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Systematic validation of structural brain
networks in cerebral small vessel disease
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Abstract

Cerebral small vessel disease (SVD) is considered a disconnection syndrome, which can be quantified using structural

brain network analysis obtained from diffusion MRI. Network analysis is a demanding analysis approach and the added

benefit over simpler diffusion MRI analysis is largely unexplored in SVD. In this pre-registered study, we assessed the

clinical and technical validity of network analysis in two non-overlapping samples of SVD patients from the RUN DMC

study (n¼ 52 for exploration and longitudinal analysis and n¼ 105 for validation). We compared two connectome

pipelines utilizing single-shell or multi-shell diffusion MRI, while also systematically comparing different node and edge

definitions. For clinical validation, we assessed the added benefit of network analysis in explaining processing speed and

in detecting short-term disease progression. For technical validation, we determined test-retest repeatability.

Our findings in clinical validation show that structural brain networks provide only a small added benefit over simpler

global white matter diffusion metrics and do not capture short-term disease progression. Test-retest reliability was

excellent for most brain networks. Our findings question the added value of brain network analysis in clinical

applications in SVD and highlight the utility of simpler diffusion MRI based markers.
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Introduction

Cerebral small vessel disease (SVD) is a leading cause

of vascular cognitive impairment and loss of indepen-

dence in the elderly. Sporadic SVD, related to increased

age and arterial hypertension, is particularly common

with a prevalence up to 50% in individuals over the age

of 70.1,2 While neuroimaging features currently used in

clinical routine are typically based on visible lesions –

such as white matter hyperintensities, lacunes, and

microbleeds3 – there is a move towards quantitative

markers for measuring disease burden and progression.

Measures based on diffusion MRI, such as diffusion

tensor imaging, have shown high potential as quantita-

tive markers. They allow detecting subtle white matter

changes, are strongly associated with clinical deficits

and provide excellent reliability.4,5

Diffusion MRI analysis approaches differ substan-

tially in their complexity, both in terms of data

acquisition and subsequent processing.6 Because SVD
is considered a disconnection syndrome,7 brain net-
works based on tractography and graph theoretical
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analysis of network structure are regarded as a compel-
ling approach for quantifying clinically relevant brain
network alterations in SVD. These structural brain net-
works are based on fiber tractography and pre-defined
regions-of-interest, i.e. the nodes, which are connected
via white matter tracts, i.e. the edges. The correspond-
ing network architecture is quantified with graph-
informed measures, such as global efficiency,8 which
has proven to be the most sensitive graph measure to
capture brain alterations in SVD.9 Several studies sug-
gest a high potential of structural network analysis for
characterizing SVD burden, for exploring the under-
pinnings of symptoms or for predicting the disease
course.10–12

There are, however, several critical knowledge gaps
that are considered major roadblocks for further appli-
cation in research and clinical routine. Network anal-
ysis is a highly demanding diffusion MRI analysis
approach, and the added benefit over simpler diffusion
MRI analysis has so far not been systematically
assessed. Also, connectome pipelines depend on arbi-
trary choices, especially in terms of tractography algo-
rithm and the definition of nodes and edges. Of
particular interest are more elaborate tractography
algorithms, which better model the complex fiber archi-
tecture of the brain, but typically rely on a more
demanding data acquisition, such as multi-shell diffu-
sion imaging and high-angular resolution.13 These dif-
ferent choices have so far not been systematically
compared in SVD. Previous studies suggest that most
graph metrics capturing structural network architec-
ture show good to excellent test-retest reliability in
healthy young volunteers.14 Importantly, the reliability
of the network analysis approach in SVD is largely
unknown, but is a crucial factor for clinical application.

The goal of this pre-registered study was a system-
atic clinical and technical validation of structural brain
network analysis in SVD. We applied two different
connectome pipelines, utilizing single-shell or multi-
shell diffusion MRI data, while also systematically
comparing different node and edge definitions. For
exploration and independent validation, we used two
non-overlapping patient samples with state-of-the-art
diffusion MRI from the RUN DMC study.1,15

For clinical validation, we assessed the added benefit
of structural brain network analysis in explaining proc-
essing speed deficits, the main cognitive deficit in SVD,
and in detecting disease progression over time. Our pre-
specified hypotheses were that i) compared with
simpler global white matter diffusion metrics, brain
network analysis better explains processing speed defi-
cits and better captures disease progression over time,
and ii) a more elaborate connectome pipeline using
multi-shell data and constrained-spherical deconvolu-
tion-based tractography outperforms a simpler

deterministic connectome pipeline using single-shell
data. For technical validation, we assessed test-retest
repeatability in a high-frequency serial imaging longi-
tudinal dataset.

Material and methods

Our study design, analysis plan, and hypotheses were
pre-registered and are available at https://aspredicted.
org/382ha.pdf.

