change
(or introduce ‘noise’ into) the observed system’s behaviour.

In order to formally capture the notion of what is an observation in the context of FDDDS,
or computable systems in general, one needs to define what one means by an algorithmic
perturbation of the states of a system and specify the distinctive characteristics of a FDDDS that
renders the latter as being an observer.

Since any state space trajectory of a FDDDS is a sequence of finite discrete states, then, for
every perturbation of a state St at time instant t that results in the next state S′

t+1, there is at least
one computer program (or Turing machine) that performs this exact change by taking St as input
and outputting S′

t+1. Intuitively, an algorithmic perturbation occurring at a certain time instant
changes the course of the state space trajectory from that moment on. This way, an algorithmic
perturbation P is defined as such a program that changes the course of the state space trajectory
of a FDDDS by taking the previous (not yet perturbed) state St of this FDDDS as input and
outputting a future state S′

t+1, which is distinct from what the next state St+1 of the FDDDS would
have been if no perturbation had occurred. In other words, an algorithmic perturbation occurring
at time instant t is any kind of external algorithmic process that updates the state of the affected
system after one time step, resulting in a new state at time instant t + 1. That is, instead of the state
St+1 that S should display if no perturbation had occurred, S displays S′

t+1 after an algorithmic
perturbation has occurred at time instant t. More formally, an algorithmic perturbation P at time
instant t is a perturbation occurring at the time instant t of a state space trajectory (. . . , St) of a
FDDDS S that updates the one time step from t to t + 1 so that, instead of the original state space
trajectory (. . . , St, St+1, . . . ), it results in a distinct state space trajectory (. . . , St, S′

t+1, . . .), where P

is a program and U(〈St, P〉) = S′
t+1.

So, as a more concrete illustrative example, suppose every state of a FDDDS S is a 3-bit string
and suppose St = 001 and St+1 = 010. If a perturbation occurs at time instant t and it leads the
next state to be S′

t+1 = 011 instead of St+1 = 010, we know that there is at least one algorithm that
corresponds to this exact perturbation. Such an algorithm can be as simple as ‘read the first two
bits of the input and flip the second bit, then returns the resulting 3-bit string’, where P2 is a
program of a Turing machine that represents this algorithm so that U(〈001, P2〉) = 011.

Note that the existence of an algorithmic perturbation does not depend on where it comes from
or on the nature of the process that caused the perturbation. What mathematically follows from
the definition of algorithmic perturbation is simply that: any finite state change in a FDDDS S

can be reduced to, or represented by, an equivalent algorithmic perturbation into S; and that any
halting program P on input St is a possible algorithmic perturbation that may (or may not) occur
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on system S at time instant t. Whether or not one is assigning probabilities to the occurrence of
perturbations depends on the problem and model to be studied. From the example in the previous
paragraph, suppose one knows beforehand that the second bit was flipped due to a stochastically
random event (with probability 1/3) in which the bit to be flipped is selected randomly. But, since
the result of such a perturbation just produces 011 out of 001, then that change can be equivalently
represented by the algorithmic perturbation P2 or any other algorithmic perturbation P such that
U(〈001, P〉) = 011. Thus, if P2 is the algorithmic perturbation one chooses (possibly, because |P2|
is minimal) to represent the stochastically random event of flipping the second bit, which is a
stochastic perturbation that occurs with probability 1/3, then the probability of occurrence of the
algorithmic perturbation P2 also becomes 1/3.

While the conditional algorithmic complexity of any perturbation that results in 011 from
the past state 001 is constant and very small—because the simplest algorithmic perturbation P

for which U(〈001, P〉) = 011 holds can only be as complex as flipping the second bit—finding
the algorithmic complexity of the equivalent algorithmic perturbations to stochastically random
perturbations on more complex objects, such as networks, is less trivial. In the case of monoplex
networks (or graphs), it is shown in [26,27] that stochastic randomly deleting (or inserting) |F|
edges in a network G, which results in a new network G′, is equivalent to applying an algorithmic
perturbation PF to G such that

K(PF) ≤ 2|F| log2(N) + O(log2(|F|)) + O(log2(log2(N))), (3.1)

and U(〈G, PF〉) = G′, where F is the subset of edges that were perturbed and N is the number of
vertices. This is because the right side of the inequality in equation (3.1) is an upper bound for
the conditional algorithmic complexity of the shortest program that, with the network G as input,
can perform the same edge deletions (or edge insertions) that the stochastically random deletion
(or insertion) of |F| edges did.

For example, suppose the probability that a destructive stochastic perturbation deletes
a single edge is 2

N2−N . We know there is an equivalent algorithmic perturbation PF1 such
that K(PF1 ) ≤ 2 log2(N) + O(log2(log2(N))) [26,27]. If one chooses PF1 to represent that exact
stochastically random deletion, then the probability of occurrence of PF1 will also be 2

N2−N .
Indeed, as one of the important properties implied by this equivalence in AID, a stochastically
random perturbation on a single edge can only change the final algorithmic complexity of
the network by O(log2(N)) bits, which explains the thermodynamic-like behaviour found
in [24] about the reprogrammability of networks when these are subjected to stochastically
random single-edge perturbations. More specifically, this thermodynamic-like phenomenon
refers to a larger number of one-by-one stochastically random edge deletions (or insertions)
being necessary for transforming an algorithmically random (i.e. incompressible) network
into a low-algorithmic-complexity network than the number necessary for transforming
a low-algorithmic-complexity network into an algorithmically random network. This is
because (stochastically) random single-edge deletion on algorithmically simple networks has
a greater impact than (stochastically) random single-edge deletion on algorithmically random
networks [24]. On the one hand, to lower the algorithmic randomness of an algorithmically
random graph, non-stochastic single-edge deletion is required. On the other hand, to turn a low
algorithmic complexity network into a higher algorithmic complexity network, stochastically
random single-edge deletion suffices [27].

