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ABSTRACT

Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have yielded a
powerful tool to measure gene expression of individual cells. One major challenge of the
scRNA-seq data is that it usually contains a large amount of zero expression values, which
often impairs the effectiveness of downstream analyses. Numerous data imputation methods
have been proposed to deal with these ‘‘dropout’’ events, but this is a difficult task for such
high-dimensional and sparse data. Furthermore, there have been debates on the nature of the
sparsity, about whether the zeros are due to technological limitations or represent actual
biology. To address these challenges, we propose Single-cell RNA-seq Correlation completion
by ENsemble learning and Auxiliary information (SCENA), a novel approach that imputes
the correlation matrix of the data of interest instead of the data itself. SCENA obtains a gene-
by-gene correlation estimate by ensembling various individual estimates, some of which are
based on known auxiliary information about gene expression networks. Our approach is a
reliable method that makes no assumptions on the nature of sparsity in scRNA-seq data or
the data distribution. By extensive simulation studies and real data applications, we dem-
onstrate that SCENA is not only superior in gene correlation estimation, but also improves
the accuracy and reliability of downstream analyses, including cell clustering, dimension
reduction, and graphical model estimation to learn the gene expression network.

Keywords: auxiliary information, clustering, correlation completion, dimension reduction,

ensemble learning, graphical modeling, imputation, single-cell RNA-sequencing.

1. INTRODUCTION

RNA sequencing reveals RNA information of biological samples at a given moment, using high-

throughput technology. Traditional bulk RNA-seq can only provide the average gene expression lev-

els across all cells and fails to distinguish various cell types within the sample. The advanced technology
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single-cell RNA sequencing (scRNA-seq) untangles the drawbacks of bulk RNA-seq by measuring the gene

expression of each individual cell. Such improvement in technology allows researchers to identify the

critical differences among cells from the same organism, and enables the discovery of rare and new cells.

With the superior advantages, scRNA-seq technology has become an important and powerful tool in tran-

scriptome analysis (Kolodziejczyk et al., 2015).

However, scRNA-seq sacrifices some measurement accuracy to identify the gene expression of indi-

vidual cells. The data quality of scRNA-seq is less reliable due to its high level of sparsity. There has been

a debate on the reasons behind such sparsity (Silverman et al., 2020). Some argue that the zeros are bio-

logically meaningful and no correction is necessary (Wang et al., 2018; Townes et al., 2019; Svensson,

2020). Yet, several others refer the large number of zeros as dropouts, which are technical artifacts where

genes erroneously appear to have zero expression due to sequencing inefficiency (Chen et al., 2018; Gong

et al., 2018; Huang et al., 2018; Zhu et al., 2018; Tracy et al., 2019; Jeong and Liu, 2020). The loss of

information is believed to cause major problems in downstream analyses.

Numerous imputation methods have been developed to fill in the dropout values in the scRNA-seq data.

For example, the model-based imputation method SAVER (Huang et al., 2018) predicts gene expressions

under the assumption that the measured gene expressions follow Poisson-Gamma distributions, where the

latent Gamma random variables are the true gene expressions. Moreover, smooth-based imputations, such

as drImpute (Gong et al., 2018) and PRIME (Jeong and Liu, 2020), impute the dropouts of a cell by using

the gene expressions of the cells belonging to the same cluster. Furthermore, the low-rank matrix-based

method scRMD methodology (Chen et al., 2018) infers the gene expressions of cells by robust matrix

decomposition, where the dropouts are encoded in a sparse matrix, and the matrix of true gene expressions

has low rank. Plenty of other widely used imputation approaches have been compared in Hou et al. (2020).

However, effective imputation of the missing values in scRNA-seq data can be difficult and biased

because the data are sparse and contains tens-of-thousands of cells and genes. Moreover, researchers are in

fact interested in discovering gene-to-gene connections and interactions, identifying cell types, and visu-

alizing the scRNA-seq data in a lower dimensional space. Such analyses require a good estimate of the

correlation matrix of the gene expressions. Then, why not directly correct the correlation matrix of the data

of interest? If so, how do we make assumptions about the zeros in the data matrix? Unfortunately, the

presence of dropouts still generates several challenges.

