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ABSTRACT

Long-range regulatory interactions among genomic regions are critical for controlling gene
expression, and their disruption has been associated with a host of diseases. However, when
modeling the effects of regulatory factors, most deep learning models either neglect long-
range interactions or fail to capture the inherent 3D structure of the underlying genomic
organization. To address these limitations, we present a Graph Convolutional Model for
Epigenetic Regulation of Gene Expression (GC-MERGE). Using a graph-based framework,
the model incorporates important information about long-range interactions via a natural
encoding of genomic spatial interactions into the graph representation. It integrates mea-
surements of both the global genomic organization and the local regulatory factors, spe-
cifically histone modifications, to not only predict the expression of a given gene of interest
but also quantify the importance of its regulatory factors. We apply GC-MERGE to data
sets for three cell lines—GM12878 (lymphoblastoid), K562 (myelogenous leukemia), and
HUVEC (human umbilical vein endothelial)—and demonstrate its state-of-the-art predictive
performance. Crucially, we show that our model is interpretable in terms of the observed
biological regulatory factors, highlighting both the histone modifications and the interacting
genomic regions contributing to a gene’s predicted expression. We provide model explana-
tions for multiple exemplar genes and validate them with evidence from the literature. Our
model presents a novel setup for predicting gene expression by integrating multimodal data
sets in a graph convolutional framework. More importantly, it enables interpretation of the
biological mechanisms driving the model’s predictions.
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1. INTRODUCTION

Gene regulation determines the fate of every cell, and its disruption leads to diverse diseases

ranging from cancer to neurodegeneration (Krijger and de Laat, 2016; Schoenfelder and Fraser, 2019).

Although specialized cell types from neurons to cardiac cells exhibit different gene expression patterns, the

information encoded by the linear DNA sequence remains virtually the same in all nonreproductive cells

of the body. Therefore, the observed differences in cell type must be encoded by elements extrinsic to

sequence, commonly referred to as epigenetic factors. Epigenetic factors found in the local neighborhood of

a gene typically include histone marks (also known as histone modifications). These marks are naturally

occurring chemical additions to histone proteins that control how tightly the DNA strands are wound around

the proteins and the recruitment or occlusion of transcription factors.

Recently, the focus of attention in genomics has shifted increasingly to the study of long-range epige-

netic regulatory interactions that result from the three-dimensional organization of the genome (Rowley

and Corces, 2018). For example, one early study demonstrated that chromosomal rearrangements, some

located as far as 125 kilo-base pairs (kbp) away, disrupted the region downstream of the PAX6 transcription

unit causing aniridia (absence of the iris) and related eye anomalies (Kleinjan et al., 2001). Thus, chro-

mosomal rearrangement can not only directly affect the expression of proximal genes but can also indi-

rectly affect a gene located far away by perturbing its regulatory (e.g., enhancer/promoter) interactions.

This observation indicates that while local regulation of genes is informative, studying long-range gene

regulation is critical to understanding cell development and disease. However, experimentally testing for all

possible combinations of long-range and short-range regulatory factors for 20,000 genes is infeasible given

the vast size of the search space. Therefore, computational and data-driven approaches are necessary to

efficiently search this space and reduce the number of testable hypotheses.

In recent years, deep learning frameworks have been applied to predict gene expression from histone

modifications, and their empirical performance has often exceeded the previous machine learning methods

(Karlic et al., 2010; Cheng et al., 2011; Dong et al., 2012). Among their many advantages, deep neural

networks perform automatic feature extraction by efficiently exploring feature space and then finding

nonlinear transformations of the weighted averages of those features. This formulation is especially rele-

vant to model complex biological systems since they are inherently nonlinear.

For instance, Singh et al. (2016) introduced DeepChrome, which used a convolutional neural network

(CNN) to aggregate five types of histone mark ChIP-seq signals in a 10,000 bp region around the tran-

scription start site (TSS) of each gene. Using a similar setup, they next introduced attention layers to their

model (Singh et al., 2017), yielding a comparable performance but with the added ability to visualize

feature importance within the local neighborhood of a gene. These methods framed the gene expression

problem as a binary classification task in which the gene was either active or inactive.

Agarwal and Shendure (2020) introduced Xpresso, a CNN framework that operated on the promoter

sequences of each gene and 8 other annotated features associated with mRNA decay to predict steady-state

mRNA levels. This model focused primarily on the regression task, such that each prediction corresponded

to the logarithm of a gene’s expression. A recently published method by Avsec et al. (2021) used a self-

attention neural network to derive predictions from sequence information, but it did not include epigenetic

effects nor provide explanations of their importance to gene expression.

Furthermore, it should be noted that while all the studies previously surveyed accounted for some

types of combinatorial interactions among features at the local level, none of them explicitly incorporated

long-range regulatory interactions known to play a critical role in differentiation and disease (Krijger and

de Laat, 2016; Schoenfelder and Fraser, 2019).

Modeling these long-range interactions is a challenging task due to two significant reasons. First, it is

difficult to confidently pick an input size for the genomic regions as regulatory elements can control gene

expression from various distances. Second, inputting a large region will introduce sparsity and noise into the

data, making the learning task difficult. A potential solution to this problem is to incorporate information from

long-range interaction networks captured from experimental techniques such as Hi-ChIP (Mumbach et al.,

2016) and Hi-C (Van Berkum et al., 2010). These techniques use high-throughput sequencing to measure a 3D

genomic structure, in which each read pair corresponds to an observed 3D contact between two genomic loci.