A formal observer system O is a particular type of FDDDS that has prior knowledge of a
formal theory and can simulate Turing machines (or compute functions) during its state space
trajectory. Thus, as demonstrated in [1, Section 3.2], whether or not a formal observer system can
compute a certain function is a fact dependent on the prior formal knowledge that the formal
observer system knows. This is an important property that we will explore in §3a. A direct
consequence of the definitions of algorithmic perturbation and formal observer system is that
they enable an algorithmic perturbation to change the machine that O is simulating ([1], Lemma
3.1). For example, suppose (O0, . . . , Ot) is a state space trajectory that simulates a two-tape Turing
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machine that computes the value of f (w1) when w1 is encoded as input in its first tape and the
second tape contains an encoding of a formal theory F, where f is a total computable function.
Then, suppose that an algorithmic perturbation occurs at time instant t, giving rise to the next
state O′

t+1 instead of the original state Ot+1, which was supposed to occur if no algorithmic
perturbation had happened at time instant t, so that O′

t+1 is the initial state of the FDDDS that
simulates the same two-tape Turing machine of O but with the first tape containing w2. So,
note that the FDDDS O after the algorithmic perturbation has occurred at time instant t will be
simulating the two-tape Turing machine that computes the value of f (w2) when w2 is encoded in
its first tape. Therefore, (O0, . . . , Ot) computes the value of f (w1) and (O′

t+1, O′
t+2, . . .) computes the

value of f (w2).
In general, the observation of an object by the observer should be realized when the

interaction between them somehow sends sufficient information about the observed object to
the observer. In case both the observer and the observed object are systems, this interaction
becomes understood as a mutual perturbation in which the system (the observer) perturbs an
object (another system), while being itself perturbed by the object. This way, the observation of
a system by another system is realized when such a mutual perturbation results in a sufficient
amount of information obtained by the observer during the observation so that it informs
about the behaviour of the system being observed. In summary, the act of observing is a
particular type of mutual perturbation in which sufficient mutual information is preserved
between the system being observed and the knowledge obtained by the observer during the
act of observing. In the context of FDDDSs and algorithmic perturbations, the act of observing
occurs when both the formal observer system and the observed FDDDS are algorithmically
perturbing each other in such a way that the post-perturbation behaviour of the formal
observer system contains sufficient algorithmic information about the behaviour of the observed
FDDDSs. This is formalized in [1, Definition 3.4].

As demonstrated in [1], this definition of the act of observing is general enough to encompass
the case in which observation takes place, but it is defective. That is, when O observes S at time
instant t and it only obtains partial information about S. In other words, this defective information
about S can differ from the actual information about S, but only up to a bounded error margin
(given by the constant cO that does not depend on S and only depends on O), which instantiates
and delimits the subjective nature of the act of observing. Intuitively, this observation may only
be acquiring partial information, and not all the desired information, due to: either intrinsic
limitations of the properties of the formal observer system, such as limited sensory capabilities or
measurement accuracy; a stronger effect of the algorithmic perturbation P(O,S,t) from O into S at
time instant t; or both. In all such examples, the subjective character of the formal observer system
is evinced, subjectivity which is reflected in the value of the constant cO.

In addition to defective observations, in some cases the observation can be ideal or perfect. An
ideal observation takes place not only when the constant cO is small, but also when there is a fixed
program p (which does not depend on both the observer and the observed system) that computes
the behaviour of the observed FDDDS. Thus, a perfect observation is understood to be perfect or
ideal not only because the particular observer gathered all the information about the observed
system’s behaviour so that there is an algorithm that can retrieve the very observed system’s
behaviour from the internal states of the observer, but also because this holds from the perspective
of any possible observer that knows that algorithm. Changing the scope to stochastic processes
instead of deterministic processes, this notion of perfect observation may be tightly connected to
the concept of perfect observation of a (stochastically) random variable in [28]. Polani [28] defines
a perfect observation as one where the number of random variables that constitute the observer
is sufficiently large so that the conditional entropy of the observed system, given these random
variables, is as small as one wishes. Then, the increase of intrinsic information within all these
variables over time is proposed as a measure of self-organization. Further research is necessary to
investigate how the results of the present article are related to emergence and dependence on the
observer in the context of stochastic processes.
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(a) ODE
Intuitively, emergence of algorithmic information occurs when the formal theory known by
the observer is not sufficient for computing, predicting or completely explaining the system’s
future behaviour from its constituent parts or prior conditions. In the process of trying to
explain or predict the behaviour of an observed system, the observer employs the resources
available, its own previously held formal knowledge and the information it could gather from the
observation.

