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Abstract
Neutrophil extracellular traps (NETs) are extracellular webs composed of neutrophil granular and nuclear elements. Because 
of the potentially dangerous amplification circuit between inflammation and tissue damage, NETs are becoming one of the 
investigated components in the current Coronavirus Disease 2019 (COVID-19) pandemic. The purpose of this systematic 
review is to summarize studies on the role of NETs in determining the prognosis of COVID-19 patients. The study used six 
databases: PubMed, Science Direct, EBSCOHost, Europe PMC, ProQuest, and Scopus. This literature search was imple-
mented until October 31, 2021. The search terms were determined specifically for each databases, generally included the Neu-
trophil Extracellular Traps, COVID-19, and prognosis. The Newcastle Ottawa Scale (NOS) was then used to assess the risk 
of bias. Ten studies with a total of 810 participants were chosen based on the attainment of the prerequisite. Two were of 
high quality, seven were of moderate quality, and the rest were of low quality. The majority of studies compared COVID-19 
to healthy control. Thrombosis was observed in three studies, while four studies recorded the need for mechanical ventila-
tion. In COVID-19 patients, the early NETs concentration or the evolving NETs degradations can predict patient mortality. 
Based on their interactions with inflammatory and organ dysfunction markers, it is concluded that NETs play a significant 
role in navigating the severity of COVID-19 patients and thus impacting their prognosis.
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Introduction

Neutrophil extracellular traps (NETs) are extracellular 
webs made up of Deoxyribonucleic Acid (DNA), his-
tones (H1, H2A, H2B, H3, and H4), oxidant enzymes, 
microbicidal proteins, and cytoplasmic proteins that origi-
nate from decondensed chromatin [1]. Other components 
include neutrophil elastase (NE), myeloperoxidase (MPO), 
cathepsin G, proteinase 3, calgranulin, α-defensin, hydro-
lase, lysozyme, azurocidin, alcaic phosphatase, lactofer-
rins, lysozyme, cathelicidins, collagenase, gelatinase, cata-
lase, catalase, cytokeratin-10, actin, myosin, cytoplasmic 
proteins, glycolytic enzymes, pentraxin, matrix metallo-
proteinase-9 (MMP-9), and peptidoglycan [2–6]. NETs are 
one of the neutrophil tactics for restricting and removing 
external infections [7, 8]. Microbes such as bacteria, fungi, 
and viruses are susceptible to NETs in many instances, 
including being caught, killed, or having their growth 
hindered [9]. It applies to previous research on human 
immunodeficiency virus (HIV) infection (by preventing 
HIV invasion to CD4 cells and promoting HIV-1 elimina-
tion through myeloperoxidase and α-defensin involvement) 
[10, 11]. In contrast, NETs were associated with overall 
disease severity and a worse outcome during influenza 
cases, primarily due to acute lung injury [12].

During several thrombo-inflammatory conditions, such 
as sepsis, thrombosis, and respiratory failure, neutrophils 
produce NETs to confine pathogens [13, 14]. Lack of 
proper NET control, on the other hand, could result in 
immunothrombosis [15]. In short, the role of NETs is a 
double-edged sword, posing a different effect related to 
certain levels of the compound and underlying circum-
stances [16]. Thus, this molecule is highly appealing to 
researchers during the current COVID-19 pandemic, as 
the disease has been strongly associated with coagulation 
abnormalities and thrombotic events [17].

NETs are becoming one of the investigated immune-
related components in the present Coronavirus Disease 
2019 (COVID-19), a pandemic caused by the global 
expansion of Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2). It is because of the potentially 
dangerous amplification circuit between inflammation and 
tissue damage induced by NET dysregulation, mainly by 
the involvement of elastase [18]. Elastase demonstrated 
potency in speeding up virus entry and generating hyper-
tension, thrombosis, and vasculitis [18]. Excessive NET 
production during extended duration of inflammation 
increases the risk of adverse effects such as thromboem-
bolic problems and impairment to surrounding tissues and 
organs [19]. However, there is still a lack of consensus 
regarding the empirical literature on NETs, which needs to 
be addressed. Also, the needs for creating better evidence 

for the prognostic indicator of COVID-19 must be under-
taken. Hence, the purpose of this systematic review is to 
synthesize studies referring to the role of NETs for the 
prognostication of COVID-19 patients.