While Hi-C captures the global interactions of all genomic regions, Hi-ChIP focuses only on spatial

interactions mediated by a specific protein. Recently, Zeng et al. (2019b) combined a CNN, encoding

410 BIGNESS ET AL.



promoter sequences, with a fully connected network using Hi-ChIP data sets to predict gene expression

values. The authors then evaluated the relative contributions of the promoter sequence and promoter/

enhancer submodules to the model’s overall performance. In addition, CNN models can only capture local

topological patterns instead of modeling the underlying spatial structure of the data, thus limiting inter-

pretation to local sequence features.

Another recent method by Karbalayghareh et al. (2021) also made use of H3K27ac Hi-ChIP data at 5 kb

resolution using graph-based neural networks to recover fine-grained enhancer/promoter relationships.

While both these methods incorporated long-range interaction information, their use of HiChIP experi-

ments narrowed this information to spatial interactions facilitated by H3K27ac or YY1. Unlike high-quality

Hi-ChIP experiments used in these studies, Hi-C experiments are easier to perform, the data sets are more

broadly available, and the method is not limited to specific protein-mediated interactions.

To address these limitations outlined above, we developed a Graph Convolutional Model for Epigenetic

Regulation of Gene Expression (GC-MERGE), a graph-based deep learning framework that integrates

3D genomic data with histone mark signals to predict gene expression. Figure 1 provides a schematic of

our overall approach. Unlike previous methods, our model incorporates genome-wide interaction frequ-

encies of the Hi-C data by encoding it via a graph convolutional network (GCN), thereby capturing the

underlying genomic spatial structure.

GCNs are particularly well-suited to representing spatial relationships, as a Hi-C map can be represented

as an adjacency matrix of an undirected graph G 2 fV‚ Eg. Here, V nodes represent the genomic regions

and E edges represent their interactions. Our formulation leverages information from both local and distal

regulatory factors that control gene expression. While some methods use a variety of other features, such as

promoter sequences or readings obtained from the Assay for Transposase Accessible Chromatin using

sequencing (ATAC-seq) levels (Dong et al., 2012; Zeng et al., 2019b; Agarwal and Shendure, 2020), we

focus our efforts solely on histone modifications and extract their relationship to the genes.

We show that our model provides state-of-the-art performance for the gene expression prediction tasks

even with this simplified set of features for three difference cell lines—GM12878 (lymphoblastoid), K562

(myelogenous leukemia), and HUVEC (human umbilical vein endothelial).

FIG. 1. Overview of GC-MERGE. Our framework integrates local HM signals and long-range spatial interactions among

genomic regions to predict and understand gene expression. (I) Inputs to the model include Hi-C maps for each chromosome,

with the binned chromosomal regions corresponding to nodes in the graph, and the average ChIP-seq readings of six core

histone marks in each region, which constitute the initial feature embedding of the nodes. (II) For nodes corresponding to

regions containing a gene, the model performs repeated graph convolutions over the neighboring nodes to yield either a

binarized class prediction of gene expression activity (either active or inactive) or a continuous, real-valued prediction of

expression level. (III) Finally, explanations for the model’s predictions for any gene-associated node can be obtained by

calculating the importance scores for each of the features and the relative contributions of neighboring nodes. Therefore, the

model provides biological insight into the pattern of histone marks and the genomic interactions that work together to predict

gene expression. GC-MERGE, Graph Convolutional Model of Epigenetic Regulation of Gene Expression; HM, histone mark.
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A significant contribution of our work is to enable researchers to determine which regulatory interactions

local or distal contribute toward the gene’s expression prediction and which histone marks are involved in

these interactions. This information can suggest promising hypotheses and guide new research directions by

making the model’s predictive drivers more transparent. To that effect, we adapt a recent model expla-

nation approach specifically for GCNs known as GNNExplainer (Ying et al., 2019), which quantifies the

relative importance of the nodes and edges in a graph that drive the output prediction.

We integrate this method within our modeling framework to highlight the important histone modifica-

tions (node features) and the important long-range interactions (edges) that contribute to a particular gene’s

predicted expression. To validate the model’s explanations, we use two high-throughput experimental

studies (Fulco et al., 2019; Jung et al., 2019) that identify significant regulatory interactions. While existing

methods (Singh et al., 2016, 2017; Zeng et al., 2019b; Agarwal and Shendure, 2020) can provide feature-

level interpretations (important histone modifications or sequences), the unique modeling of Hi-C data as a

graph allows GC-MERGE to provide additional edge-level interpretations (important local and global

interactions in the genome). Table 1 places the proposed framework among state-of-the-art deep learning

models and lists each model’s properties.

The code for our work is available at https://github.com/rsinghlab/GC-MERGE.

2. METHODS

2.1. Graph convolutional networks

GCNs are a generalization of CNNs to graph-based relational data that are not natively structured in

Euclidean space (Liu and Zhou, 2020). Due to the expressive power of graphs, GCNs have been applied

across a wide variety of domains, including recommender systems ( Jin et al., 2020) and social networks

(Qiu et al., 2018). The prevalence of graphs in biology has made these models a popular choice for tasks

such as characterizing protein/protein interactions (Yang et al., 2020), predicting chromatin signature

profiles (Lanchantin and Qi, 2020), and inferring the chemical reactivity of molecules for drug discovery

(Sun et al., 2020). In the context of this work, we use graphs to encode genomic spatial interactions derived

from Hi-C matrices.