On the one hand, the sample correlation would be corrupted if all zeros are assumed to be true values; on

the other hand, with the assumption that all zeros are missing values, the Pearson correlation of two genes

may be computed empirically only if there are enough pairwise-complete observations, otherwise it is

infeasible. That is, the presence of dropouts can cause missingness in the sample covariance matrix. Even

though plenty of covariance matrix completion methodologies can be implemented here (Ledoit and Wolf,

2003; Lounici, 2014; Hastie et al., 2015; Cai and Zhang, 2016; Josse et al., 2016; Zamanighomi et al., 2016;

Pavez and Ortega, 2020), ideal performance is only guaranteed under strict assumptions, for example, low-

rankness, similar to data imputation methods.

So, one may ask: can we effectively impute the correlation matrix, without further strict assumptions on

either dropout events or the underlying model of gene expression? In this article, we solve this problem by

using auxiliary information, which can be any additional information beyond the data of interest. Indeed,

improvements in estimation performance due to the use of auxiliary information have been observed in

various contexts (Ferkingstad et al., 2008; Hecker et al., 2009; Lin and Lee, 2010; Gao and Wang, 2011; Li

and Jackson, 2015; Van De Wiel et al., 2016; Novianti et al., 2017; Liang et al., 2019). For instance, in

scRNA-seq analysis, SCRABBLE (Peng et al., 2019) utilizes bulk data as a constraint to reduce bias during

imputation.

Hecker et al. (2009) discuss improvements in network inference allowed by the incorporation of genome

sequence and protein–DNA interaction data. Moreover, Lin and Lee (2010) study age-related macular

degeneration by incorporating prior knowledge from previous linkage and association studies. Further-

more, Gao and Wang (2011) and Li and Jackson (2015) use information about Gene Ontology annotation

to improve network estimation. Finally, Novianti et al. (2017) use gene pathway databases and genomic

annotations to improve prediction accuracy, and Liang et al. (2019) use auxiliary information about gene

length and test statistics from microarray studies for the analysis of differential expression of genes.

In this article, we propose a novel approach, Single-cell RNA-seq Correlation completion by ENsemble

learning and Auxiliary information (SCENA), which estimates the gene-by-gene correlation matrix by

ensemble learning and the incorporation of auxiliary information (Section 2). Specifically, we seek to
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generate a reliable and accurate correlation estimation from scRNA-seq data so as to enable effective down-

stream analyses, including dimension reduction, cell clustering, and graphical modeling, to learn gene

expression networks. We achieve these goals using additional auxiliary information about the underlying

biological connections and other data sources together with the dropout-corrupted scRNA-seq data of interest.

To implement SCENA, the first step is to obtain various single correlation estimates by (1) calculating

the sample correlation matrix of the data of interest, under different assumptions on the nature of sparsity;

(2) converting all auxiliary data sources into approximate correlation matrices; and (3) recovering corre-

lations through existing data imputation and matrix completion strategies. We then ensemble all obtained

single correlation matrices into a final gene-by-gene correlation matrix estimate by model stacking. We test

our novel method and compare it with existing data imputation approaches through extensive simulations

(Section 3) and several real data case studies (Section 4). Our results show that SCENA outperforms other

existing methods in terms of correlation matrix completion, dimension reduction, clustering, and graphical

modeling.

2. SINGLE-CELL RNA-SEQ CORRELATION COMPLETION
BY ENSEMBLE LEARNING AND AUXILIARY INFORMATION

Let Xs be an N · M scRNA-seq data matrix of gene expressions of N genes measured over M cells. The

challenge raised is that the data matrix Xs typically contains a large proportion of zeros (usually 80%), and

it is difficult to distinguish between the true zero gene expression and the dropout events. These missing

values might significantly influence the reliability of the further downstream analyses. Traditional impu-

tation methods aim to recover the underlying dropout-free data matrix X by imputing the missing entries

(Chen et al., 2018; Gong et al., 2018; Huang et al., 2018; Zhu et al., 2018; Tracy et al., 2019; Jeong and Liu,

2020), with different assumptions on the data. However, the accuracy of the imputed data as well as further

analyses rely on the appropriateness of assumptions.