Participants

We included data from SVD patients participating in
the RUN DMC study.15 For exploration, we used data
from the RUN DMC – InTENse sub-study (Radboud
University Nijmegen Diffusion tensor and Magnetic
resonance imaging Cohort – Investigating The origin
and EvolutioN of cerebral small vessel disease).1 In this
sub-study, 54 patients from the main study were invited
to a baseline MRI assessment, used for the cross-
sectional analysis, and a total of 9 monthly follow-up
MRI scans, used for the longitudinal analysis. For the
cross-sectional exploratory analysis, two patients were
excluded because of confounding neuropsychological
test results,5 which resulted in a final sample of 52 spo-
radic SVD patients.

For independent validation of the cross-sectional
results, we used a non-overlapping sample from the
3rd follow-up visit of the RUN DMC main study
(n¼ 183). Some patients had to be excluded due to
missing DWI data (n¼ 2), non-SVD infarcts (n¼ 6),
MRI protocol violation (n¼ 1), missing neuropsycho-
logical data (n¼ 16), or insufficient image quality
(n¼ 5). To ensure that results were not driven by out-
lier observations, we excluded five patients with Trail
Making Test (TMT) compound scores qualifying as
outlier according to the interquartile range criterion
(i.e., scores outside the range defined by the cut-
points of the first and third quartile plus 1.5 times the
interquartile range above and below). Since the
InTENse sub-study deliberately included a subset of
patients with higher lesion load, we restricted the
main study sample to SVD patients above 70 years of
age to keep disease severity roughly similar across both
samples (Table 1). This resulted in a final sample of 105
SVD patients for validation.

For the longitudinal analysis, we split the sample
from the RUN DMC – InTENse sub-study into an
exploration (n¼ 27) and validation group (n¼ 26)
while accounting for a similar number of visits and
disease severity (i.e. WMH volume) across groups.
A few visits had to be excluded from the longitudinal
analysis due to insufficient data quality, of which some
only became apparent during tractography (n¼ 7).
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Only patients with at least 3 MRI visits were included
for the longitudinal analysis, rendering the sample size
to 25 patients for exploration and 26 patients for val-
idation with a median of 9 (range 3–10) MRIs per
participant.

Study protocols were in accordance with the decla-
ration of Helsinki and approved by the medical
research ethics committee (CMO Arnhem-Nijmegen).
Written informed consent was obtained from all par-
ticipants prior to the start of the study.

Neuropsychological testing

Neuropsychological testing was performed following
identical protocols in both samples. We pre-specified
to focus on the core deficit in SVD, i.e. processing
speed, which was assessed by the time to complete
Trail Making Test matrix A and B. We derived age-
and education-corrected z-scores for matrix A and B
separately as based on healthy subjects4,5,16 and next
calculated the average to derive an established com-
pound score. Patients were further characterized with
respect to vascular risk factors (arterial hypertension,
hypercholesterolemia, diabetes, smoking status) and
activities of daily living (Barthel scale score).

MRI acquisition and conventional SVD
imaging markers

MRI scans were performed on a single 3 Tesla scanner
(Magnetom Prisma with 32-channel head coil; Siemens
Healthineers, Erlangen, Germany). Imaging protocols

in both studies were largely similar and included 3D

T1-weighted, 3D fluid-attenuated inversion recovery

(3D-FLAIR), and 3D gradient echo (T2*-weighted)

sequences. The diffusion MRI protocol was identical

in both samples and comprised a multi-band echo

planar imaging multi-shell diffusion-weighted imaging

sequence (repetition time 3220ms, echo time 74ms,

diffusion-encoding directions 30� b¼ 1000 s/mm2 and

60� b¼ 3000 s/mm2, 10� b¼ 0 images, multi-band

factor 3). One b¼ 0 image with inverted phase-

encoding direction was acquired for correction of

susceptibility-induced distortions during preprocessing.

A complete description of all sequence parameters can

be found in Table e1.
Conventional SVD imaging markers (white matter

hyperintensity [WMH] volume, lacune count, micro-

bleed count, brain volume) were quantified according

to the STRIVE consensus criteria.3 All volumes were

normalized to the intracranial volume. Details on the

calculation of conventional SVD imaging markers have

been described previously.17

Diffusion MRI preprocessing

Preprocessing steps included visual quality control,

Marchenko-Pastur principal component analysis-

based denoising, Gibbs artefact removal, and correc-

tion for susceptibility-induced distortions, eddy

current-induced distortions, as well as head motion.

This was done using tools from MRtrix3

(www.mrtrix.org/, version 3.0.0, dwidenoise,18–21

Table 1. Sample characteristics.