We use the GraphSAGE formulation (Hamilton et al., 2017) as our GCN for its relative simplicity and its

capacity to learn generalizable, inductive representations not limited to a specific graph. The input to the

model is represented as a graph G 2 fV‚ Eg, with nodes V and edges E, and a corresponding adjacency

matrix A 2 RN · N (Liu and Zhou, 2020), where N is the number of nodes. For each node v, there is also an

associated feature vector xv. The goal of the network is to learn a state embedding hK
v 2 Rd for v, which is

obtained by aggregating information over v’s neighborhood K times, where d is the dimension of the

embedding vector. This new state embedding is then fed through a fully connected network to produce an

output ŷv, which can then be applied to downstream classification or regression tasks.

Within this modeling framework, the first step is to initialize each node with its input features. In our

case, the feature vector xv 2 Rm is obtained from the ChIP-seq signals corresponding to the six (m = 6) core

histone marks (H3K4me1, H3K4me3, H3K9me3, H3K36me3, H3K27me3, and H3K27ac) in our data set:

Table 1. Comparison of the Properties of Previous Deep Learning Models

Predicting Gene Expression with GC-MERGE

Computational

study

Inputs Interpretation

Local histone

marks

Additional features

(e.g., promoter sequence)

Long-range

interactions

Feature-level

interpretation

Edge-level

interpretation

DeepChrome X X

AttentiveChrome X X

Xpresso X X

DeepExpression X X X

GC-MERGE X X X X

The proposed method integrates local and long-range regulatory interactions, capturing the underlying 3D genomic spatial structure

as well as highlighting both the critical node-level (histone modifications) and edge-level (genomic interactions) features.

GC-MERGE, Graph Convolutional Model for Epigenetic Regulation of Gene Expression.
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h0
v = xv (1)

Next, to transition from the (k - 1)th layer to the kth hidden layer in the network for node v, we apply an

aggregation function to the neighborhood of each node. This aggregation function is analogous to a con-

volution operation over regularly structured Euclidean data such as images.

While standard convolution function operates over a grid and represents a pixel as a weighted aggre-

gation of its neighboring pixels, in an analogous manner, a graph convolution performs this operation over

the neighbors of a node in a graph. In our case, the aggregation function calculates the mean of the neigh-

boring node features:

hk
N (v) =

X
u2N (v)

hk - 1
u

N (v)j j (2)

Here, N (v) represents the adjacency set of node v. We update the node’s embedding by concatenating the

aggregation with the previous layer’s representation to retain information from the original embedding.

Next, just as done in a standard convolution operation, we take the matrix product of this concatenated

representation with a learnable weight matrix to complete the weighted aggregation step.

Finally, we apply a nonlinear activation function, such as ReLU, to capture the higher order nonlinear

interactions among the features:

hk
v = r Wk[hk

N (v)jjhk - 1
v ]

� �
‚ 8k 2 1‚ . . . ‚ Kf g (3)

Here, jj represents concatenation, r is a nonlinear activation function, and Wk is a learnable weight param-

eter. After this step, each node is assigned a new embedding. After K iterations, the node embedding encodes

information from the neighbors that are K-hops away from that node:

zv = hK
v (4)

Here, zv is the final node embedding after K iterations.

GC-MERGE is a flexible framework that can formulate gene expression prediction as both a classifi-

cation task and a regression task. For the classification task, we feed the learned embedding zv into a fully

connected network and output a prediction ŷv for each target node using a Softmax layer to compute

probabilities for each class c and then take the argmax. Here, class c 2 f0‚ 1g corresponds to whether the

gene is either off/inactive (c = 0) or on/active (c = 1). We use the true binarized gene expression value

yv 2 f0‚ 1g by thresholding the expression level relative to the median as the target predictions, consistent

with other studies (Singh et al., 2016, 2017).

For the loss function, we minimize the negative log likelihood of the log of the Softmax probabilities. For

the regression task, we feed zv into a fully connected network and output a prediction ŷv 2 R, representing a

real-valued expression level. We use the mean squared error as the loss function. For both tasks, the model

architecture is summarized in Figure 2 and described in further detail in Supplementary Section S1.1.

2.2. Interpretation of GC-MERGE

Although a model’s architecture is integral to its performance, just as important is the understanding how

the model arrives at its predictions. Neural networks, in particular, have sometimes been criticized for being

‘‘black box’’ models, such that no insight is provided into how the model operates. Most graph-based

interpretability approaches either approximate models with simpler models whose decisions can be used for

explanations (Ribeiro et al., 2016) or use an attention mechanism to identify relevant features in the input

that guide a particular prediction (Veli�cković et al., 2017). In general, these methods, along with gradient-

based approaches (Simonyan et al., 2013; Sundararajan et al., 2017) or DeepLift (Shrikumar et al., 2017),

focus on the explanation of important node features and do not incorporate the structural information of the

graph. However, a recent method called Graph Neural Net Explainer (or GNNExplainer) (Ying et al.,

2019), given a trained GCN, can identify a small subgraph as well as a small subset of features that are

crucial for a particular prediction.

We adapt the GNNExplainer method and integrate it into our classifier framework. GNNExplainer

maximizes the mutual information between the probability distribution of the model’s class predictions

over all nodes and the probability distribution of the class predictions for a particular node conditioned on
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some fractional masked subgraph of neighboring nodes and features. Subject to regularization constraints,

it jointly optimizes the fractional node and feature masks, determining the extent to which each element

informs the prediction for a particular node.