The main idea of ODE is that, even if one takes into account equivalent methods to measure
the irreducible information content (given the presence of the constant cI), the error margin
of defective information in the observation (given the presence of the constant cO), and the
algorithmic informational cost of processing all the information that the observer could gather
(given the presence of a constant ce which also only depends on the observer and not on the
observed system), there is still an insufficient amount of algorithmic information to compute the
future behaviour of the observed system ([1], Definition 4.1). That is, all the subjective factors
of measurement, information acquisition and processing considered, the formal observer system
still cannot produce a sufficient amount of algorithmic information in order to be able to compute
the future state space trajectory of the observed FDDDS. More specifically, the presence of the
three object-independent constants cI, cO and ce sets the extent to which such an invariance and
robustness of ODE hold when the formal observer system is trying to compute or predict the
behaviour of a system. Because these constants depend on the formal observer system and not on
the object (i.e. the observed system), they serve the dual purpose of expressing the capabilities of
the formal observer system, while still taking into account the inherent subjectivity of the formal
observer system, which is the distinctive feature of ODE [1]. In summary, the comprehensiveness
of ODE is that, after these three subjective constants are set to values as large as one wishes
(but still finite), the only subjective characteristic of the formal observer system that can change
whether the future behaviour of the observed FDDDS appears emergent or not is the formal
theory held by the observer.

As demonstrated in [1], the future behaviour of the observed FDDDS may appear emergent
to a formal observer system, while non-emergent to another formal observer system. This is
because, if a finite extra amount of algorithmic information is sufficient for the first formal
observer system to predict the emergent behaviour of the observed FDDDS, then this finite
extra amount of algorithmic information can always be converted into a new extended version
of the formal theory, which the first observer had. Hence, the second formal observer system
equipped with this new extended formal theory can compute the behaviour of the observed
FDDDS that was considered to be emergent by the first observer. To the second observer, the
behaviour of the observed FDDDS ceases to appear emergent. Thus, in cases which the emergence
of algorithmic information results from a lack of a finite amount of algorithmic information, these
emergence phenomena can be classified as being dependent on the observer precisely because of
this dependence on the prior formal knowledge.

As an illustrative example of this dependence, suppose that Peano arithmetics is consistent (i.e.
it does not prove contradictions) and that a formal observer system simulates a two-tape Turing
machine whose first tape is empty while its second tape contains an encoding of the axioms of
Peano arithmetics, so that this two-tape Turing machine tries to prove whether or not the received
input in the first tape is a true arithmetical sentence by only using Peano arithmetics. Suppose
now that an algorithmic perturbation during the observation causes the arithmetical sentence
‘Con(PA)’ (which asserts the consistency of Peano arithmetics) to be encoded into the first tape of
such a formal observer system. Then, we know that this two-tape Turing machine will never halt,
and therefore the formal observer system will necessarily be simulating a non-halting program.
This holds because of the incompleteness of Peano arithmetics [29].

Now, suppose that another formal observer system simulates a two-tape Turing machine
whose first tape is empty and has the axioms of Peano arithmetics plus the extra axiom ‘Con(PA)’
encoded into its second tape. Then, in case an algorithmic perturbation during the observation
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causes the arithmetical sentence ‘Con(PA)’ to be encoded into the first tape of such a formal
observer system, the formal observer system will be simulating a halting program that proves
the consistency of Peano arithmetics.

In [4], a weakly emergent phenomenon is defined as one for which the macro-level states of a
system can only be derived by simulating the system itself. Later, Bedau [30] refines the notion
of derivability in this definition, introducing the notion of explanatory incompressibility. For
example, in Conway’s Game of Life, one cannot in general decide from the initial configurations
whether or not a macrostate behaviour will have a certain property. Only by simulating the game
would it be possible to gain sufficient irreducible information about whether or not the macrostate
behaviour has a specific property.

Bedau [4,30] characterizes weak emergence in an informal approach that does not specify
the role of the observer, how the micro-level states are observed, how one decides whether
or not something is derivable or incompressible and the time instants when the events occur.
Nevertheless, for present purposes, one can assume a free interpretation of the notions presented
in [4,30] and translate the definition of weak emergence into the context of FDDDSs, algorithmic
perturbations and algorithmic information as a slight variation of ODE ([1], Definition 4.1) by
adding to the incompressibility condition the condition of the existence of another observer that
can compute the state space trajectory by simulating the very state space trajectory [1]. This way,
since such a ‘simulation irreducibility via explanatory incompressibility’ in [4,30] implies that
there are conditions in which [1, Definition 4.1] is satisfied, and vice versa, we argue that the
weak emergence described in [4,30] can be understood as an informal alternative, but one that is
equivalent to the ODE ([1], Section 4.1.1).

It is claimed in [4] that the simulation irreducibility is a property that is not dependent
on the current limited knowledge of the observer. Under our interpretation of the ‘simulation
irreducibility via explanatory incompressibility’, this claim becomes true or false depending on
whether or not one restricts the possibilities of the formal theory that any formal observer system
may have access to. For example, if every observer (which does not simulate the observed system)
can only know the same formal theory and all of them are subjected to the same constants ce,
cO and cI, then one can argue that such a claim as made in [4] indeed holds. However, in case
any formal theory may be encoded into the second tape of a formal observer system, one can
straightforwardly employ ([1], Definition 4.1) to demonstrate that such a claim becomes false (see
[1], Section 4.1.1).