RUN DMC – InTENse

sub-study n¼ 52

RUN DMC main

study n¼ 105 p-value

Demographic characteristics

Age [years], median (IQR) 68.50 (8.25) 77.15 (8.19) <0.0001

Female, n (%) 18 (35) 48 (46) 0.2484

Vascular risk factors, n (%)

Hypertension 43 (83) 75 (72)a 0.2102

Hypercholesterolemia 25 (50) 62 (60)a 0.3318

Diabetes 6 (12) 16 (15)a 0.6843

Current or past smoking 37 (71) 72 (69) 0.8835

Clinical scores, median (IQR)

Processing speed z-score �0.15 (1.16) �0.18 (1.55) 0.6265

Barthel scale score 100 (5) 100 (5)a 0.8930

SVD imaging markers, median (IQR)

WMH volumeb [%] 0.35 (0.59) 0.31 (0.74) 0.7984

Lacune count 0 (0) 0 (1) 0.3648

Microbleed count 0 (1) 0 (1) 0.8816

Brain volumeb [%] 77.73 (5.35) 72.51 (4.79) <0.0001

IQR¼ interquartile range; WMH¼white matter hyperintensity.
aBased on n¼ 104 due to missing data for one patient.
bNormalized by intracranial volume.
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mrdegibbs21,22) and the Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software

Library (FSL; version 5.0.10 (RUN DMC –
InTENse), version 6.0.1 (RUN DMC main),
topup23,24 eddy25).

Skeleton-based, global white matter diffusion

markers

To assess the added benefit of structural brain network
analysis, we included measures of global white matter
integrity as reference, that were based on diffusion

tensor imaging (DTI) and diffusion kurtosis imaging
(DKI) metrics. DTI metrics were calculated using
‘dtifit’ in FSL (using only b¼ 0 and b¼ 1000 s/mm2

images) and DKI metrics using the Diffusional

Kurtosis Estimator (www.nitrc.org/projects/dke).26

For DTI, we included the most commonly used dif-

fusion metrics fractional anisotropy and mean diffusiv-
ity.27 For DKI, we included mean kurtosis and radial
kurtosis as reference metrics, since these showed the

highest association with processing speed in a previous
study.5

Global white matter measures of these metrics were
derived as average over a skeleton of the major white
matter tracts, as implemented in the tract-based spatial

statistics (TBSS) pipeline in FSL.27 The TBSS-based
registration to standard space and projections onto
the white matter skeleton was estimated from fraction-
al anisotropy images and then applied to all other dif-

fusion metrics. Prior to averaging, we applied a custom
mask to remove all areas from the skeleton that are
typically susceptible to cerebrospinal fluid partial

volume effects in SVD patients.4 The resulting global
white matter diffusion metrics will be referred to as
‘skeleton-based’ diffusion markers.

Overview of the structural brain network analysis

We applied two brain network pipelines (described in
detail in the following sections), using either single-shell

or multi-shell data as starting point. The key difference
between these two brain network pipelines was the
tractography approach. In the single-shell pipeline

(Figure 1, left), streamlines were tracked by following
the main direction of the diffusion tensor per voxel.
The multi-shell data (Figure 1, right) enabled a
more advanced tractography approach based on

constrained-spherical deconvolution (CSD), which
reconstructs complex fiber orientation distributions of
multiple fiber populations within a voxel. As such,

CSD-based tractography allows to track crossing
fibers, which occur in most white matter regions.28 In
addition to CSD, we improved the biological accuracy

of the streamline reconstruction by introducing

anatomical constraints (i.e. streamlines followed white
matter fiber orientation distributions, were terminated
when entering cortical grey matter and rejected when
entering fluid-filled regions; for full algorithm details
see original publication).29

We then applied a brain parcellation to the recon-
structed streamlines to form structural networks, which
are defined by a set of nodes (i.e., brain regions) and
edges connecting these nodes. Across both pipelines,
we defined the nodes based on the AAL atlas (auto-
mated anatomical labelling, 90 ROIs in total, after
excluding cerebellar regions) and the Brainnetome
atlas with a higher number of smaller regions (246
ROIs in total). Several commonly used edge definitions
were used to calculate edge weights (details are given
below for each pipeline).

Finally, we derived the global efficiency as a well-
established network marker of SVD burden from each
structural network (Figure 1, center bottom).
Efficiency between two regions is expressed as the
inverse of the shortest path length between two
regions,8 where the length of each possible path is
equal to the sum of the lengths of all edges in that
path. Global efficiency of the network is then defined
as the average efficiency across all node pairs. To assess
whether some nodes within the global network discon-
nect faster than others over time, we also calculated
local efficiency for each node of the structural network
that showed the highest clinical and technical validity
in the longitudinal dataset (i.e. highest effect sizes in
regression analyses, highest added benefit in random
forest regression and highest intraclass correlation
coefficient [ICC]).