Specifically, given a node v, the goal is to learn a subgraph Gs � G and a feature mask Xs = fxjjvj 2 Gsg
that contribute the most toward driving the full model’s prediction of ŷv. To achieve this objective, the

algorithm learns a mask that maximizes the mutual information between the original model and the masked

model. Mathematically, this objective function is as follows:

max
Gs

M I(Y‚ (Gs‚ Xs)) = H(Y) - H(Y jGs‚ Xs) (5)

where H is the entropy of a distribution. Since this is computationally intractable with an exponential

number of graph masks, GNNExplainer optimizes the following quantity using gradient descent:

min
M‚ N

-
XC

c = 1

1fy = cg log (P/(Y = yjG = Ac e r(Me)‚ X = Xc e r(Mv)) (6)

where c represents the class, Ac represents the adjacency matrix of the computation graph, Me represents the

subgraph mask on the edges, and Mv represents the node feature mask. The importance scores of the nodes

and features are obtained by applying the sigmoid function to the subgraph edges and node feature masks,

respectively. Finally, the element-wise entropies of the masks are calculated and added as regularization

terms into the loss function. Therefore, in the context of our model, GNNExplainer learns which genomic

interactions (via the subgraph edge mask) and which histone modifications (via the node feature mask) are

most critical to driving the model’s predictions.

3. EXPERIMENTAL SETUP

3.1. Overview of the data sets

GC-MERGE requires the following information: (1) Interactions between the genomic regions (Hi-C

contact maps). (2) Histone mark signals representing the regulatory signals (ChIP-seq measurements).

(3) Expression levels for each gene (RNA-seq measurements). Thus, for each gene in a particular region, the

first two data sets are the inputs into our proposed model, whereas gene expression is the predicted target.

FIG. 2. Overview of the GCN model architecture. The data sets used in our model are Hi-C maps, ChIP-seq signals,

and RNA-seq counts. A binarized adjacency matrix (A 2 RN · N ) is produced from the Hi-C maps by subsampling from

the Hi-C matrix. The nodes v in the graph are annotated with features from the ChIP-seq data sets (xv). Two graph

convolutions, each followed by ReLU, are performed. The output from here is fed into a dropout layer (probability = 0.5),

followed by a linear module that comprised three dense layers, in which ReLU follows the first two layers. For the

classification model, the output is fed through a softmax layer, and then the argmax is taken to make the final prediction

(yv). For the regression model, the final output represents the base-10 logarithm of the expression level (with a pseu-

docount of 1).

414 BIGNESS ET AL.



Being consistent with previous studies (Singh et al., 2016, 2017), we first formulate the prediction problem

as a classification task. However, as researchers may be interested in predicting exact expression levels, we

also extend the predictive capabilities of our model to the regression setting. For the classification task, we

binarize the gene expression values as either 0 (low expression) or 1 (high expression) using the median as the

threshold, as done in previous studies (Cheng et al., 2011; Singh et al., 2016, 2017; Zeng et al., 2019b). For

the regression task, we take the base-10 logarithm of the gene expression values with a pseudocount of 1.

We focused our experiments on three human cell lines from Rao et al. (2014): (1) GM12878, a lym-

phoblastoid cell line with a normal karyotype, (2) K562, a myelogenous leukemia cell line, and (3)

HUVEC, a human umbilical vein endothelial cell line. For each of these cell lines, we accessed RNA-seq

expression and ChIP-Seq signal data sets for six uniformly profiled histone marks from the REMC reposi-

tory (Roadmap Epigenomics Consortium, 2015).

These histone marks include (1) H3K4me1, associated with enhancer regions; (2) H3K4me3, associated

with promoter regions; (3) H3K9me3, associated with heterochromatin; (4) H3K36me3, associated with

actively transcribed regions; (5) H3K27me3, associated with polycomb repression; and (6) H3K27ac, also

associated with enhancer regions. We chose these marks because of the wide availability of the relevant data

sets as well as for ease of comparison with previous studies (Singh et al., 2016, 2017; Zeng et al., 2019b).

In addition, these six core histone marks are the same set of features used in the widely cited 18-state

ChromHMM model (Ernst and Kellis, 2017), which associates histone mark signatures with chromatin

states. See Supplementary Section S1.2 for further details regarding preprocessing of the data sets. Fur-

thermore, it should be noted that the model is able to flexibly accommodate an arbitrary number of features

for node annotation.

3.2. Graph construction and data integration

Our main innovation is formulating the graph-based prediction task to integrate two very different data

modalities (histone mark signals and Hi-C interaction frequencies). We represented each genomic region

with a node (v) and connected an edge (e) between it and the nodes corresponding to its neighbors (bins

with nonzero entries in the adjacency matrix) to construct the graph (G 2 fV‚ Eg, with nodes V and edges E).

For chromosome capture data, we used previously published Hi-C maps at 10 kbp resolution for all 22

autosomal chromosomes (Rao et al., 2014). We obtained an N · N symmetric matrix, where each row or

column represents a 10 kb chromosomal region. Therefore, each bin count corresponds to the interaction

frequency between the two respective genomic regions. Next, we applied vanilla coverage (VC)

normalization on the Hi-C maps. In addition, because chromosomal regions located closer together will

contact each other more frequently than regions located farther away simply due to chance (rather than due

to biologically significant effects), we made an additional adjustment for this background effect.

Following Sobhy et al. (2019), we determined the distance between the regions corresponding to each row

and column. Then, for all pairs of interacting regions located the same distance away, we calculated the

median of the bin counts along each diagonal of the N · N matrix and used this as a proxy for the background.

Finally, for each bin, we subtracted the appropriate median and discarded any negative values. We converted

all nonzero values to 1, thus obtaining the binary adjacency matrix for our model (A 2 RN · N).

Due to the large size of the Hi-C graph, we subsampled neighbors to form a subgraph for each node we

fed into the model. While there are methods to perform subsampling on large graphs using a random node

selection approach [e.g., Zeng et al. (2019a)], we used a simple strategy of selecting the top j neighbors

with the highest Hi-C interaction frequency values. We empirically selected the value of j = 10 for the

number of neighbors. Increasing the size of the subsampled neighbor set (i.e., j = 20) did not improve the

performance further, as shown in Supplementary Figure S1.