Another model for FDDDSs in which a type of emergence occurs may be found in [3,31]. If the
interaction of a (finite) dynamical system A with its environment E (i.e. another finite dynamical
system) gives rise to a recurrent state space trajectory whose length is greater than the length of all
the other recurrent state space trajectories of any isolated system of the same size as A, the pair of
systems A and E is said to exhibit unbounded evolution. If the newly emerging recurrent state space
trajectory from the interaction between A and E is not contained in any of the other recurrent state
space trajectories of any isolated system of the same size as A, the pair of systems A and E is
said to exhibit innovation. In addition, since interaction with the environment can introduce state-
dependent changes in the evolution rules of system A, the increase of the recurrence time shown
in the models investigated in [3] can be classified as an example of emergence through downward
(or top-down) causation [3,32,33]. Downward causation is usually described in the literature as a
type of process in which the global (or macro-level) dynamics of the system as a ‘whole’ gains
causal efficacy over the micro-level systems (or parts) [6,32,34].

Note that in the models of cellular automata in [3], the interaction with the environment
can produce changes, i.e. perturbations, in the evolution rule of system A. So it differs from
algorithmic perturbations because the latter impact the states of system A instead of its evolution
rule. In fact, one can reduce each state-dependent rule perturbation of a cellular automaton A
in [3] to an equivalent algorithmic perturbation on an equivalent universal cellular automaton
that emulates A. To this end, just note that every finite cellular automaton is computable by
a Turing machine and there are universal cellular automata (for example, elementary cellular
automaton Rule 110) that can simulate any Turing machine [1]. Thus, for each state-dependent
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rule perturbation in [3], one can construct such an equivalent algorithmic perturbation and
then demonstrate that there is a constant ce for which ODE (as in [1], Definition 4.1) implies
unbounded evolution and innovation (see [1], Section 4.1.1). Additionally, it can be employed to
prove that unbounded evolution and innovation define a type of emergence that is dependent on
the observer’s prior knowledge ([1], Section 4.1.1). Thus, the kind of emergence from unbounded
evolution and innovation is dependent on the observer’s formal knowledge, and one can always
choose a constant ce such that unbounded evolution and innovation is implied by the ODE. In
attempting to show that the two approaches are equivalent, it is important to note that models
displaying an empirical tendency toward an increase in algorithmic complexity were investigated
in [3]. In this line of research, the inverse problem (that is, to prove that a FDDDS displaying
unbounded evolution and innovation always implies that there is at least one constant ce for which
the state space trajectory of [1, Definition 4.1] is satisfied) constitutes necessary theoretical research
that remains to be done.

(b) AOIE
The next question that naturally arises is whether such an approach can be extended to formalize
an emergent phenomenon that continues to be emergent for any observer.

The definition of AOIE also imports from ODE the robustness vis-a-vis the subjective factors
of measurement, information acquisition and processing. However, the distinctive main defining
idea is that a FDDDS displays AOIE if, for every formal observer system, there is a certain stage
of the FDDDS from which a certain yet unavailable amount of algorithmic information begins to
be necessary to compute the future behaviour of the observed FDDDS (see [1], Definition 4.2). In
other words, for every formal observer system, there is a certain stage at which the subsequent
behaviour of the observed system begins to display the ODE. There might be a formal observer
system that can compute a finite-length state space trajectory of the FDDDS, but if it displays
AOIE, then it is guaranteed that this formal observer system will eventually cease to be able
to compute its behaviour. This is the reason AOIE is an emergence that is guaranteed to be
independent of the observer, but only at the asymptotic limit. For example, at each stage of a FDDDS
displaying AOIE, the strongest emergence that it can display to a particular formal observer
system is ODE, but eventually any other formal observer system that might try to compute the
subsequent behaviour of the FDDDS will be outdone and, therefore, any other formal observer
system will eventually also experience ODE.

Emergent phenomena can usually be divided into two kinds [6,35]: a temporal version in
which emergence occurs over time as the system interacts with the environment (for this
reason it is called diachronic emergence [6,34]); and a holistic (or synchronic) version in which
emergence occurs as a distinctive feature of the ‘whole’ in comparison to the parts [6,34].
Suppose a system displays the temporal variant of the AOIE. In this case, for every observer,
there is a time instant that triggers a phase transition for which, if the behaviour of the system
does not appear emergent to the observer until such time instant, then it will start to appear
emergent after this time instant. Now, suppose another system displays the holistic variant of
the AOIE. In this case, for every observer, there is a distinctive macro-level characteristic (e.g.
the size of the system or the number of constituent parts) that triggers a phase transition for
which, if the behaviour of the system does not appear emergent to the observer until such
a characteristic is manifested, then it will start to appear emergent once this characteristic
manifests. In the following §3b(i),(ii), we will first present an evolutionary model that displays
the temporal AOIE. Then, we will present a model for networked systems that display the
holistic AOIE.