Single-shell pipeline

For single-shell networks, streamlines were recon-
structed based on the diffusion tensor using the fiber
assignment by continuous tracking (FACT) algorithm
(‘dti_tracker’, Diffusion Toolkit, version 0.6.4.1). In
short, the algorithm started at the center of all voxels
with fractional anisotropy >0.2 and terminated if the
streamlines left the brain mask, encountered voxels
with fractional anisotropy <0.2 or when the turning
angle exceeded 45�. Reconstructed streamlines were fil-
tered and smoothed requiring a step length of 1 voxel
(‘spline_filter’, Diffusion Toolkit). Two nodes were
considered connected if the endpoints of the recon-
structed streamlines lay within both nodes. Atlas par-
cellations were registered to diffusion space, applying a
series of linear and non-linear registrations, leading
from the MNI template space, through T1-weighted
and FLAIR space, to the diffusion space. All registra-
tions were estimated and concatenated with the
Advanced Normalization Tools (ANTs).30 For the
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longitudinal data, as previously described in detail,31

baseline T1-weighted images were indirectly

normalized into MNI space via an intermediate

custom template, and follow-up scans were normalized

by concatenating this normalization with the registra-

tion between baseline and follow-up T1-weighted

images.

Five commonly used edge weights were applied in

the single-shell pipeline: number of streamlines (nSL),

number of streamlines weighted by the mean length

(mLen), number of streamlines weighted by the inverse

of the streamline length (invLen),32 mean fractional

anisotropy over all streamlines (mFA), number of

streamlines weighted by the mean fractional anisotropy

Figure 1. Overview of the two connectome pipelines (single-shell left, multi-shell right). The single-shell pipeline relies on diffusion
tensor imaging and tractography using the FACTalgorithm. The multi-shell pipeline relies on MSMT-CSD and anatomically constrained
tractography. For both pipelines, we applied the node definition according to the AAL or Brainnetome atlas. After network recon-
struction, each structural brain network was summarized by the global efficiency metric (E). N is the set of all nodes in the network,
and n is the number of nodes, whereas d(i,j) is the weighted distance between nodes i and j,(i,j2N).
AAL: automated anatomical labelling; ACT: anatomically constrained tractography; BN: Brainnetome; DTI: diffusion tensor imaging;
FACT: fiber assignment through continuous tracking; mFA: mean of fractional anisotropy of streamlines; mMK: mean of mean kurtosis
of streamlines; MSMT-CSD: multi-shell multi-tissue constrained spherical deconvolution; nSL: number of streamlines;
T1w: T1-weighted image; 5TT: five tissue-type image.
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(wFA). Each edge was further normalized by the aver-

age volume of the connected nodes to correct for the

different volumes of the nodes and for different

brain sizes.
For each of the resulting 10 (2 node definitions� 5

edge definitions) weighted undirected networks, we cal-

culated the global efficiency using the Brain

Connectivity Toolbox.8

Multi-shell pipeline

For the advanced multi-shell networks, streamlines

were reconstructed using a multi-shell multi-tissue con-

strained spherical deconvolution tractography pipeline

using tools fromMRtrix3.21 To limit false positives and

improve biological accuracy,25 tractography was

anatomically-constrained to white matter by using a

5-tissue-type image generated from T1-weighted

images. WMH masks were set as the fifth volume

(i.e., pathological tissue) of the 5-tissue-type image to

allow tracking within these regions, which are often is

misclassified as grey matter, leading the tracking algo-

rithm to terminate prematurely. Importantly, WMH

segmentations were performed on each time point in

the longitudinal dataset. The remaining steps were:

response function estimation (‘dhollander’ algorithm),

estimation of the fiber orientation distributions,33

multi-tissue informed log-domain intensity normaliza-

tion, modelling 10 million streamlines using anatomi-

cally constrained streamlines tractography, dynamic

seeding and cropping at the GMWM-interface, as

well as SIFT2 filtering of the streamlines.34

Consistent with the single-shell pipeline, nodes were

defined either according to the AAL atlas or

Brainnetome atlas.
Seven different edges were applied in the multi-shell

pipeline: number of streamlines (nSL), number of

streamlines weighted by the length of each streamline

(mLen), number of streamlines weighted by the inverse

length of each streamline (invLen),35 mean of the mean

kurtosis of streamlines (mMK), number of streamlines

weighted by the mean of the mean kurtosis (wMK),

mean fractional anisotropy of streamlines (mFA),

number of streamlines weighted by the mean fractional

anistropy (wFA). While fractional anisotropy maps

were calculated on single-shell diffusion data, edges

based on fractional anisotropy were also included

here to allow a more direct comparison of the two

pipelines. Again, we calculated global efficiency for

the 14 (2 node definitions x 7 edge definitions)

networks.

Statistical analysis

All statistical analyses were performed in R (version
3.6.1).36 The statistical

significance level was set at a< 0.05. Since we mainly
focused on the effect sizes when interpreting the results,
we did not correct for multiple comparisons.