To integrate the Hi-C data sets with the RNA-seq and ChIP-seq data sets, we obtained the average ChIP-seq

signal for each of the six core histone marks over the 10 kbp chromosomal region corresponding to each node.

In this way, we associated a feature vector of length six with each node (xv 2 R6). For assigning an output

value to the node, we took each gene’s TSS and assigned its expression value to the node corresponding to the

chromosomal region with its TSS as output (yv). If multiple genes were assigned to the same node, we took the

median of the expression levels, that is, the median of all the values corresponding to the same node.

Given our framework, we could allot the output gene expression to only a subset of nodes that contained

gene TSSs while aiming to use histone modification signals from all the nodes. Therefore, to enable

training with such a unique setting, we applied a mask during the training phase so that the model made
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predictions only on nodes with assigned gene expression values. This was done by cross-referencing the

gene coordinates in the RNA-seq data sets with the corresponding Hi-C regions and applying the mask such

that the loss was calculated only on these gene-containing nodes. Note that the graph convolution oper-

ations still used information from related neighbor nodes, but loss calculations and predictions were com-

puted only for the subset of gene-containing nodes.

The overall size of our data set consisted of 279,606 total nodes and 16,699 gene-associated nodes for

GM12878, 279,601 total nodes and 16,690 gene-associated nodes for K562, and 279,598 total nodes and

16,681 gene-associated nodes for HUVEC. When running the model on each cell line, we assigned 70% of

the gene-associated nodes to the training set, 15% to the validation set, and 15% to the testing set. Then, we

performed hyperparameter tuning using the training and validation sets and reported performance on the

independent test set. For the hyperparameter K corresponding to the number of graph convolutional layers,

we determined the optimal number to be K = 2 after testing over a range of 1–3 layers. Additional details

of the hyperparameter tuning are provided in Supplementary Section S1.3 and Supplementary Table S1.

3.3. Baseline models

We compared GC-MERGE with the following deep learning baselines for gene expression prediction of

both the classification and regression tasks:

� Multilayer perceptron (MLP): A neural network comprised three fully connected layers.
� Shuffled neighbor model: GC-MERGE applied to shuffled Hi-C matrices, such that the neighbors of

each node are randomized. We include this baseline to see how the performance of the GCN is affected

when the provided Hi-C information is random.
� CNN: A CNN based on DeepChrome (Singh et al., 2016). This model takes 10 kb regions corresponding to

the genomic regions demarcated in the Hi-C data and subdivides each region into 100 bins. Each bin is

associated with six channels, corresponding to the ChIP-seq signals of the six core histone marks used in the

present study. A standard convolution is applied to the channels, followed by a fully connected network.

For the regression task, the range of the outputs is the set of continuous real numbers. For the classification

task, a Softmax function is applied to the model’s output to yield a binary prediction. None of the baseline

methods incorporates long-range spatial information due to genomic interactions. Therefore, they only process

histone modification information from the regions whose gene expression is being predicted. In contrast, GC-

MERGE solves a more challenging task by processing information from the neighboring regions as well.

For the CNN baseline, genomic regions are subdivided into smaller 100-bp bins, consistent with Singh et al.

(2016). However, GC-MERGE and the baselines other than the CNN average the histone modification signals

over the entire 10 kb region. We also implemented GC-MERGE on higher resolution ChIP-seq data sets

(1000-bp bins), which we fed through a linear embedding module to form features for the Hi-C nodes. We did

not observe an improvement in the performance for the high-resolution input (Supplementary Fig. S2).

In addition, we compared our results to the published results of two other recent deep learning methods,

Xpresso by Agarwal and Shendure (2020) and DeepExpression by Zeng et al. (2019b), when such com-

parisons were possible, although in some cases the experimental data sets were unavailable or the code

provided did not run.

3.4. Evaluation metrics

For the classification task, we evaluated model performance by using two metrics: the area under the

receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPR). For

the regression task, we calculated the Pearson correlation coefficient (PCC), which quantifies the corre-

lation between the true and predicted gene expression values in the test set.

4. RESULTS

4.1. GC-MERGE gives state-of-the-art performance for the gene expression prediction task

We evaluate GC-MERGE and the baseline models on both the classification and regression tasks for the

cell lines, GM12878, K562, and HUVEC. As earlier studies formulated the problem as a classification task

(Singh et al., 2016, 2017, Zeng et al., 2019b), we first apply GC-MERGE to make a binary prediction of
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whether each gene is active or inactive. In Figure 3a, we show that our model’s performance is an impro-

vement over all other alternatives, achieving 0.91, 0.92, and 0.90 AUROC scores. We also measure model

performance using the AUPR score and achieve similar results (Supplementary Fig. S3).

For the K562 cell line, we note that the performance of GC-MERGE (AUROC = 0.92) is similar to that

reported for DeepExpression (AUROC = 0.91) by Zeng et al. (2019b), a CNN model that uses promoter

sequence data as well as spatial information from H3K27ac and YY1 Hi-ChIP experiments. We could not

compare with DeepExpression for the cell lines, GM12878 and HUVEC, as the experimental data sets were

unavailable. For the Xpresso framework presented in Agarwal and Shendure (2020), a CNN model that

uses promoter sequence and 8 features associated with mRNA decay to predict gene expression, the task is

formulated as a regression problem, and so, no comparisons could be made for the classification setting.