Methods

The manuscript has been arranged using the Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis 
(PRISMA) 2020 guidelines [20]. The study procedure was 
approved by all members of the review panel before the con-
duction of the literature search.

Literature search

An extensive literature search across multiple databases 
was done to identify literature about neutrophil extracellular 
traps and their prognostic role in COVID-19 patients. This 
topic was searched electronically in six directories: Europe 
PMC (728 hits), ProQuest (426 hits), Science Direct (244 
hits), Scopus (21 hits), PubMed (12 hits), and EBSCOHost 
(3 hits), in addition to one additional search. The keywords 
used in the investigation were listed in Supplementary 
Table 1. The studies revealed through this database search 
were evaluated based on the titles and abstracts, and only 
those that met the inclusion criteria were considered. The 
search was accomplished by October 31, 2021, without any 
time constraints on the published work. We did not register 
our protocol on International Prospective Register of Sys-
tematic Reviews (PROSPERO) to prevent any unwanted 
delay in manuscript publication process.

Study selection

We examined the cross-sectional, case control, and cohort 
studies which assessed the capacity of NETs for delineating 
the prognosis of COVID-19 patients. We only utilized full-
text manuscripts published in English to ensure data accu-
racy. Articles investigating other practicality of NETs (such 
as pathogenesis role (without clear clinical role) and inter-
action analysis) in COVID-19 patients, as well as literature 
reviews, case studies, clinical trials, protocols, conference 
abstracts, editorials, letters, correspondence, perspective, and 
posters, were all excluded. Duplicates were eliminated, and 
three independent reviewers (PL, TPU, and IAL) assessed 
titles and abstracts (primary screening) using Rayyan QCRI, 
a semi-automated abstract and title filtering software [21]. 
Any disagreements were discussed and resolved to reach an 
acquiescence. From the 1434 articles collected, we chose 
37 manuscripts for full-text and reference appropriateness 
review (secondary screening). In total, ten studies met the 
criteria for data synthesis inclusion (Fig. 1).
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Data extraction

Data were obtained from a series of studies. Three authors 
(ZH, PL, and TPU) extracted pertinent data from each study 
separately. The following information was extracted: author-
ship, years, country, study populations, study design, and 
main findings.

Risk of bias analysis

Following the systematic evaluation of each included study, 
a synthesis of the study findings related to the prognostic 

role of NETs in COVID-19 patients was performed. The 
Newcastle Ottawa Quality Assessment Scale (NOS) was 
applied to retrieve information from included research and 
then critically evaluate and analyze the methodologic quality 
of each study [22, 23], which is primarily used for case control 
or cohort research design. However, to assess the cross-sec-
tional study, we were using a modified scale [24]. The NOS 
is divided into three sections: selection, comparability, and 
outcome. It is graded using the star method, with a maximum 
of 9 stars (or 10 stars for cross-sectional research) awarded 
across the three domains [25]. The method of evaluating 
the quality of the articles was as follows: Two independent 

Fig. 1   PRISMA flow diagram 
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investigators (TPU and PL) used the NOS to evaluate each 
of the included articles before comparing the scores assigned 
to each study. If the scores differed, they were discussed and 
resolved through mutual understanding. When the agree-
ment could not be reached, a moderator (KM) was present to 
properly assess these articles for subsequent quality control 
to finalize the decision regarding manuscript inclusion. The 
included publications’ overall methodologic integrity was 
classified as having a high risk of bias (0–3 NOS points), 
a moderate risk of bias (4–6 NOS points), or a high risk of 
bias (7–9 NOS points) [26]. For cross-sectional studies, the 
modified NOS scale follows a different pattern, with low 
risk (7–10), moderate risk (5–6), and high risk (0–4) of bias 
[27]. Risk-of-bias VISualization (robvis) software was used 
to outline the risk of bias appraisal [28].