To compare sample characteristics between RUN
DMC – InTENse and RUN DMC main, we used
chi-squared (v2) tests (for categorical variables) and
non-parametric Wilcoxon rank sum tests (for numeric
variables), as appropriate.

Subsequent analyses were conducted completely
independently for both samples. The processing speed
compound scores were power-transformed using the
Yeo-Johnson transformation to approximate a
normal distribution.37

Four main analyses were conducted to examine clin-
ical and technical validation of structural brain net-
work analysis in SVD.

First, we performed simple linear regression analyses
between global efficiency of structural brain networks
(independent variable) and processing speed perfor-
mance (i.e., TMT compound score, dependent vari-
able). We used the adjusted R2 to quantify and
compare associations. Second, we assessed the added
benefit for each marker on top of conventional SVD
imaging markers (i.e., normalized WMH volume,
lacune count, microbleeds and normalized brain
volume). We used multivariable random forest regres-
sion with conditional inference trees (R package
‘party’, version 1.3.3) to overcome the problem of mul-
ticollinearity, which is a critical aspect since SVD imag-
ing markers and diffusion markers are intercorrelated.
We constructed one random forest regression model
with conventional SVD imaging markers only
(number of trees¼ 1501, mtry¼ 3), and additional
models adding respectively one of the diffusion-based
markers. Prediction accuracy was calculated for
each random forest regression model as the root-
mean-square error (RMSE) between observed and pre-
dicted values using leave-one-out cross-validation. The
added benefit of each diffusion-based marker for pre-
diction of processing speed was quantified by the dif-
ference of the RMSE between the model with and
without that diffusion-based marker.5 We repeated
random forest regression for each model (with cross-
validation) 100 times to determine a point estimate and
95% confidence interval for the RMSE.

Third, to assess the ability of structural brain net-
works to capture change over time, we calculated linear
mixed effects models in the split exploration and vali-
dation longitudinal samples. Brain network and
skeleton-based diffusion markers were first normalized
individually for each patient to the baseline score and
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then centered and scaled (by subtracting the mean and
dividing by the standard deviation). Time of MRI visits
(relative to baseline visit) was modelled as fixed effect.
To account for patient-specific variation, we included a
random intercept for each patient in the model archi-
tecture, but models with random slopes per patient did
not converge. The fixed effect reflects the mean change
in the structural brain network over time, marginal R2

reflects the explained variance by the fixed effect. The
following R packages were used for estimation of linear
mixed models: ‘lme4’ (version 1.1.21),38 ‘lmerTest’ (ver-
sion 3.1.2),39 ‘boot’ (version 1.3.22),40 ‘MuMIn’ (ver-
sion 1.43.15).41

For technical validation, we assessed the test-retest
reliability of structural brain networks as our fourth
analysis within the same exploration and validation
sample used for the longitudinal analysis. Intraclass
correlation coefficients (1,1)42 were calculated with
the R package ‘psych’ (version 1.9.12.31).31

Deviations from the pre-registered analysis protocol

For parts of this investigation, we had to follow an
unplanned path for valid reasons. First, for the inde-
pendent validation sample of the cross-sectional anal-
ysis, we originally planned to randomly sample one
hundred subjects from a subset of the UK Biobank
with matching range of the WMH volume and age of
the RUN DMC – InTENse subjects. However, when
calculating the established TMT compound score, we
noticed implausibly low z-scores in many UK Biobank
subjects due to extremely low reaction times. This
might have resulted from a key difference in task
administration, since in the UK Biobank study the
TMT was performed using a computer mouse, whereas
the norm data was based on the paper-pencil version.16

Since the TMT data was pre-specified as the clinical
endpoint for the cross-sectional analyses, we did not
want to deviate from this aspect, but instead chose a
different validation sample.

Second, we pre-registered to normalize global effi-
ciency values by the global efficiency of random net-
works using the Brain Connectivity Toolbox. However,
after revisiting the literature, we noticed that in most
brain network studies in SVD - if not all - global effi-
ciency values were not normalized. This might result in
important consequences of the interpretation of these
global efficiency values per se (see discussion), howev-
er, to ensure comparability with previous studies, we
chose to follow the established procedure for brain net-
works in SVD.

Third, we planned to compare a random forest
regression model with skeleton-based DTI/DKI met-
rics only as a comparison model, but since we were
interested in the added benefit of brain networks

compared with skeleton-based diffusion markers – and

not in the added benefit of brain networks on top of

skeleton-based diffusion markers – we revised our

random forest regression approach accordingly.

Data availability

Anonymized data will be made available upon request

to the corresponding author.

Results

Sample characteristics are presented in Table 1. SVD

patients of the RUN DMC – InTENse sub-study were

younger and presented with higher brain volumes com-

pared to patients from the RUN DMC main study

(p< 0.0001).