With respect to the regression task, Figure 3b compares our model’s performance with the baselines and

Figure 3c shows the predicted versus true gene expression values for GC-MERGE. For GM12878, the PCC

of GC-MERGE predictions (PCC = 0.77) is better than the other baselines. Furthermore, we note that our

model performance also compares favorably with numbers reported for Xpresso (PCC � 0.65) (Agarwal

and Shendure, 2020). For K562, GC-MERGE again outperforms all alternative baseline models (PCC = 0.79).

In addition, GC-MERGE performance also exceeds that of Xpresso (PCC � 0.71) (Agarwal and

Shendure, 2020) as well as DeepExpression (PCC = 0.65) (Zeng et al., 2019b). Our model gives better

performance (PCC = 0.76) relative to the baselines for HUVEC as well. Neither Xpresso nor Deep-

Expression studied this cell line. While the metrics presented for GC-MERGE are not directly comparable

with the reported numbers for Xpresso and DeepExpression, it is encouraging to see that they are in the

range of these state-of-the-art results.

FIG. 3. Comparison of AUROC and PCC scores for all models. GC-MERGE gives state-of-the-art performance for

both the classification and the regression tasks. For each reported metric, we take the average of 10 runs and denote the

standard deviation by the error bars on the graph. (a) For the classification task, the AUROC metrics for GM12878,

K562, and HUVEC were 0.91, 0.92, and 0.90, respectively. For each of these cell lines, GC-MERGE improves

prediction performance over other baselines. (b) For the regression task, GC-MERGE obtains PCC scores of 0.77, 0.79,

and 0.76 for GM12878, K562, and HUVEC, respectively. These scores are better than the respective baselines. (c)

Scatter plots of the logarithm of the predicted expression values versus the true expression values are shown for all three

cell lines. AUROC, area under the receiver operating characteristic curve; GM12878, lymphoblastoid; HUVEC, human

umbilical vein endothelial cell; K562, myelogenous leukemia; PCC, Pearson correlation coefficient.
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A summary of the performance metrics for GC-MERGE, the deep learning baselines used for direct

comparison, as well as traditional machine learning methods (random forest and logistic regression tech-

niques) can be found in Supplementary Tables S4 and S5.

To determine in which cases incorporating information about long-range interactions make a substantive

difference in predictive performance, we compare the performance of GC-MERGE (which includes the

long-range chromatin interaction information) with the baseline MLP (which does not include long-range

chromatin interaction information) as well as the shuffled model (which permutes the rows of the Hi-C

matrix for each chromosome) on subgroups of genes stratified by their differential expression. Specifically,

for each of the cell lines in our study, we take the log2 fold-change (with a pseudocount of 1) of each gene

expression relative to the mean expression for all 56 other cell lines in the REMC repository.

Then, we group the genes according to their log-fold change and compare the performance of GC-

MERGE with the MLP and shuffled models, as seen in Supplementary Figure S4 and Supplementary

Table S6. We find that GC-MERGE performance exceeds that of both the MLP and shuffled baselines

under all conditions, but the improvement increases for genes with higher log fold-changes. For instance,

for genes with a log-fold change of 0, the average improvement in the PCC performance metric of GC-

MERGE over all cell lines is 0.086 and 0.049 for the MLP and shuffled baselines, respectively. However,

for genes with a log-fold change of 3 or greater, the average performance increase of GC-MERGE is 0.213

and 0.122 relative to the MLP and shuffled baselines, respectively.

These results are plausible since genes with greater differential expression would be expected to be more

cell-type specific and subject to greater control by long-range regulatory interactions. An interesting

observation here is that the shuffled baseline has an intermediate performance between that of the MLP and

GC-MERGE. We conjecture that the shuffled model learns to ignore the noise of the random neighbor

interactions and focus primarily on the histone marks present in the genic region itself, and due to the

greater complexity of the model, it is able to learn better than the MLP. However, for all expression levels,

the shuffled model performance is still lower than that of GC-MERGE and particularly so for genes with a

high differential expression.

Therefore, although GC-MERGE performs better than both the MLP and shuffled baselines for all

expression levels, the utility of our model is most apparent for genes that are highly differentially expres-

sed. Since the relative predictive advantage of GC-MERGE over both baselines increases at higher log-fold

changes, this suggests that for genes with higher levels of differential expression, the significance of the

contributions made by 3D genomic structure increases correspondingly.

Our model’s state-of-the-art performance on this challenging prediction task indicates that it can leverage

multimodal data sets to learn relevant connections. However, an important aim is to go beyond the pre-

diction task and extract these learned relationships from the model. Thus, we present GC-MERGE as a

hypothesis driving tool for understanding epigenetic regulation.

4.2. Interpretation of GC-MERGE highlights important histone modifications
and relevant long-range interactions

To understand the underlying biological factors informing the model’s predictions, we integrate the

GNNExplainer method (Ying et al., 2019), designed for classification tasks, into our modeling framework.

Once trained, we show that GC-MERGE can determine which genomic interactions and histone marks are

most critical to the prediction of the expression level for a particular gene of interest. First, to demon-

strate that the model is extracting relevant signals, we apply GNNExplainer to analyze model predictions

across three subsets of genes: those that have high expression, intermediate expression, and low expression.

We show that for each of these subsets, the model uses features that correspond to known chromatin

signatures indicative of their respective expression levels.