Results

Characteristics of included studies

Table 1 outlines the key characteristics of the included stud-
ies. The sample size ranged between 35 and 126 individuals. 
The total number of participants from all included research 
was 810, with 696 of them diagnosed with COVID-19 (con-
firmed by RT-PCR test), all of whom were adults. Four of 
those studies only examined COVID-19 patients [30, 34, 36, 
37]. The most common markers used to determine the level 
of circulating NETs were MPO-DNA complexes [13, 31–33, 
37], cfDNA [13, 29, 30, 37], and histones (either in H3Cit 
or histone-DNA complexes) [13, 29–31, 37]. The majority 
of the studies compared the surrogate marker of NET levels 
between COVID-19 patients and healthy donors, while only 
four studies contrasted it to the severity spectrum of COVID-
19 [31, 32, 34, 35]. Thromboembolic events [29, 31–33, 37] 
and the need for mechanical ventilation [13, 29, 32] were the 
most frequently observed criterion for identifying increased 
disease severity. Eight studies were cohort [13, 29–34, 37], 
meanwhile the remaining publications were cross-sectional 
[35, 36] in design.

Study quality

According to the risk-of-bias analysis, most studies were of 
moderate quality (Table 2). It is concluded from the NOS 
scoring, with seven studies obtaining 4–6 scores, consistent 
with the previously mentioned threshold for moderate risk 
of bias [26]. Some trends were identified in the 10 studies 
regarding the three separate categories within the scoring 
instrument, all explained in the following sections. The risk-
of-bias examination [38] was summarized in Fig. 2.

Selection

Two research [29, 37] got four stars in the selection segment, 
indicating that the cases and controls were well defined and 
carefully chosen using appropriate inclusion and exclusion 
criteria, with no noticeable possible bias, a crucial param-
eter in cohort studies. There are four studies [13, 30–32] 
which did not obtain a maximum score since they did not 
indicate the states regarding the outcome of interest at the 
commencement of the study.

Comparability

Four studies [29, 32, 33, 37] obtained the highest possible 
number of stars in the comparability category after control-
ling for crucial confounding factors such as age and gender. 
However, the majority of studies (six) received zero stars 
in this section, implying that attempts to limit at least some 
of the obvious confounding factors in terms of enhancing 
methodologic quality were not implemented properly.

Exposure

Scores for the exposure aspect ranged from one to three 
stars. The studies that received three stars [30, 31, 36] used 
rigorous methods of patient recruitment and adequate patient 
follow-up. In juxtaposition, the inferior reports in the expo-
sure section that received 1 or 2 stars used different proce-
dures for retaining patients and controls or did not provide 
satisfactory justification for the follow-up approach.

Prognostic role of NETs in COVID‑19 patients

As pointed out previously, thromboembolism and the need 
for mechanical ventilation are two clinical situations that 
are used to present the role of NETs in determining the 
prognosis of COVID-19 patients. Thromboembolism was 
found to be strongly linked to the NET marker [29, 33, 37]. 
Ouwendijk et al. [31], on the other hand, found no correla-
tion among NET abundance and thromboembolic events.

Mechanical ventilation requirements (or the use of fur-
ther non-invasive ventilation support) were linked to NET 
marker accumulation (especially cfDNA and MPO-DNA 
complexes) [13, 30, 32]. Huckriede et al. [29] discovered 
that the dynamics of NET level can be associated with ven-
tilator-free days, with a greater significant reduction in NET 
levels over time being associated with shorter ventilator use.

Sequential Organ Failure Assessment (SOFA) score 
was used as one indicator for severe COVID-19 scenarios. 
Plasma NET concentrations in those patients were cor-
related with overall disease severity as measured by the 
SOFA score [31, 32]. This association becomes more rec-
ognizable in male patients [32]. Huckriede et al. [29], on 
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the other hand, did not reach the same results, owing to 
the failure to obtain a significant correlation with Simpli-
fied Acute Physiology Score III (SAPS-III). However, they 
found that another parameter, intensive care unit acquired 
weakness (ICUAW), was found to be significantly corre-
lated with NETs [29].