Clinical validation: Associations with processing speed

performance

Associations with processing speed performance as

assessed by simple regression greatly varied depending

on node, edge, and tractography pipeline (Figure 2(a);

Table e2).
In the exploratory sample, brain networks defined

by nSL/wFA edges and AAL nodes explained the high-

est variance of processing speed deficits (R2¼11%) in

the single-shell pipeline. Thus, this combination per-

formed slightly better than the simple, skeleton-based

diffusion marker mean diffusivity (R2¼8%). Explained

variance was overall higher for the multi-shell pipeline.

Brain networks defined by the wFA edge and

Brainnetome nodes best explained processing speed

deficits (R2¼20%), followed by skeleton-based mean

kurtosis (R2¼18%) and radial kurtosis (R2¼15%).
In line with the findings in the exploration sample,

brain networks defined by nSL/wFA edges and AAL

nodes yielded the strongest associations with process-

ing speed deficits (up to R2¼16%) in the validation

sample, explaining more variance than the best-

performing skeleton-based diffusion marker fraction-

al anisotropy (R2¼13%). In contrast with the explor-

atory sample, explained variance was barely higher

for the multi-shell pipeline. Only brain networks

defined by the mLen edge performed as well as the

skeleton-based diffusion marker radial kurtosis

(R2¼14%).
To assess an added benefit in explaining processing

speed deficits on top of conventional SVD imaging

markers (normalized WMH volume, lacune count,

microbleed count, normalized brain volume), we per-

formed multivariable random forest regression analy-

ses (Figure 2(b)). In the exploratory sample, brain

networks based on the nSL/wFA edges and AAL

1026 Journal of Cerebral Blood Flow & Metabolism 42(6)



nodes showed the highest added benefit (RMSE
decrease 5%), whereas the skeleton-based diffusion
markers only showed a small added benefit (RMSE
decrease 2.5%), or even no benefit (i.e., skeleton-
based fractional anisotropy). In the multi-shell pipe-
line, skeleton-based radial kurtosis added the highest
benefit in explaining processing speed deficits (RMSE
decrease 7%), followed by brain networks based on the
wMK edge (RMSE decrease 6%).

In the validation sample, skeleton-based fractional
anisotropy added the highest benefit on top of conven-
tional SVD imaging markers (RMSE decrease 4%),
but brain networks with the wFA/mFA edge and the
Brainnetome nodes showed a similar benefit. Results
from the multi-shell pipeline showed a mixed pattern in
the validation sample, with no consistent difference
between skeleton-based diffusion markers and most
structural brain networks.

Clinical validation: Tracking short-term disease

progression in serial MRIs

To assess the ability of brain networks to monitor

short-term disease progression, we used data from

high-frequency serial imaging and linear mixed effects

models (Figure 3(a) and (b); Table e3). In the explor-

atory sample and using the single-shell pipeline, the

brain network based on the mFA edge was the only

network parameter demonstrating a significant change

over time. A change over time was more evident for

skeleton-based diffusion markers (all p< 0.05), as indi-

cated by substantially larger marginal R2. Most brain

networks derived from the multi-shell pipeline showed

a change over time. However, also in this pipeline, the

simpler, skeleton-based diffusion markers outper-

formed brain networks in the ability to capture short-

term disease progression.

Figure 2. Associations between diffusion MRI markers (skeleton- or network-based) and processing speed. Analyses were per-
formed in an exploration (RUN DMC – InTENse) and validation sample (RUN DMC main study). (a) Simple linear regression between
each diffusion marker and processing speed. Color and circle size depict explained variance (adjusted R2). (b) Multivariable random
forest regression assessing the added benefit of each diffusion marker on top of conventional SVD markers. Plots indicate point
estimate and 95% confidence interval for the change in model accuracy as assessed by the RMSE decrease.
AAL: automated anatomical labelling; BN: Brainnetome; FA: fractional anisotropy; invLen: number of streamlines weighted by the
inverse length of each streamline; MD: mean diffusivity; mFA: mean of fractional anisotropy of streamlines; MK: mean kurtosis; mMK:
mean of mean kurtosis of streamlines; mLen: mean length of streamlines; nSL: number of streamlines; RK : radial kurtosis; RMSE: root
mean squared error; wFA: number of streamlines weighted by fractional anisotropy; wMK: number of streamlines weighted by mean
kurtosis.
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This pattern was replicated in the validation sample

(Figure 3(c)).
To assess regional changes over time, we calculated

local efficiency of each node of the structural brain

network weighted by the mFA and defined by the

AAL atlas, since this was the network with the largest

change over time among global networks. Only four

out of 90 nodes showed a significant change over

time, but effect sizes were extremely small (fixed effects

<0.002, marginal R2< 0.02).