One may ask: is there any way to integrate different assumptions on both the nature of zeros and the

distribution of gene expression? Before we answer this question, note that most of the downstream analyses

require a reliable gene-to-gene correlation matrix. Then why not directly correct the corrupted correlation

matrix instead? In this study, we propose a novel approach to generate more accurate correlation estimates

and improve the accuracy of further downstream procedures by directly imputing the gene-by-gene cor-

relation matrix instead of the data matrix itself.

Our proposed method, SCENA offers three major methodological innovations that yield better corre-

lation estimates, and dramatically higher accuracy in further analyses, including dimension reduction,

clustering, and graphical model. Our first innovation is to impute the estimated correlation matrix of Xs,

instead of the data itself, which is unseen in the scRNA-seq imputation literature so far. In this way, we are

able to integrate different assumptions on the distribution of the underlying gene expressions and can

reduce additional bias created from the imputation process.

Second, rather than solely relying on the data of interest, SCENA estimates the correlations using

numerous sources of auxiliary information. These auxiliary quantities can be any kind of data beyond the

scRNA-seq data of interest, including gene networks and other relevant RNA-seq data. The incorpora-

tion of additional information derived from various sources can provide more insights into the underlying

gene-to-gene biological connections, so as to better approximate the correlation matrix. Improvements

on estimation performance using auxiliary information have also been shown in the genomics literature

(Ferkingstad et al., 2008; Hecker et al., 2009; Lin and Lee, 2010; Gao and Wang, 2011; Li and Jackson,

2015; Van De Wiel et al., 2016; Novianti et al., 2017; Liang et al., 2019; Peng et al., 2019).

Next, one may ask how to optimally incorporate the different sources of auxiliary information with

the data of interest to generate an ultimate reliable estimate of the gene-by-gene correlation matrix. Our

approach builds upon a strikingly simple but powerful idea: model stacking. After converting auxiliary

information into single correlation matrices through various techniques, SCENA generates a final esti-

mate by ensembling all the single correlation matrices. Superior performance can be achieved as ensemble

learning is able to reduce noise and bias of each single estimate, and improve predictive power (Opitz and

Maclin, 1999; Polikar, 2006; Rokach, 2010). In Section 2.1 we describe the derivation of single correlation

matrix estimates, and in Section 2.2 we present the model stacking algorithm for final estimates. In the rest

of the article, gene expressions are transformed according to x1 log2 (1 + x) before computing correlations.
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2.1. Single correlation matrix estimates

Our first step is to construct numerous single correlation estimates of the data of interest with auxiliary

information. There has been a debate on the nature of the sparsity in scRNA-seq data. Some argue that the

large quantity of zeros are due to technical inefficiency (Chen et al., 2018; Gong et al., 2018; Huang et al.,

2018; Zhu et al., 2018; Tracy et al., 2019; Jeong and Liu, 2020), whereas others believe that the zeros are

actually biologically meaningful rather than ‘‘dropouts,’’ and corrections to scRNA-seq data are unnec-

essary (Wang et al., 2018; Townes et al., 2019; Svensson, 2020). To integrate such controversy, we build

several kinds of correlation estimates using different assumptions on the sparsity of scRNA-seq, along with

various types of auxiliary information.

These single estimates can be divided into the following four groups: (1) blind correlation estimates,

(2) data-imputed estimates, (3) correlation estimates based on auxiliary data, and (4) skeptical correlation

estimates. Our first type of single correlation estimate is constructed by simply assuming all zeros in

the scRNA-seq data matrix Xs are true gene expressions, referred as the blind correlation estimate. Second,

with the assumption that some zeros are dropouts that require corrections, we can construct correlation

estimates utilizing the existing data imputation methods (Chen et al., 2018; Gong et al., 2018; Huang et al.,

2018; Jeong and Liu, 2020). Then single estimates are calculated as the sample correlation matrices of

imputed scRNA-seq data.

Third, auxiliary information that can reflect the underlying biological connections among genes is used

to approximate correlation matrices. For example, the bulk cell RNA-seq data can be considered as one

type of auxiliary data because it is free from the dropout issue, and numerous resources on the bulk cell

experiments are available. Another helpful auxiliary quantity is a new scRNA-seq data set of the same

tissue as the data of interest. It is possible that another scRNA-seq data set X�s presents fewer dropouts for

some of the genes in the main data matrix Xs, so the lost information of those genes might be found in the

new data. For both kinds of auxiliary RNA-seq data, the sample gene-by-gene correlation matrix is cal-

culated as a single correlation estimate. In this article, we include bulk cell RNA-seq data of 39 different

tissues from the Encyclopedia of DNA Elements (ENCODE) (Consortium et al., 2012), and other scRNA-

seq data collected from cells of the same type of organism as the scRNA-seq data set of interest (Yan et al.,

2013; Lake et al., 2018).