(i) A model and example of temporal AOIE in evolutionary systems

In [5,36,37], a theoretical model for the open-ended evolution of programs (or Turing machines)
is presented with the purpose of obtaining a mathematical proof of Darwinian evolution
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within the framework of AIT. Inspired by (but not limited to) evolutionary biology, this
field is called metabiology and in a general sense it constitutes a pursuit of mathematical
proofs of meta-level fundamental properties and quintessential ‘laws’ in evolutionary
systems [38].

The cumulative evolution model is defined in [36,37] as a sequence of sole (resource-
unbounded) Turing machines that evolve over time due to the transformations effected by
randomly generated algorithmic mutations. Thus, in accordance with evolutionary biology,
not only are these Turing machines subjected to randomly generated mutations and natural
selection, but they may also inherit information from their predecessors. Chaitin [36] presents
a theoretical analysis of the expected sufficient number of algorithmic mutations for reaching a
fitness value that necessarily requires n bits of irreducible information content to be computed.
Indeed, in the cumulative evolution model, n bits of algorithmic information is proved to
be achieved over a realistically small number of randomly generated mutations. Due to the
known mathematical properties of algorithmic information such as invariance and minimality,
this shows that a quantity of irreducible information content is achieved in a realistically
fast mutation time through randomly generated mutations applied to evolving programs
that can inherit past information. In particular, Chaitin [36] demonstrates that n bits of
algorithmic complexity is expected to be reached after O (n2(log(n))2) randomly generated
algorithmic mutations. This result is achieved by employing a theoretical analysis of the resulting
algorithmic complexity from certain algorithmic mutations that are expected to occur over time.
Abrahão [39,40] then demonstrated that the results for resource-unbounded Turing machines in
the former cumulative evolution model trickle down to the realistic resource-bounded case: n bits
of time-bounded algorithmic complexity is expected to be reached after O (n2(log(n))2) randomly
generated time-bounded algorithmic mutations in the cumulative evolution of time-bounded Turing
machines.

These abstract evolutionary models were then corroborated by empirical results in [41],
not only showing that randomly generated algorithmic mutations produce a speed-up in
adaptation in comparison with the uniformly random point mutations (which are the usual
random mutations under consideration in mainstream models based on evolutionary modern
synthesis), but also that it may be related to explanations of the occurrence of modularity, diversity
explosions and massive extinctions.

We note that algorithmic mutations as in [36,37] are exactly the algorithmic perturbations
we introduced in §3, except that in these particular evolutionary models, the algorithmic
perturbations are randomly generated by following the usual i.i.d. probability distribution of
prefix-free binary sequences.

In this manner, one can combine the result from Chaitin [36] and the definition of AOIE in
order to demonstrate the existence of an evolutionary process that displays AOIE ([1], Theorem
4.1). The main idea is that the cumulative evolution of sole Turing machines under successive
perturbations performed by the randomly generated algorithmic mutations—an evolutionary
process which results in an infinite sequence P of Turing machines—is able to guarantee
(with a probability as high as one wishes) that the emergence of algorithmic information in
the resulting sequence P is larger than any formal observer system can keep up with in the
long run.

The kind of emergence shown in such an evolutionary AOIE falls under the diachronic
variant of AOIE. In particular, the open-endedness proved in [36] strictly refers to the unbounded
increase of complexity over time, as the evolution unfolds. For this reason, it is called evolutionary
open-endedness [2,42]. Another example of diachronic emergence and open-endedness is the
one presented in [3], which we discussed in §3a. As we have already demonstrated, the
distinctive feature of emergence in the diachronic AOIE is that it is asymptotically independent
of the observer’s formal knowledge, while emergence in [3] is dependent on the observer’s
formal knowledge. In this sense, we can also adopt the convention of classifying evolutionary
AOIE as asymptotically observer-independent diachronic open-endedness and the emergence in [3] as
observer-dependent diachronic open-endedness.
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(ii) A model and example of holistic AOIE in networked systems

The pervasiveness of non-homogeneous network topological properties has fostered the recent
field of network science and showed its important role in complex systems science [43]. In
this regard, motivated by the pursuit of a unified theory of complexity in network science
and complex systems science [44,45], the theory of algorithmic networks [2,42,46] allows the
investigation of how network topological properties can trigger emergent behaviour that is
capable of irreducibly increasing the computational power of the whole network. An algorithmic
(complex) network N is a population of computable systems whose members can share
information with each other according to a complex network topology. Each node of the network
is a computable system and each (multi-dimensional) edge of the network is a communication
channel.

In [2], it is shown that there are network topological properties, such as a small diameter,
associated with a computationally cheap and simple communication protocol of plain diffusion
that asymptotically trigger an unlimited increase in expected emergent algorithmic complexity of
a networked node’s final output as the number of nodes increases indefinitely. The diameter of
a network (or graph) is the length of the longest shortest path from any node to any other node
[47]. The diameter is said to be small if the diameter grows by a logarithmic order of the number
of nodes [43] and such a small-diameter phenomenon is one of the important properties found in
both real-world and synthetic networks [43,48].