Technical validation: Test-retest repeatability

For technical validation, we used intraclass correlation

coefficients to estimate test-retest repeatability in the

serial MRI dataset. Most networks from the single-

shell pipeline showed excellent test-retest repeatability

with intraclass correlation coefficients higher than 93%

in the exploratory sample (Figure 4(a) and (b); Table

e4). Only brain networks based on the AAL node and

mLen edge definition were less reliable (ICC< 89%).

Still, skeleton-based diffusion markers demonstrated a

better test-retest repeatability (ICC> 98%). Some

brain networks derived from the multi-shell pipeline

showed also high test-retest repeatability, in particular

those based on a mMK or mFA edge definition were in

the range of the skeleton-based diffusion markers

(ICC> 97%). The remaining brain networks of the

multi-shell pipeline were less reliable. Especially the

invLen edge showed intraclass correlation coefficients

below 60%, indicating the worst technical validity of

all assessed brain networks. Again, this pattern was

replicated in the validation sample (Figure 4(c)).

Discussion

We systematically assessed the clinical and technical

validity of brain network analysis as a marker for

SVD. Our main findings are that i) for explaining proc-

essing speed, structural brain networks provide only a

small added benefit over simpler, global white matter

diffusion markers; ii) structural brain networks do not

capture short-term disease progression over time; iii)

multi-shell imaging does not improve the clinical valid-

ity of structural networks; iv) most structural brain

networks show excellent test-retest reliability and thus

a high technical validity and v) node and edge defini-

tions have a substantial effect on brain network anal-

ysis results, highlighting the need for standardization to

facilitate comparisons between studies.
Markers from diffusion MRI are well-established

quantitative markers for SVD, both for cross-

sectional and longitudinal use.4,5 While global white

matter markers, e.g. obtained as average over the

Figure 3. Short-term disease progression analysis using linear mixed effects models. (a) Single subject data from the exploration
sample. Skeleton-based RK (top) and structural brain networks with AAL node and nSL edge definition (bottom) plotted against time
as examples. For better visibility, five subjects are depicted in black and the fixed effect of time is depicted in red. (b) Marginal R2

(variance explained by time) from the linear mixed-effects models in the exploration and (c) validation sample.
AAL: automated anatomical labelling; BN: brainnetome; FA: fractional anisotropy; invLen: number of streamlines weighted by the
inverse length of each streamline; MD: mean diffusivity; mFA: mean of fractional anisotropy of streamlines; MK: mean kurtosis; mLen:
mean length of streamlines; mMK: mean of mean kurtosis of streamlines; nSL: number of streamlines; RK: radial kurtosis; wFA:
number of streamlines weighted by fractional anisotropy; wMK: number of streamlines weighted by mean kurtosis.
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entire fiber tract skeleton, offer a straightforward

implementation, they do not account for the complex

network structure of the human brain. Brain network

analysis leverages this complex information for addi-

tional mechanistic insight, but its implementation is

more demanding and subject to arbitrary decisions,

such as node and edge definitions. In our pre-

registered analysis and systematic comparison, we did

not find a substantial advantage of brain network anal-

ysis over simpler, skeleton-based diffusion MRI

markers. Importantly, for capturing change over time

in the longitudinal dataset, the simple markers were

clearly superior. Thus, our findings question the

added value of brain network analysis over simpler

methods for clinical applications in SVD.
Diffusion MRI excels especially for longitudinal

studies of SVD due to excellent test-retest reliability

and high sensitivity to subtle white matter changes.

Previous studies have shown that diffusion MRI

markers (i.e. global skeleton-based markers) yield

the smallest sample size estimates for assessing treat-

ment effects over time, thus offering great potential to

facilitate phase II randomized controlled trials.4,43

While brain networks were also very reliable in

terms of test-retest repeatability, they failed to cap-

ture short-term disease progression over time.

However, brain topology changes might only

become visible throughout long-term disease progres-

sion reflecting secondary degeneration.44 Still, track-

ing short-term progression is of particular interest for

clinical trials with typically limited study duration.

Thus, skeleton-based markers can be considered the

first choice for application in clinical trials.

Nonetheless, network analysis might still be useful

for gaining pathomechanistic insights. As such, pre-

vious work has shown that especially connections

between rich club nodes (i.e., nodes that are highly

interconnected) decline in SVD.45 The development

of targeted intervention strategies might benefit

from such mechanistic insights. Also, while global

diffusion markers are mostly determined by SVD –

not Alzheimer’s disease pathology46 – in memory

clinical patients, regional brain network analysis

might offer the possibility to disentangle the contri-

bution of different pathologies.
Given that the brain’s white matter contains more

than 80% of crossing fibers,28 we expected the more

elaborate connectome pipeline with modelling of mul-

tiple fiber populations within a voxel via constrained

spherical deconvolution to better depict SVD burden.