Another kind of auxiliary information is biological networks. By providing gene or protein connections,

this network information can also significantly help us approximate single correlation estimates. However,

the networks are usually not in the shape of correlations, so some preprocessing steps are required to con-

vert them into approximate correlation matrices. For instance, the gene pathway database from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2016) provides information about n = 6860

genes and c = 239 gene pathways which can be summarized in an n · c matrix K = [Kij] where Kij = 1 if gene

i is in pathway j, Kij = 0 otherwise. Then we can compute the n · n sample correlation matrix of K.

From the gene interaction networks from the Biological General Repository for Interaction Datasets

(BioGRID) (Stark et al., 2010), we extract an adjacency matrix A 2 f0‚ 1gN · N
of gene connections, and

obtain the correlation matrix diag(L - 1) - 1
2L - 1diag(L - 1) - 1

2, where L is the Laplacian matrix L = D - A, and

D is a diagonal matrix with Dii =
PN

j = 1 Aji, that is, the degree of gene i. Another network auxiliary network

is the protein–protein interaction networks from STRING (Szklarczyk et al., 2016). We construct a cor-

relation matrix by treating gene-by-gene combined connection scores as correlations. In this way, we are

able to obtain correlation estimates of genes from different auxiliary networks using the corresponding

preprocessing procedures.

Finally, we assume all zeros in the scRNA-seq are dropouts. We obtain the matrix XNA
s which corre-

sponds to Xs with all zeros replaced by missing values (NAs). From this matrix, it is possible to compute

the pairwise complete sample correlation matrix ŜO, which contains missing entries for gene pairs with

no jointly nonzero measured scRNA-seq expressions. However, how do we fill up the missing values in

ŜO? In this study, we propose several methods to obtain completed skeptical correlation versions. Our first

method is to produce a complete correlation matrix by existing low rank matrix completion strategies

(Lounici, 2014), denoted as corshrink.

Second, since we already have plenty of single correlation estimates from auxiliary data, why not correct

the missing values in ŜO using those complete correlation matrices? One simple solution is to construct a

convex combination of the incomplete correlation ŜO and the single estimates, say Ŝaux. In this way, we can

simply fill up the missing values utilizing the auxiliary information in a time-efficient manner. One idea to
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integrate the two correlation matrices is simply replacing all the missing values in ŜO by the corresponding

entries in the Ŝaux. Another approach is to generate a new correlation estimate by a weighted sum of the two

matrices.

To be specific, we will put more weight on ŜO‚ ij if genes i‚ j have a higher signal-to-noise ratio, which is

calculated as the proportion of cells where two genes have jointly nonzero read counts in the data matrix Xs.

This approach is reasonable because the pairwise complete correlation between two genes is more reliable

if they are more jointly observed in the main scRNA-seq data. Formally, we can obtain a completed version

of the pairwise complete scRNA-seq sample correlation matrix ŜO as _S = a� Ŝ�O + (1 - a)� Ŝaux, where

Ŝ�O is a version of ŜO with all NA’s replaced by zeros, and a = [aij] is a N · N weight matrix. We consider

two types of weights:

1. Simple replacement

aij = 1‚ if ŜO‚ ij is not NA

0‚ otherwise

�
‚ (1)

2. Signal-to-noise ratio

aij =
1

N

XN

n = 1

I(Xs‚ [n‚ i] 6¼ 0)I(Xs‚ [n‚ j] 6¼ 0)‚ (2)

where N denotes the number of cells and Xs‚ [n‚ i] denotes gene i’s expression in cell n. And aij is the pro-

portion of cells where genes i and j have jointly nonzero read counts.

