Skip to main content
. 2022 May 23;106(11):3879–3893. doi: 10.1007/s00253-022-11940-z

Table 1.

A summary of the most important studies conducted in recent years on the effect of AMPs on colistin-resistant Gram-negative bacteria

Name of author Year Name of AMPs Organism Result Reference
Jahangiri et al 2021 Nisin and P10 XDR A. baumannii and colistin-resistant P. aeruginosa isolates AMPs, alone and in combination with antibiotics showed the ability to kill mentioned bacteria (Jahangiri et al. 2021)
Conlon et al 2012 CPF-AM1, PGLa-AM1, B2RP-ERa, [E4K] alyteserin-1c, [D4K] B2RP, and [G4K] XT-7 Colistin-resistant clinical isolates of A. baumannii and Acinetobacter nosocomialis All six AMPs had an effect on colistin-resistant Acinetobacter isolates (Conlon et al. 2012)
Lin et al 2018 WLBU2 and LL37 Colistin-resistant isolates of K. pneumoniae, A. baumannii, and P. aeruginosa The two studied AMPs showed a significant effect on colistin-resistant isolates of A. baumannii and K. pneumoniae but were not able to kill P. aeruginosa (Lin et al. 2018)
Weide et al 2019 AA139 and SET-M33 Colistin-resistant and mcr-producing isolates of K. pneumoniae AMPs were effective against colistin-resistant strains in MIC ≥ 16 µg/L (van der Weide et al. 2019)
Witherell et al 2020 MSI-78 and OTD-244 Colistin-resistant E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa The MSI-78 alone and combination with colistin showed great antibacterial activity against colistin-resistant bacteria (Witherell et al. 2020)
Kádár et al 2015 Protamine, lysozyme, and lactoferrin Colistin-resistant K. pneumoniae and E. asburiae Protamine and lysozyme were effective against colistin-resistant K. pneumoniae but all three AMPs were not able to eradicate colistin-resistant E. asburiae (Kádár et al. 2015)
Hashemi et al 2017 LL-37, Cecropin A, Magainin 1, CSA-13, CSA-44, CSA-131, CSA-138, and CSA-142 Colistin-resistant K. pneumoniae AMPs kill colistin-resistant K. pneumoniae via lipid A modifications (Hashemi et al. 2017)
Cirioni et al 2011 S-thanatin Colistin-resistant P. aeruginosa The s-thanatin alone and in combination with colistin showed the highest efficacy in vitro and in vivo (Cirioni et al. 2011)
Deslouches et al 2015 WLBU2, WR12, and LL37 Colistin-resistant MDR pathogenic bacteria WLBU2 and WR12 as two engineered cationic AMPs display better antibacterial activity (80 to 86%) than LL37 (25%) as natural AMPs against colistin-resistant strains (Deslouches et al. 2015)
Hirsch et al 2019 LS-sarcotoxin and LS-stomoxyn Colistin-resistant MDR Gram-negative bacteria LS-sarcotoxin and LS-stomoxyn have selective and potent activity against colistin-resistant MDR Gram-negative bacteria (Hirsch et al. 2019)
Mant et al 2019 D87(Lys1-6 Arg-1), D84(Lys1-6 Lys-1), D85(Lys1-6 Orn-1), D86(Lys1-6 Dab-1), D105(Lys1-6 Dap-1), D101(Lys1Ser26-5 Lys-1), D102(Lys1Ser26-5 Dab-1), D85(K13A/K16A)-(Lys1-6 Orn-1), D86(K13A/K16A)-(Lys1-6 Dab-1), and D105(K13A/K16A)-(Lys1-6 Dap-1) polymyxin B- and colistin-resistant A. baumannii strains All of studied AMPs presented excellent antimicrobial activity on polymyxin B- and colistin-resistant A. baumannii strains (Mant et al. 2019)
Kao et al 2016 LL-37, RL-37, LL-29, LL-29 V, LL-29V2, CAP-11, CAP-11V1, CAP-11V2, CAP-11V3, SMAP-29, SMAP-29 V, SMAP-29B, SMAP-29D, BMAP-27, BMAP-27A, BMAP-27B, and BMAP-27C The mcr-harboring and colistin-resistant E. coli BMAP-27B and SMAP-29D showed bactericidal activity against colistin-resistant E. coli (Kao et al. 2016)
Hirsch et al 2020 EtCec1-a and EtCec2-a Colistin-resistant E. coli, E. cloacae, E. aerogenes, K. pneumoniae, S. enterica, S. maltophilia and A. baumannii Two AMPs displayed antimicrobial activity against the colistin-resistant isolates (Hirsch et al. 2020)
Mourtada et al 2019 Mag (i + 4)1,15 (A9K,B21A,N22K,S23K) Colistin-resistant E. coli and A. baumannii AMP showed potential bactericidal activity on two studied colistin-resistant pathogens in vitro and colistin-resistant A. baumannii in a murine peritonitis-sepsis model (Mourtada et al. 2019)