Other laboratories and clinical parameters associated 
with a poor prognosis in COVID-19 patients have also been 
studied with NETs. Those include the lactate dehydroge-
nase (LDH), troponin I, leukocyte count, neutrophil count, 
neutrophil–lymphocyte ratio (NLR), C-reactive protein 
(CRP), Tumor Necrosis Factor-α (TNF-α), interleukin-6 
(IL-6), D-Dimer, a disintegrin and metalloproteinase with a 
thrombospondin type 1 motif, member 13 (ADAMTS13),), 
thrombin-antithrombin (TAT) complex, plasmin-antiplas-
min complex (PAPand von Willebrand factor (vWF) [29, 
30]. Dialysis and delirium clinical events were also demon-
strated as prognostication parameters [29].

Ultimately, the abundance of NETs has been linked to 
overall disease severity [31, 32, 34, 35]. The abundance of 
NET density can be attributed to a lack of NET degrada-
tion and an increase in NET-recognizing antibodies, as well 
as increased production [35]. It is also in charge of ICU 
admission and extended ICU stays for critically ill patients 
[29–32]. Negative regulation of T cells and NK cells as a 
result of NET disruption was tied to insufficient antiviral 
immunity and lung injury [36]. According to Huckriede 
et al. [29] and Ng et al. [30], either increased NET con-
centrations during patient admission or insignificant dimin-
ishment (as measured by dynamic of NET concentrations 
during early and late disease stages) of NETs could predict 
mortality in COVID-19 patients.

Discussion

Many viruses can stimulate the production of NETs. Virus-
induced NETs (constituted of double-stranded DNA com-
plexes, histones, and granular proteins) can circulate uncon-
trollably, triggering a radical systemic response in the body, 
resulting in the production of immune complexes, cytokines, 
and chemokines and ultimately favoring inflammation [39]. 
In the new era of COVID-19, disease progression has shown 
a correlation with NETs level. The correlation mainly have 
a negative impact, with higher NETs level was associated 
with the decrease in overall COVID-19 patients survivability 
[30, 40, 41].

In COVID-19 patients, neutrophilia is prevalent in 
severe cases, and is showing a progressive rise, especially 
in non-survivors [42]. In COVID-19 patients, transcrip-
tome analysis showed a link between neutrophil authenti-
cation and 16 NET-associated genes, which include meta-
bolic enzymes, structural proteins, anti-microbial related Ta
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peptides, peroxisomal peptide, and others. All of this inter-
acted with T/natural killer (NK)/B cells and was related to 
innate immunity (via IFN signaling). However, the effects 
were associated with negative regulation of T cell and NK 
cell immune function via LGAS9 and CEACAM1, respec-
tively, resulting in reduced antiviral immunity and direct 
lung injury (due to toxicity in the alveolar-capillary bar-
rier) [36]. It is also related to some other NETs components, 
including NE, MPO, and histone proteins which are causing 
the direct cytotoxic effect on the alveolar epithelium and 
disrupting the endothelium. The damage-associated molec-
ular patterns (DAMPs)-like the role of these components 
also able to induce thrombotic and inflammatory responses 
in various acute infections, including COVID-19 [43]. 
Overall process of SARS-CoV-2–induced NETs formation 
requires angiotensin-converting enzyme/ACE2 (through the 
ACE2–TMPRSS2 axis) receptor and serine protease [44].

The surrogate marker of NETs, histone-DNA (his-DNA) 
and NETs-specific MPO-DNA complexes were signifi-
cantly raised in plasma samples from critically ill COVID-
19 patient populations. In paired sputum samples from 
COVID-19 patients, MPO-DNA levels were significantly 
correlated with viral RNA load. Inflammatory markers 
(such as C-reactive protein (CRP) and interleukin (IL-6)) 
were also linked to the findings, in addition to white blood 
cells and absolute neutrophil count [13, 30, 31]. Increased 
NETs level was also observed in tracheal aspirate of the 
COVID-19 patients who undergone mechanical ventilation 
[44].