Second, to show how our tool can be used to uncover possible biological drivers at the genic level, we

validate our approach on exemplar genes using two experimental data sets that identify regulatory inter-

actions. The first data set is drawn from an analytical study by Jung et al. (2019), which uses promoter

capture Hi-C to identify candidate regulatory elements that interact with promoters of interest in con-

junction with expression quantitative trait loci (eQTL) expression levels and other epigenetic signals. The

second functional characterization study by Fulco et al. (2019) introduces a new experimental technique

called CRISPRi-FlowFISH, in which candidate regulatory elements are perturbed, and the effects on the

expression of specific genes of interest are measured.
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We apply GNNExplainer to each of the cell lines in this study to determine the most important features

motivating GC-MERGE’s predictions for three groups of genes with distinct expression levels. The three

subsets of genes are defined as follows: genes with high expression (top 100 genes by expression), genes

with moderate expression (100 genes with expression levels closest to the median), and genes with low

expression (bottom 100 genes by expression). For each group, we run GNNExplainer on all the genes in the

subset and calculate the mean value of the importance scores assigned to each of the six histone mark

features, as displayed in Figure 4.

Corroborating these model interpretations, all of the mean profiles are identifiable with the chromatin

state signatures defined in the widely cited 18-state ChromHMM model by Ernst and Kellis (2017). For

genes with high expression, H3K4me3 is the most important feature in determining predictions for the

GM12878 cell line. For the cell lines, K562 and HUVEC, both H3K4me3 and H3K27ac have prominent

importance scores. Each of these chromatin mark signatures correlates with active TSSs or sites flanking an

active TSS. For moderately expressed genes, in all three cell lines, H3K4me3 has the highest importance

score followed by H3K27me3. According to the ChromHMM taxonomy, this chromatin mark signature is

characteristic of a bivalent/poised TSS, as would be expected. Lastly, for genes with low expression,

H3K27me3 predominates, which corresponds to polycomb repression. We thus show that the model’s

predictions are biologically interpretable and based on relevant combinations of features that recapitulate

well-characterized histone mark profiles.

To further demonstrate the utility of our model, we show that it can identify not only the histone mark

signatures but also critical long-range genomic interactions that have been experimentally verified at the genic

level. As mentioned previously, we use two complementary experimental sources: promoter capture Hi-C

data from the study by Jung et al. (2019) and CRISPRi-FlowFISH data from the study by Fulco et al. (2019).

For the promoter capture Hi-C data ( Jung et al., 2019), we examined GM12878, a lymphoblastoid cell

line, and selected four exemplar genes that are among the most highly expressed in our data set: SIDT1,

AKR1B1, LAPTM5, and TOP2B. Brief descriptions of the genes are included in Supplementary Section S2

FIG. 4. Histone mark profiles for subsets of genes expressed at high levels, intermediate levels, and low levels.

(a) For GM12878, the average histone mark profile for the top 100 genes by expression level is dominated by

H3K4me3 as would be expected for actively transcribed genes. The histone mark profile for genes at intermediate

expression value is characterized by high importance scores for H3K4me3 and H3K27me3, which is correlated with a

bivalent/poised TSS. Lastly, the histone mark profile for genes with low expression shows that the H3K27me3 signal is

most important, which is associated with repression. Similar patterns can be observed for (b) K562 and (c) HUVEC.

TSS, transcription start site.
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and the chromosomal coordinates and corresponding node identifiers for each gene can be found in

Supplementary Table S2. In Figure 5a, we show that for SIDT1, the nodes that are ranked as the top three

by importance score (indicated by the size of the node) correspond to known regulatory regions.

In addition, we plot the importance scores assigned to the histone marks (node features) that are most

consequential in determining the model’s predictions. The bar graph shows that H3K4me3 is the most

important feature in determining the model’s prediction. This histone mark profile has been associated with

regions flanking TSSs in highly expressed genes (Ernst and Kellis, 2017). We report similar results for

AKR1B1 (Fig. 5b), where the node ranked as the most important corresponds to a confirmed regulatory

region and TOP2B (Fig. 5d), where two of the most important nodes correspond to regulatory regions.

For LAPTM5, shown in Figure 5c, the top-ranked node corresponds to a validated regulatory region. For

the histone importance score profile, the feature deemed most important is H3K27ac. This histone mark has

been associated with the promoter regions of highly expressed genes as well as active enhancer regions

(Ernst and Kellis, 2017).

Unlike the promoter capture Hi-C study ( Jung et al., 2019), the CRISPRi-FlowFISH study (Fulco et al.,

2019) uses a functional definition of enhancers. Since the latter focuses primarily on a limited subset of 30

genes from the K562 cell line, we have select four highly expressed genes in our data set that also overlap

with the genes examined in that study. These four exemplar genes are as follows: BAX, HNRNPA1, PRDX2,

and RAD23A. Descriptions of each of these genes can be found in Supplementary Section S2, and the gene

coordinates and corresponding node IDs can be found in Supplementary Table S2. For BAX, shown in

Figure 6a, the two top-ranked nodes by importance score correspond to functional enhancer regions. The

histone mark importance scores pinpoint the H3K4me3 mark as most critical to the model’s predictions.

For HNRNPA1 (Fig. 6b), two out of the three highest ranked nodes correspond to regulatory regions. The

histone marks most important to the models predictions are H3K36me3, H3K27ac, and H3K4me3. This

chromatin signature is indicative of genic enhancer regions (Ernst and Kellis, 2017). For PRXD2 (Fig. 6c),

the top two nodes by importance correspond to functional enhancer regions, and the histone mark

a b c d

FIG. 5. Model explanations for exemplar genes validated by promoter capture Hi-C. Top: For (a) SIDT1, designated

as node 60561 (yellow circle), the subgraph of neighbor nodes is displayed. The size of each neighbor node correlates

with its predictive importance as determined by GNNExplainer. Nodes in red denote regions corresponding to known

enhancer regions regulating SIDT1 (Jung et al., 2019) (note that multiple interacting fragments can be assigned to each

node, see Supplementary Table S3). All other nodes are displayed in gray. The thickness of each edge is inversely

correlated with the genomic distance between each neighbor node and the central node, such that thicker edges indicate

neighbor nodes that are closer in sequence space to the gene of interest. Nodes with importance scores corresponding

to outliers have been removed for clarity. Bottom: The scaled feature importance scores for each of the six core

histone marks used in this study are shown in the bar graph. Results also presented for (b) AKR1B1, (c) LAPTM5, and

(d) TOP2B.
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importance scores indicate that H3K27ac and H3K4me3 play crucial roles in driving the genes’ predicted

expression. For RAD23A (Fig. 6d), the top two nodes again correspond to experimentally validated regu-

latory regions. From the histone mark importance profile, it can be seen that H3K27ac plays an influential

role.