2.2. Model stacking

One may ask how do we unify the single estimates. Before we try to construct a final estimate, one

challenge raised in integrating a series of gene-by-gene correlation matrices is that the genes available in

each source of auxiliary information might be different. For example, the KEGG pathway database contains

pathway information of only 6860 genes, whereas the scRNA-seq data usually has >10,000 genes. For

simplicity, we consider only the genes that all the auxiliary data have in common. Now that we have a

series of correlation matrices of the same genes and same dimensions, how do we optimally combine them?

As ensemble methods are widely used in machine learning and known to have predictive advantages (Opitz

and Maclin, 1999; Polikar, 2006; Rokach, 2010), we propose to address this question through a simple and

powerful approach: model stacking. Let _S1‚ . . . ‚ _Sp be the single correlation estimates derived in Section

2.1. We aim to obtain a final correlation matrix estimate ~S by model stacking in the form

~S = F - 1
Xp

q = 1

bqF( _Sq)

 !
‚ (3)

where F : RN · N ! RN · N is an invertible mapping, and b1‚ . . . ‚ bq 2 R.

The next question is: how to choose function F to ensure an accurate correlation estimate? The simplest

choice of F is the identity mapping F(A) = A‚ 8A 2 RN · N . However, ~S is not guaranteed to be a positive

semidefinite correlation matrix, even if all single estimates _S1‚ . . . ‚ _Sp are positive semidefinite correla-

tion matrices, unless we impose appropriate constraints on b1‚ . . . ‚ bq. For instance, a sufficient condition

is bq > 0‚ 8q, with
P

q bq = 1, which specifies a convex linear combination. Another possible mapping is

F(A) = A - 1, requiring _Sp � 0‚ 8p. To satisfy the positive semidefinite requirement, we propose to replace ~S
with the nearest correlation matrix (Higham, 2002) as per ~S := arg minC2C k~S -CkF , where C is the set of

positive semidefinite correlation matrices. In this way, we are able to obtain a proper correlation matrix

without much sacrifice in accuracy.

Then the next major step is to properly specify Equation (2.2) with optimal parameters bq‚ q = 1‚ ::‚ p.

The first possible solution we propose is a simple average of all the single correlation estimates. The simple

average solution SCENAaverage is obtained by setting F to be the identity mapping and bq = 1
p
, for all q,

yielding the convex linear combination

~S =
1

p

Xp

q = 1

_Sq: (4)
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One major benefit of this approach is its obvious computational advantage. Since the weights are

prespecified as 1
p
, we have no additional tuning or validation steps required. Another advantage of the

simple average approach is that, ~S here is guaranteed to be a positive semidefinite correlation matrix if

all the single estimates _S1‚ . . . ‚ _Sp are all positive semidefinite.

Besides simple averaging, we propose to estimate the parameters bq‚ q = 1‚ ::‚ p by a regression model.

First, we assume a linear relationship between the true underlying correlation and the single correlation

estimates,

f (Sij) =
Xp

q = 1

bqf ( _Sq‚ ij) + eij‚ (5)

where f : ( - 1‚ 1)! R is an invertible function, for example, the Fisher transformation f (x) =
1
2

log ((1 + x)=(1 - x)), and eij is an error component. Then we are able to estimate the vector of coeffi-

cients b = (b1‚ . . . ‚ bq)T is then estimated by solving the penalized optimization problem

b̂ = arg min
b

X
i<j

f (Sij) -
Xp

q = 1

bqf ( _Sq‚ ij)

 !2

+ kP(b)‚ (6)

where P is a penalty. We are able to select the hyper-parameter k � 0 through cross-validation, which is

implemented by creating multiple held-out data subsets that are iteratively removed from training and used

instead to validate prediction accuracy. There are many possibilities to specify the penalty function, and

here we propose to set P(b) =
Pp

q = 1 b2
q to produce the ridge estimator, which is known to protect from

overfitting with regularization (Hoerl and Kennard, 1970). We denote the resulting final correlation matrix
~S as SCENAridge. Of course, the challenge here is that we do not know Sij in Equation (2.2). So, to estimate

the parameters, we develop a reference-downsampling method to construct a small simulation of the sparse

data and thus approximate the ridge estimates.