On the chest computed tomography (CT) examination, 
numerous consolidations with air bronchograms across all 
pulmonary fields, with peripheral and peribronchovas-
cular spread (particularly prominent in the lower lobes), 
accompanied with ground-glass opacification, compli-
ant with diffuse alveolar injury were identified [44]. 
Meanwhile, the autopsy of critical COVID-19 patient’s 
lung (distributed in the airway, interstitial, and vascular 
environments) also showed an increase in MPO+H3Cit+ 
neutrophils and filamentous NETs [31, 45]. According 
to histopathological evaluation, COVID-19 causes sig-
nificant alveolar and small airway epithelial alterations 
with viral cytopathic effects, as well as squamous meta-
plasia, lymphocytic infiltration, endothelial edema, and 
tiny fibrinous thrombus formation in pulmonary arterioles 
[44]. It is concluded that during SARS-CoV-2–induced 
ARDS, neutrophils invade and perform NETosis in the 
lungs [31]. It is believed that the markers of NETs forma-
tion (citrullinated histone H3, cfDNA, and NE) could be 
used to assess the requirement for respiratory support and 
short-term mortality in COVID-19 patients [30].

The level of identified NETs-related biomarkers was 
shown to be correlated with increasing severity of illness, 
as evidenced by a higher value in ICU patients compared 

to non-ICU admissions and outpatients [46]. According 
to a cohort study, the level of NETs-related biomarkers 
peaks at the time of patient admission to the ICU and 
then gradually decline over time as the disease progresses 
(either discharge from ICU or death). NETs have been 
found to have a negative correlation with the length of 
stay in the hospital [31]. According to the statistics, ICU 
admission began on average 9.5 days (range: 7–12.5 days) 
after the onset of the COVID-19, indicating the develop-
ment of pulmonary and hyperinflammation phase, and in 
average, ICU admission mortality rate was around 35%, 
which can escalate to 65% in subjects receiving extra-
corporeal membrane oxygenation [47, 48]. In addition, 
for patients receiving mechanical ventilation related to 
COVID-19, the maximum possibility for mortality can 
reach 84.5–96.7%, which indicated the respiratory failure 
(may be accompanied with sepsis and multi-organ failure) 
[49, 50].

The increase in NETs indicators corresponds to changes in 
the phenotype of activated neutrophils which is prone to cel-
lular aggregation in the acute phase of COVID-19 [51]. NETs 
were also linked to at least seven acute-phase protein genes, 
as per interaction analyses (IL-6, TNF-α, CRP, CXCL8, IL 
-1ß, IL17A, and IL-1) which have been linked to short-term 
complications of ARDS [52]. NETs are also linked to the 
complement system (C3 and C5); thus its inhibition can 
reduce NETs levels. In severe COVID-19 instances, comple-
ment is one of the key mechanisms promoting hyperinflam-
mation, immunothrombosis, and microvascular endothelial 
damage [53].

Thrombosis (usually referred to as immunothrombo-
sis) is a deleterious event which is significantly worsen-
ing COVID-19 patient prognosis (in the case of mortality 
and morbidity) [54]. Some of the observed thrombotic-
related conditions in the COVID-19 patients are pulmo-
nary embolism, ischemic stroke, cerebral venous thrombo-
sis, lower limb ischemia, aortic thrombosis, and deep vein 
thrombosis [37, 55–57]. In the patients who are devel-
oping thrombotic events, an increase in calprotectin, a 
marker of neutrophil activation, as well as NETs markers 
(cfDNA, MPO-DNA complexes, and H3cit) was observed. 
An increase in clinical biomarkers of the thrombotic phe-
nomenon, D-dimer, CRP, ferritin, and von Willebrand 
Factor (vWF) antigen was also higher in the thrombosis 
group [15, 37]. Enhanced coagulation and NETs turnover 
in COVID-19 patients were found, in accordance to the 
previously described findings [51]. Vascular occlusion by 
neutrophil extracellular traps in COVID-19 is promoted by 
neutrophil aggregation which increases NETs density and 
occluding tubular structures [58] and evidenced by cell-
rich intra-vascular clots contained vast amounts of aggre-
gated neutrophils that express NE and citrullinated histone 
H3, in addition to CD31. However, smaller vessels often 
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showed preserved endothelium [51]. The findings were 
not only limited to lungs, it can be observed in the kid-
ney and liver tissues from COVID-19 patients, potentially 
leading to multi-organ failure [51]. In a study involving 
COVID-19 patients with ST segment elevation myocar-
dial infarction (STEMI), the thrombus were predominantly 

composed of fibrin with some degree of polymorphonu-
clear cell infiltration and about 61% of NET density [59].