The unlimited increase of expected emergent algorithmic complexity obtained in [2] is
called expected emergent open-endedness (EEOE) [2,42] and—by simplifying the notation from
Abrahão et al. [2,42] to serve our present purposes—it may be mathematically defined by

lim
N→∞

EN

(
�net

iso K (oi, c)
) = ∞, (3.2)

where: EN(·) gives the average value over all possible randomly generated nodes in the
algorithmic network N; �net

iso K (oi, c) is the emergent algorithmic complexity of a node oi in c
communication rounds, which is defined by the difference between the algorithmic complexity of
the node oi in c communication rounds when running networked and the algorithmic complexity
of the node oi in c communication rounds when running isolated from any other node; and N is the
total number of nodes in the algorithmic network N. Note that the limit in the definition of EEOE
eventually neutralizes any pair of constants c I that one may subtract or add to this difference.
Thus, one can equivalently define the EEOE as

lim
N→∞

EN(�net
iso Iac (oi, c)) = ∞.

In case an algorithmic network displays EEOE, this means that the expected algorithmic
information necessary to explain the networked behaviour of a node eventually starts to grow
faster than the expected algorithmic information necessary to explain the isolated behaviour of
the same node. That is, as the number of nodes grows toward infinity, the algorithmic complexity
of the networked behaviour of the node is increasingly larger, on average, than the algorithmic
complexity of the isolated behaviour of the node.

The proof of the occurrence of EEOE in the models studied in [2] is achieved by employing
a theoretical analysis of the trade-off between the number of communication rounds and the
average density of networked nodes with the maximum algorithmic complexity. There is an
optimum balance between these two quantities where, if a large enough average density of
these nodes is achieved in a sufficiently small number of communication rounds, then EEOE
is triggered.

Instead of the communication protocol of plain diffusion employed in [2], Abrahão et al. [42]
show that a susceptible-infected-susceptible contagion scheme [49,50] in algorithmic networks
with a power-law degree distribution is also sufficient for triggering EEOE. In [51], it is shown that
a slight modification in the communication protocol of plain diffusion from Abrahão et al. [2] is
sufficient for enabling the whole algorithmic network to synergistically solve problems in a higher
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computational class than the computational class of its individual nodes. These results show
that network topological properties found in complex networks can indeed trigger emergence
of increasing computational power of the whole network with respect to its constituent parts.

As we mentioned in §3b(i), it was shown in [39,40] that the evolutionary open-endedness from
Chaitin [36,37] also applies to the resource-bounded case. Regarding the EEOE from Abrahão
et al. [2,42], further research is needed for establishing how a resource-bounded version of the
EEOE in algorithmic networks unfolds mathematically.

Let S = (S(1), S(2), . . . , S(k), . . .) be a FDDDS in which every contiguous subsequence of its entire
state space trajectory is a state space trajectory of a particular S(k) (see [1], Section 4.2 for a formal
definition). Now, to show the existence of the holistic variant of AOIE, we slightly extend our
notation to encompass the case of macro-level dynamical systems that are composed of other micro-
level dynamical systems. This will allow us to further explore the necessity of extra algorithmic
information at a certain stage of a system when the macro-level dynamical system has reached a
sufficiently large size. Let S denote a FDDDS from which each (macro-level) state S �t

t at time
instant t is a fixed arrangement of all the (micro-level) states Si �t

t with 1 ≤ i ≤ N, where t is
an arbitrary time instant and N is the total number of dynamical systems in the form Si that
composes S. So, each FDDDS Si is a constituent part of the larger FDDDS S and the organized
collection of all Si, with 1 ≤ i ≤ N, defines the entire S ([1], Section 4.2.2). For example, in case S is
a bidimensional FDDDS, each state of S at time instant t can be represented as a matrix in which
each entry represents a single state of Si at time instant t, where N = mn and m is the number of
rows and n is the number of columns. The choice of the arrangement of the micro-level FDDDSs
is arbitrary and, as long as this choice is fixed, it does not change our final results.

Now, we construct the FDDDS Si until time instant t, corresponding to the node oi running
isolated. Secondly, we construct the FDDDS S′

i from time instant t + 1 until t′, corresponding
to the node oi running networked. Thus, a node oi receiving information from its neighbour
nodes (according to the network topology) is equivalent to the FDDDS S′

i being algorithmically
perturbed by its neighbour FDDDSs (according to the same network topology). Then, we combine
these micro-level FDDDSs Si and S′

i in order to form the macro-level dynamical systems S and
S′, which refer to the isolated and networked case, respectively. Summing up, S′ is a population
of randomly generated FDDDSs that can perturb each other according to the network topology.
On the other hand, although S is composed of the same population of S′, no FDDDS in S can
perturb other FDDDSs in S.

In this way, one can show that the state space trajectory of any of the micro-level systems S′
i

of the macro-level S′ is expected to display AOIE with a probability as high as one may wish
as the network/population size increases indefinitely ([1], Theorem 4.2). That is, even if a formal
observer system can computably predict the expected behaviour of an isolated micro-level system
Si, there is a phase transition for which, if the expected behaviour of a networked micro-level
system S′

i does not appear emergent to this observer, then it will start to appear emergent once
the number of micro-level systems is sufficiently large.