In the scRNA-seq data of interest, we are able to identify a small subset of genes and cells, which we

may assume to contain very few dropouts and could give us reliable estimates of Sij, referred as a ‘‘ref-

erence data,’’ as presented in Algorithm 1. Then we assume that gene expressions follow Poisson-Gamma

distributions, where the latent Gamma random variables are the true gene expressions. We are able to

construct a downsampled version of the reference data by creating artificial dropouts as Algorithm 2. In this

way, ridge parameters can be estimated using the reference data as response and the single estimates of

the downsampled data as predictors. Finally, a final correlation estimate of the scRNA-seq is obtained using

the resulting ridge coefficients. The full procedure is summarized in Algorithm 3.

Algorithm 1: Reference data selection

Input: N · M data matrix X; parameter vector a.

1. Filter out cells with library size greater than a1-th percentile.

2. Remove genes with mean expression less than a2-th percentile.

3. Remove genes with less than a3-th percentile nonzero cells.

4. Keep cells with library size greater than the a4-th percentile.

5. Keep genes with nonzero proportion greater than a5-th percentile.

The default parameter values are a1 = 95‚ a2 = 25‚ a3 = 15‚ a4 = 5‚ a5 = 50.

Output: N 0 · M0 reference data matrix Y.

Algorithm 2: Poisson-Gamma downsampling

Input: N · M data matrix X; parameters s‚ r > 0;

1. Draw Z1‚ . . . ‚ ZM *i:i:d:G(s‚ r).

2. Draw ~Xij*Poisson(XijZj), for i = 1‚ . . . ‚ N and j = 1‚ . . . ‚ M.

Output: N · M downsampled data matrix ~X.
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Algorithm 3: Stacking regression validation

Input: N · M scRNA-seq data matrix X; reference parameter vector a; downsampling parameters s‚ r > 0; collection of

N · N single correlation matrices (Section 2.1); number of downsampling repeats B; transform function f;

1. Obtain reference N 0 · M0 data matrix X0 through Algorithm 1 with parameter a.

2. Construct response vector y 2 R
N0 (N0 - 1)

2 by extracting off-diagonal entries from ŜX0 = cor(X0).
3. For b = 1‚ . . . ‚ B:

(a) Generate downsampled N 0 · M0 data matrix ~Xb from X through Algorithm 2 with parameters s‚ r.

(b) Obtain all N 0 · N 0 single correlation estimates based on ~Xb and auxiliary correlation matrices _S(b)
1 ‚ . . . ‚ _S(b)

p .

(c) Construct predictors matrix W (b) 2 R
N0 (N0 - 1)

2
· p by extracting off-diagonal entries from each _S(b)

1 ‚ . . . ‚ _S(B)
p .

4. Compute b̂ by regressing f (y) on f (W) through Equation (6), where y = (yT ‚ yT ‚ . . . ‚ yT )T and

W = (W (1)T ‚ . . . ‚ W (B)T )T .

Output: N · M correlation matrix ~S through Equation (2.2) with vector of coefficients b̂.

Both SCENAridge and SCENAaverage combine the same single correlation matrices through model

stacking. But the difference is that the weighting coefficients of SCENAridge are calibrated for the optimal

recovery of the true correlation structure of the corrupted gene expression data, whereas SCENAaverage

simply assigns uniform weights, presumably upweighting auxiliary biological network structures that are

more informative about cell characteristics. Besides, SCENAaverage is computationally cheaper than

SCENAridge, because the estimation of the weighting coefficients of SCENAridge involves multiple addi-

tional imputation and optimization steps that are computationally expensive.

3. SIMULATION

In this section, we present an extensive simulation study showing that SCENA is superior to other meth-

ods in terms of correlation matrix completion, dimensionality reduction, clustering, and graphical mod-

eling of gene expression network recovery. In Section 3.1 we describe how we generate realistic artificial

scRNA-seq data based on real data sets. Specifically, given a real scRNA-seq data set, we first extract a

reference data set, a subset of data where all zeros can be safely assumed to be true values and not

dropouts. Then, we generate downsampled data by creating dropouts in the reference scRNA-seq data

according to the Poisson-Gamma scheme in Algorithm 2. Finally, in Section 3.2 we assess the performance

of SCENA and other existing methods at recovering the correlation structure of the reference data based on

the corrupted downsampled data and other available auxiliary data.