Both H3K4me3 and H3K27ac are active cis-regulatory elements used to deduce the enhancer/promoter

interactions (Salviato et al., 2021), and, interestingly, interpretation of GC-MERGE highlights these histone

marks out of the six chosen for this study.

To confirm that the node importance scores obtained from GNNExplainer do not merely reflect the

relative magnitudes of the Hi-C counts or the distances between the genomic regions, we investigate

the relationships among the Hi-C counts, genomic distances, and scaled importance scores. We

observe that the scaled importance scores do not correlate with the Hi-C counts or the pairwise

genomic distances. For instance, for SIDT1 (Supplementary Fig. S5a and Supplementary Table S7),

the three experimentally validated interacting nodes have importance scores ranking among the

highest (10.0, 6.6, and 5.7).

However, they do not correspond to the nodes with the most Hi-C counts (413, 171, and 155 for each of

the three known regulatory regions, while the highest count is 603). In addition, these nodes are located 20,

30, and 40 kbp away from the gene region—distances that are characteristic of distal enhancers (Dekker

and Misteli, 2015)—while other nodes at the same or closer distances do not have promoter/enhancer

interactions. For LAPTM5 (Supplementary Fig. S5c and Supplementary Table S7), the node with the

highest importance score has an experimentally confirmed interaction and is located 170 kbp away from the

gene region. We perform similar analysis for all of the other exemplar genes (Supplementary Fig. S5 and

Supplementary Table S7).

Therefore, we show that by modeling the histone modifications and the spatial configuration of the

genome, GC-MERGE infers connections that can serve as important hypothesis-driving observations for

gene regulatory experiments.

a b c d

FIG. 6. Model explanations for exemplar genes validated by CRISPRi-FlowFISH. Top: For (a) BAX, designated as

node 264956 (yellow circle), the subgraph of neighbor nodes is displayed. The size of each neighbor node correlates

with its predictive importance as determined by GNNExplainer. Nodes in red denote regions corresponding to known

enhancer regions regulating BAX (Fulco et al., 2019) (note that multiple interacting fragments can be assigned to each

node, see Supplementary Table S3). All other nodes are displayed in gray. The thickness of each edge is inversely

correlated with the genomic distance between each neighbor node and the central node, such that thicker edges indicate

neighbor nodes that are closer in sequence space to the gene of interest. Nodes with importance scores corresponding to

outliers have been removed for clarity. Bottom: The scaled feature importance scores for each of the six core histone

marks used in this study are shown in the bar graph. Results also presented for (b) HNRNPA1, (c) PRDX2, and (d)

RAD23A.
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5. DISCUSSION

We present GC-MERGE, a graph-based deep learning model, which integrates both local and long-range

epigenetic data in a GCN framework to predict gene expression and explain its chief drivers. We dem-

onstrate the model’s state-of-the-art performance for the gene expression prediction task, outperforming the

baselines on the cell lines, GM12878, K562, and HUVEC. We also determine the relative contributions

of histone modifications and genomic interactions for multiple exemplar genes, showing that our model

recapitulates known experimental results in a biologically interpretable manner.

For future work, we anticipate applying our model to additional cell lines as high-quality Hi-C data sets

become available. Although our model is not currently optimized for model transfer and prediction across

cell lines, we would like to pursue this direction by making comparisons between tissue types. Making

these cross-comparisons will enable us to distinguish between regulatory mechanisms that are conserved

and those that are tissue-specific. Another avenue of particular importance would be to develop more robust

methods for interpreting GCNs.

For example, while the GNNExplainer model is a theoretically sound framework and yields an unbiased

estimator for the importance scores of the subgraph nodes and features, there is variation in the inter-

pretation scores generated over multiple runs. Furthermore, with larger GCNs, the optimization function

utilized in GNNExplainer is challenging to minimize in practice. The importance scores converge with

little differentiation for some iterations, and the method fails to arrive at a compact representation. This

issue may be due to the relatively small penalties the method applies for constraining the optimal size of

the mask and the entropy of the distribution. We plan to address this issue in the future by implementing

more robust forms of regularization.

In addition, although much of the GCN literature has focused on node features, more recent work also

incorporates edge weights. In the context of our problem, edge weights could be assigned by using the Hi-C

counts in the adjacency matrix. Another natural extension to our model would be to include other types

of experimental data as features, such as promoter sequence or ATAC-seq measurements. Lastly, the GCN

framework is flexible and general enough to be applied to many other classes of biological problems that

require integrating diverse, multimodal data sets relationally.

In summary, GC-MERGE demonstrates proof-of-principle for using GCNs to predict gene expression

using both local epigenetic features and long-range spatial interactions. More importantly, interpretation of

this model allows us to propose plausible biological explanations of the key regulatory factors driving gene

expression and provide guidance regarding promising hypotheses and new research directions.
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