While the temporal (or diachronic) variant of AOIE presented in the previous §3b(i) occurs
over time due to successive perturbations from the environment into the system P, the variant
of AOIE in the previous paragraph occurs due to the interaction (in the form of perturbations)
between the micro-level systems S′

i as the number of these micro-level systems (contained in
the macro-level system S′) increases. Thus, the sort of process that gives rise to such an AOIE
differs from the one in §3b(i) in the same manner as the holistic variant of emergence differs
from the temporal (or diachronic) one. For this reason, AOIE in the previous paragraph falls
under the holistic variant of emergence. Hence, one can adopt the convention of calling this
kind of open-endedness in the holistic variant of AOIE asymptotically observer-independent holistic
open-endedness.

The holistic variant of AOIE demonstrates that, for sufficiently large S′, the expected
behaviour of a networked micro-level system S′

i is overruled by the algorithmic-informational
dynamics of the algorithmic perturbations produced according to the network topology.
This occurs because the algorithmic information of the dynamics of an isolated Si is
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eventually not sufficient for computing the expected networked behaviour of S′
i, while the

total algorithmic information shared through the network is. Thus, it constitutes an expected
downward causation in FDDDSs (or in networked computable systems), which also offers the
advantage of this expected downward causation being independent of the observer at the
asymptotic limit.

4. Weak, intermediate or strong emergence
In a broad sense, if weak emergence is characterized by phenomena that are in principle deducible
or derivable from the simple initial or micro-level conditions, but that appear as unexpected at
a higher coarse-grained level due to the lack of information, resources or knowledge, one can
classify the ODE in §3a as weak emergence. This agrees with the approach to weak emergence
as unexpectedly complex behaviour in [6], as explanatory incompressibility in [30] (see §3a),
and as type 0 and 1 weak emergence in [35]. Indeed, since there is always the possibility of
another observer existing to which the phenomenon ceases to appear emergent, then ODE is,
‘in principle’, deducible or derivable at the same time that there are observers for which the
emergent behaviour is ‘truly’ incompressible and relatively uncomputable. The term ‘truly’ is
employed here in the precise sense that such an incompressibility or relative uncomputability
does not depend on the method chosen to measure the information content, on the errors or
distortions in the act of observing itself, or on the algorithmic-informational cost to process
the information gathered from the observed system in accordance with the observer’s formal
knowledge.

On the other hand, classifying the AOIE in §3b is not so easy. The crux of the matter lies
not quite in the notion of reducibility, derivability or predictability (as in our case they have
a formal unambiguous translation into sufficient algorithmic information) as in the phrase ‘in
principle’. If ‘in principle’ means that the phenomenon should remain emergent for every formal
observer system that belongs to the same computational class as the observed systems, then
AOIE could be interpreted as a type of strong emergence. This is because for every formal
observer system of the same computational class (e.g. with the same Turing degree or in the
same running time complexity class) of the observed state space trajectories, the behaviour of an
observed system that displays AOIE will eventually cease to be computable or predictable in the
long run.

For example, assume a Church–Turing hypothesis in which everything our mathematical
theories can infer or formalize by employing step-by-step effective methods is attainable by
finitely axiomatizable theories, or by Turing machines. As a consequence, our mathematical
theories will not be able to, in general, decide whether or not the infinite asymptotic behaviour
of a state space trajectory of a FDDDS continues to be uncomputable by those theories. At the
same time, the information carried or conveyed by any finite-length state space trajectory of a
FDDDS can always be added to prior formal theories in order to construct more overarching
new formal theories. Therefore, since AOIE implies ODE for infinitely many time steps in
the future, the Church–Turing hypothesis entails that a system displaying AOIE (and, in
this case, strong emergence) will always be understood as displaying ODE (and therefore
the aforementioned weak emergence), while in fact never ceasing to display ODE (or weak
emergence) for any possible mathematical theory we might devise. In other words, under the
Church–Turing hypothesis, if AOIE is considered strong emergence, then this type of strongly
emergent phenomenon is a pseudoparadoxical type of emergent phenomenon that is always
mathematically understood as weak emergence by us, while in fact displaying strong emergence
(if an hypothetical observer could know the point of view of every observer). Note that, not
only under the Church–Turing hypothesis, such a pseudoparadox of emergence also holds as
long as every observer and every observed state space trajectory of a system belong to the same
computational class.

Another form of strong emergence has been described as the ultimate necessity of novel
fundamental powers or laws to scientifically explain the macro-level behaviour of a system



16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20200429

...............................................................

[34]. In the context of FDDDSs or computable systems, AOIE offers a proof of this necessity,
but now formally expressed as the never-ending necessity of new axioms (or new algorithmic
information).

Type 2 strong emergence is introduced in [35] as a type of emergence that occurs when the
behaviour of a macro-level system is sufficiently influenced by constraints (or external factors) to
which the macro-level system is subjected, and these constraints do not apply to (or cannot be
derived from) the micro-level constituent parts. Thus, due to the presence of expected downward
causation in §3b(ii), one can also successfully argue that the systems S′ satisfy type 2 strong
emergence in [35].