Surprisingly, networks based on the multi-shell pipeline

did not show an advantage over those based on the

Figure 4. Test-retest repeatability of diffusion markers. (a) Scatterplots showing the consistency of diffusion markers illustrated using
the first two visits (time points t1 and t2) for skeleton-based MD (top) and wFA structural brain networks (bottom) as examples. In
case of perfect test-retest repeatability, all points would lie on the diagonal. (b) Intraclass correlation coefficients of diffusion markers
assessed in the exploration and (c) validation sample.
AAL: automated anatomical labelling; BN: Brainnetome; FA: fractional anisotropy; ICC: intraclass correlation coefficient; invLen:
number of streamlines weighted by the inverse length of each streamline; MD: mean diffusivity; mFA: mean of fractional anisotropy of
streamlines; MK: mean kurtosis; mMK: mean of mean kurtosis of streamlines; mLen: mean length of streamlines; nSL: number of
streamlines; RK: radial kurtosis; wFA: number of streamlines weighted by fractional anisotropy; wMK: number of streamlines weighted
by mean kurtosis.
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single-shell pipeline, although the latter method
completely neglects the issue of crossing fibers.

Overall, we can only speculate why there was no
clear added benefit of structural network analysis
over simpler, skeleton-based diffusion markers. A
potential explanation might be that the complex algo-
rithms needed to construct the networks were devel-
oped on brains of young, healthy volunteers. The
marked alterations of white matter microstructure2 in
SVD might interfere with or violate model assump-
tions, e.g. of tractography algorithms. Furthermore,
small vessel disease is now recognized as a global
brain disease and thus, a simple global marker, such
as the skeleton-based markers, might be sufficient to
capture disease burden. Similar to the tractography
algorithm, the more elaborate Brainnetome atlas with
a finer parcellation and better representation of the
functional organization of the cortex was not superior
to the AAL parcellation, which has a rather coarse,
purely anatomically based parcellation. In conclusion,
the simpler connectome pipeline, which was used in
most previous brain network studies in SVD, per-
formed best among the different combinations. Along
the same theme that simpler measures perform better
than more complex methods, and contrary to our pre-
vious study,5 we did not observe a benefit of the diffu-
sion kurtosis model in the validation sample.

In line with previous work on brain networks in
SVD,10,11 we did not normalize the brain networks by
the global efficiency of random networks. We also did
not threshold the corresponding networks to a certain
density and refer to previous work suggesting that – at
least in the multi-shell pipeline – it might not be neces-
sary to do so.47 In addition, others have already
reported the effect of density thresholding and conclud-
ed that networks weighted by fractional anisotropy
might be less prone to network density effects.48 Still,
global efficiency measures might be influenced by the
density of the structural network and should thus not
be understood as the “efficiency” of the brain network,
but rather be interpreted as a global diffusion marker
of the brain network. However, to not add another
level of complexity, we decided a priori against trying
out different arbitrary density thresholds.

Several limitations of our study need to be discussed.
First, we only focused on global efficiency as the core
graph metric of structural networks in SVD, even
though other graph metrics might have been suitable
as well. However, others have reported global efficien-
cy to be the most sensitive graph measure of cognitive
impairment in SVD,9 which is why we decided a priori
on using this graph measure to reduce the complexity
of the study. Also, we did not normalize the global
efficiency measure against null-models. Consequently,
global efficiency might be heavily influenced by the

density of the structural network. However, to facili-
tate a comparison with previous work,11 we decided
against this normalization step. Second, while the
exploration and validation sample were non-
overlapping in terms of study participants, they were
collected at the same center with identical protocols
and might therefore not be considered as fully indepen-
dent. Accordingly, we cannot estimate how our results
would generalize to a dataset with a different acquisi-
tion protocol. On the other hand, this can also be
regarded as a strength, since observed differences
between results in the exploration and validation
sample are unlikely to originate from technical differ-
ences. Third, to identify the optimal imaging marker,
we did not test for significance between different
markers. However, since this is methodologically
non-straightforward, we decided to focus on the com-
parison of effect sizes and included two non-
overlapping samples for replication of findings and to
further facilitate the interpretation of results. A main
strength of the study is its pre-registration. To our
knowledge, this is the first brain network study in
SVD using a fully pre-specified analysis plan. As dem-
onstrated here, results highly depend on arbitrary
choices during analysis, which is why pre-specifying
the analysis plan is of great importance to improve
the transparency and quality of research on network
analysis in SVD.

New diffusion analysis techniques are constantly
emerging. Evaluating the benefit of a novel method
over established techniques as well as technical valida-
tion are indispensable for evaluating the utility in
research and clinical use.49 The structural network
approach is compelling as it captures the complex net-
work structure of the human brain. But when in need
of disease burden or progression markers, network
analysis did not show an advantage over the simpler
skeletonized approach. Because skeleton-based
markers are more straightforward to implement, even
with fully automated processing, we conclude that
skeleton-based diffusion markers are currently better
suited for clinical research, trials and potentially also
routine use.
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