NETs have been found to affect the tissue factor (TF)/
thrombin axis in COVID-19 patients as one of the hypothe-
sized thrombotic mechanisms. It is based on the positive cor-
relations between thrombin-antithrombin (TAT) activity and 
MPO-DNA complex. Thrombin inhibition with dabigatran 
may be beneficial to mitigate TF expression and activity, as 
well as NET release in COVID-19 patients. Significantly 
elevated concentrations of soluble platelet-derived factors 
that trigger NETosis, such as Platelet factor 4 (PF4) and 
RANTES, have been found in COVID-19 patients, suggest-
ing that the interaction of NETs and platelets may contribute 
to a thrombo-inflammatory cluster that leads to COVID-19 
hypercoagulability and thrombosis [15].

The lack of studies determining satisfactory matched 
control for the cohort is one of our study’s limitations. The 
included studies were also primarily retrospective. Fur-
thermore, while the prognostic role of NETs in COVID-19 
appears promising in the current context, more evidence 
across the disease spectrum is required. We encourage 
additional research into developing prognostic models that 
include the NETs marker. We also intended not to undertake 
a meta-analysis due to the clinically vast diversity of the 
included studies (such as different metrics, measurement 

Table 2   NOS risk of bias assessment

Study Selection Comparability Outcome Total stars

Cohort
Huckriede et al. (2021) [29] 4 2 2 8
Ng (2021) [30] 3 0 3 6
Ouwendijk, et. al. (2021) 

[31]
3 0 3 6

Petito et. al. (2021) [32] 3 2 1 6
Skendros et. al. (2020) [33] 2 2 1 5
Torres-Ruiz (2021)b [35] 2 0 2 4
Zuo et al. (2020)a [13] 3 0 1 4
Zuo et al. (2020)b [37] 4 2 2 8
Cross-sectional
Torres-Ruiz et.al. (2021)

a [34]
2 0 1 3

Wang et al. (2020) [36] 2 0 3 5

Fig. 2   Risk of bias assessment 
using Newcastle,Ottawa score. 
Plots created using risk-of-bias 
visualization (robvis) tool [28]
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methods, and heterogeneity of observed NETs markers), 
the discrepancy of study participants’ characteristics, and 
the small study size.

In terms of future prospect, more multicenter rand-
omized controlled trials (RCT), primarily using targeted 
therapy (e.g., DNase) [16], are required to determine the 
precise role of NETs in influencing COVID-19 severity. 
The multicenter trial involving participants with similar 
demographic characteristics may also aid in addressing 
host response issues related to the therapeutic approach, 
which is primarily multifactorial. Also, as COVID-19 is 
progressing to be an endemic, the role of NETs forma-
tion in providing protection and vaccination response can 
be investigated (since the association between cases and 
deaths appears to have been eroded in highly vaccinated 
nations) [60]. Another cohort can be performed to inves-
tigate the common phenomenon known as COVID-19-as-
sociated coagulopathy [61, 62], and NETs can be utilized 
as the predictive factor.

Conclusion

Neutrophil extracellular traps (NETs) are a type of com-
pound produced by the neutrophils in response to various 
infections or inflammatory conditions. This molecule is also 
crucial in affecting disease severity in COVID-19 patients 
and thus affecting their prognosis. It is based on several 
complications, such as thrombosis, endothelial dysfunc-
tion, and the need for mechanical ventilation, in addition 
to its interaction with inflammatory and organ dysfunction 
markers (both extrapulmonary and pulmonary involvement). 
Future research could focus on this marker as a potential 
approach to improving patient outcomes. The multicenter 
RCT can be used to assess the functionality of this molecule. 
It may, however, take a significant amount of time and pose 
ethical issues, especially for patients in severe or critical 
conditions, and must be carefully planned. Furthermore, the 
relationship between NETs and commonly used laboratory 
parameters can be investigated to improve the usability of 
this biomarker.
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