However, if ‘in principle’ does not restrict the computational class of the observer, then AOIE
can be brought back to the weak case. This is because although no (finite) formal axiomatic
theory held by the observer can compute the observed system in the long run, there may be oracle
observers that can, if the evolution rule of the observer itself belongs to higher Turing degrees.
For example, it is true that both the sequence P of Turing machines in §3b(i) and the macro-level
FDDDS S′ in §3b(ii) cannot be computed by formal observer systems at the asymptotic limit, but
both can be computed by an oracle machine of Turing degree 0’ . In other words, if one allows
observers to have access to an infinite source of algorithmic information, e.g. by filling out the
infinite second tape of O with a halting probability (or Chaitin’s Omega number) [17,52], there are
systems that satisfy the definition of AOIE at the same time that they are relatively computable
by a special observer. Thus, in cases where one believes in the existence of strong emergence that
resists ontological characterization in terms of physical or informational causal efficacy, such as
the emergence of qualia in the conscious mind [6,34], it becomes consistent to classify AOIE as a
type of weak emergence.

Although not constraining the computational class of the observer may seen reasonable, one
is inherently assuming that there are ‘special’ observers that belong to a higher computational
class than that of all the other systems that can be observed by them, an assumption which per
se is just another type of constraint to be applied to the definition of AOIE. One way to avoid
this assumption, while still remaining consistent with the fact that AOIE is a stronger form of
emergence than is usually considered weak emergence (which generally falls under the ODE) is
to classify AOIE as a type of intermediate emergence [6]. This kind of terminology has been proposed
by Chalmers [6] to deal with a type of emergence that arises from a fundamental epistemological
limitation, given the known physical laws at the time of observation. In this sense, intermediate
emergence is predicated upon the unbridgeable incompleteness of the observer’s knowledge, so
that even ‘in principle’ one would not be able to deduce the macro-level complex behaviour,
which is still ‘in principle’ determined by irreducible new laws that one always needs to devise
or discover in the future, as also claimed in Cooper [53] where emergence is suggested to be a
consequence of uncomputability.

Classifying AOIE as intermediate emergence implies an underlying assumption of the
existence (or scientific pertinence) of a stronger form of emergence, which is an open
problem. Nevertheless, we consider both hypotheses (i.e. with or without ‘special’ observers)
of mathematical and scientific relevance and worth pursuing. For present purposes, since we
have only dealt with formal axiomatic theories and not with physical, chemical or biological
theories in general, we adhere to what our theoretical results imply, and therefore we avoid
the claim of classifying AOIE as either weak, strong or intermediate emergence. What we
have shown is that, restricted to the context of AID, FDDDSs, computable systems and formal
observer systems, the AOIE is the strongest form of emergence that formal axiomatic theories can
attain. Algorithmic information and algorithmic randomness have demonstrated and captured
fundamental properties that underlie the incompleteness of formal theories and the limits of
mathematics [17–19]. Thus, within the scope of this article, it may not come as a surprise that AIT
turns out to be the key to formalizing emergence up to the limits that our formal mathematical
knowledge can grasp.
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5. Conclusion
Within the scope of AID, this article studies the fundamental role that algorithmic information
plays in the act of observing and in the occurrence of emergent phenomena in discrete
deterministic dynamical systems and computable systems.

We have formalized the act of observing a system as mutual perturbations occurring between
the observer (which is itself a system) and the observed system. Formal observer systems
are systems that already know a formal axiomatic theory, which they can apply in order to
compute the future behaviour of the observed system. As a consequence, we show that a (finite
discrete deterministic dynamical) system displaying emergent behaviour with respect to an
observer constitutes a type of emergence of algorithmic information that is invariant and minimal.
Although it depends on the observer’s formal knowledge, this emergence is robust vis-a-vis
variations of the arbitrarily chosen method of measuring irreducible information content, errors
(or distortions) in the very act of observing and variations of the algorithmic-informational cost of
processing the information gathered from the observed system in accordance with the observer’s
formal knowledge. Thus, this type of emergence is called ODE.

Then, we investigated the unbounded and rapid increase of emergent algorithmic information,
which defines a type of emergence that we call AOIE. In addition to the above invariance,
minimality and robustness, any formal axiomatic theory that a formal observer system might
devise will eventually fail to compute or predict the behaviour of a system that displays AOIE.
Thus, although each formal observer system retains its own subjectivity, as in the above ODE,
AOIE defines a type of emergence that outdoes any subjectivity at the asymptotic limit.

We have shown that there is an abstract evolutionary model that displays the temporal (or
diachronic) variant of AOIE, which guarantees that no formal observer system is able to always
compute the behaviour of evolutionary computable systems in the long run. We have also
shown that there is an abstract model for networked systems that displays the holistic variant of
AOIE, which guarantees that no formal observer system is able to always compute the expected
behaviour of a micro-level subsystem as the size of the macro-level system becomes sufficiently
large.

We also compared the ODE and AOIE studied in this article with weak and strong emergence
in the literature. Depending on the interpretation of the phrase ‘in principle’ in the usual
definitions of weak and strong emergence, AOIE can be classified as weak, intermediate or
strong emergence. In any event, the results of the present article show that, within the context
of FDDDSs, or computable systems, AOIE is the strongest version of emergence that formal
axiomatic theories can grasp or capture. Whether this claim can be extended to stochastic
processes, other physical systems and physical theories, and other complexity measures is a
problem that needs further discussion and future research. Nevertheless, given the relevance of
formal axiomatic theories in mathematics and science in general, we consider the strength of
AOIE demonstrated in this article to be remarkable.
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