Jahangiri et al |
2021 |
Nisin and P10 |
XDR A. baumannii and colistin-resistant P. aeruginosa isolates |
AMPs, alone and in combination with antibiotics showed the ability to kill mentioned bacteria |
(Jahangiri et al. 2021) |
Conlon et al |
2012 |
CPF-AM1, PGLa-AM1, B2RP-ERa, [E4K] alyteserin-1c, [D4K] B2RP, and [G4K] XT-7 |
Colistin-resistant clinical isolates of A. baumannii and Acinetobacter nosocomialis
|
All six AMPs had an effect on colistin-resistant Acinetobacter isolates |
(Conlon et al. 2012) |
Lin et al |
2018 |
WLBU2 and LL37 |
Colistin-resistant isolates of K. pneumoniae, A. baumannii, and P. aeruginosa
|
The two studied AMPs showed a significant effect on colistin-resistant isolates of A. baumannii and K. pneumoniae but were not able to kill P. aeruginosa
|
(Lin et al. 2018) |
Weide et al |
2019 |
AA139 and SET-M33 |
Colistin-resistant and mcr-producing isolates of K. pneumoniae
|
AMPs were effective against colistin-resistant strains in MIC ≥ 16 µg/L |
(van der Weide et al. 2019) |
Witherell et al |
2020 |
MSI-78 and OTD-244 |
Colistin-resistant E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa
|
The MSI-78 alone and combination with colistin showed great antibacterial activity against colistin-resistant bacteria |
(Witherell et al. 2020) |
Kádár et al |
2015 |
Protamine, lysozyme, and lactoferrin |
Colistin-resistant K. pneumoniae and E. asburiae
|
Protamine and lysozyme were effective against colistin-resistant K. pneumoniae but all three AMPs were not able to eradicate colistin-resistant E. asburiae
|
(Kádár et al. 2015) |
Hashemi et al |
2017 |
LL-37, Cecropin A, Magainin 1, CSA-13, CSA-44, CSA-131, CSA-138, and CSA-142 |
Colistin-resistant K. pneumoniae
|
AMPs kill colistin-resistant K. pneumoniae via lipid A modifications |
(Hashemi et al. 2017) |
Cirioni et al |
2011 |
S-thanatin |
Colistin-resistant P. aeruginosa
|
The s-thanatin alone and in combination with colistin showed the highest efficacy in vitro and in vivo |
(Cirioni et al. 2011) |
Deslouches et al |
2015 |
WLBU2, WR12, and LL37 |
Colistin-resistant MDR pathogenic bacteria |
WLBU2 and WR12 as two engineered cationic AMPs display better antibacterial activity (80 to 86%) than LL37 (25%) as natural AMPs against colistin-resistant strains |
(Deslouches et al. 2015) |
Hirsch et al |
2019 |
LS-sarcotoxin and LS-stomoxyn |
Colistin-resistant MDR Gram-negative bacteria |
LS-sarcotoxin and LS-stomoxyn have selective and potent activity against colistin-resistant MDR Gram-negative bacteria |
(Hirsch et al. 2019) |
Mant et al |
2019 |
D87(Lys1-6 Arg-1), D84(Lys1-6 Lys-1), D85(Lys1-6 Orn-1), D86(Lys1-6 Dab-1), D105(Lys1-6 Dap-1), D101(Lys1Ser26-5 Lys-1), D102(Lys1Ser26-5 Dab-1), D85(K13A/K16A)-(Lys1-6 Orn-1), D86(K13A/K16A)-(Lys1-6 Dab-1), and D105(K13A/K16A)-(Lys1-6 Dap-1) |
polymyxin B- and colistin-resistant A. baumannii strains |
All of studied AMPs presented excellent antimicrobial activity on polymyxin B- and colistin-resistant A. baumannii strains |
(Mant et al. 2019) |
Kao et al |
2016 |
LL-37, RL-37, LL-29, LL-29 V, LL-29V2, CAP-11, CAP-11V1, CAP-11V2, CAP-11V3, SMAP-29, SMAP-29 V, SMAP-29B, SMAP-29D, BMAP-27, BMAP-27A, BMAP-27B, and BMAP-27C |
The mcr-harboring and colistin-resistant E. coli
|
BMAP-27B and SMAP-29D showed bactericidal activity against colistin-resistant E. coli
|
(Kao et al. 2016) |
Hirsch et al |
2020 |
EtCec1-a and EtCec2-a |
Colistin-resistant E. coli, E. cloacae, E. aerogenes, K. pneumoniae, S. enterica, S. maltophilia and A. baumannii
|
Two AMPs displayed antimicrobial activity against the colistin-resistant isolates |
(Hirsch et al. 2020) |
Mourtada et al |
2019 |
Mag (i + 4)1,15 (A9K,B21A,N22K,S23K) |
Colistin-resistant E. coli and A. baumannii
|
AMP showed potential bactericidal activity on two studied colistin-resistant pathogens in vitro and colistin-resistant A. baumannii in a murine peritonitis-sepsis model |
(Mourtada et al. 2019) |