3.1. Generating scRNA-seq data

3.1.1. Original data sets. We use three human scRNA-seq data sets in this simulation study:

1. chu: human embryonic stem cells (Chu et al., 2016).

2. chu_time: human definitive endoderm cells (time-series sequencing) (Chu et al., 2016).

3. darmanis: human brain cells (Darmanis et al., 2015).

The number of cells and number of cell types are reported in Table 1 (genes with zero expression in all

cells are removed).

3.1.2. Reference data sets. For each of the three data sets, we first match the genes with those

available in the auxiliary data (Section 2.1), and then apply Algorithm 1 to perform quality control by

filtering out low-quality genes and cells, and finally extract reference data. All values in the reference data

are treated as true gene expressions, that is, the reference data is free from dropouts. The dimensions of the

three resulting reference data sets are reported in Table 1.

3.1.3. Simulated data. For each of the three reference data sets, we apply Algorithm 2 to generate

downsampled versions of the reference data. We set s = 10, and r = 3000‚ 1000‚ 1000 for chu, chu_time and

darmanis data, respectively, to ensure the expected percentage of zeros in the simulated downsample data

to be similar to the percentage of zeros in the original scRNA-seq data (Table 1). We refer the simulated

downsample data as Xs.
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3.2. Models comparison

In this section, we assess the performance of SCENA and other existing methods at recovering the cor-

relation structure of the reference data based on the corrupted downsampled data and other available

auxiliary data. Although there are many imputation methods for scRNA-seq data, we choose to compare

SCENA with the most popular ones, including SAVER (Huang et al., 2018), drImpute (Gong et al., 2018),

scRMD (Chen et al., 2018), and PRIME (Jeong and Liu, 2020) methods. And SAVER is demonstrated

to outperform other existing methods consistently according to the systematic comparisons on the data

imputation methods by Hou et al. (2020). We show that SCENAaverage and SCENAridge (Section 2.2) out-

perform SAVER, drImpute, scRMD, and PRIME in terms of correlation matrix completion, dimension

reduction, clustering, and graphical modeling. The results shown are averaged across multiple downsam-

pled data sets.

3.2.1. Correlation completion. We measure the similarity between the correlation matrix estimators

considered and the reference correlation matrix Ŝref in terms of mean squared error (MSE) and average

correlation matrix distance (CMD) (Herdin et al., 2005). Table 2 shows that SCENA outperforms all other

data imputation methods in terms of both MSE and CMD. The baseline is the MSE and CMD between Ŝref

and the sample correlation of the downsampled data (blind estimate Ŝs, Section 2.1), treating all 0s as true

gene expressions. SCENAridge has the lowest MSE and CMD among all methods as well as the baseline

in chu_time and darmanis data. SCENAaverage is also better in correlation completion than SAVER and

PRIME.

Besides, the correlation accuracy of single estimates, which are the input of SCENAridge regression dem-

onstrate consistent patterns with the resulting ridge coefficients. Same as before, the accuracy is measu-

red by MSE and CMD between reference correlation and each single correlation. The single estimates with

Table 2. Correlation Completion Accuracy

MSE

chu_time darmanis

CMD

chu_time darmanischu chu

Blind estimate 0.01008 0.00796 0.00804 0.21217 0.15855 0.22897

SAVER 0.01949 0.01850 0.01476 0.44604 0.40991 0.52235

drImpute 0.01181 0.00796 0.01371 0.23595 0.16050 0.33769

scRMD 0.01125 0.00868 0.00879 0.23598 0.17621 0.26170

PRIME 0.03707 0.03508 0.02661 0.47846 0.42137 0.33218

SCENA_average 0.01285 0.01119 0.01313 0.27283 0.21596 0.42946

SCENA_ridge 0.01212 0.00708 0.00513 0.20497 0.12942 0.12474

MSE and CMD between the reference correlation and the estimated correlation derived from various methods. SCENAridge has the

lowest MSE and CMD among imputation methods in chu_time and darmanis data, and is lower than the baseline (‘‘Downsample’’),

which is the sample correlation matrix of the downsampled data. All other imputation approaches perform worse than the baseline.

CMD, correlation matrix distance; MSE, mean squared error.

Table 1. Human scRNA-seq Data Sets Used in Simulations

chu chu_time darmanis

Tissue Embryonic stem cells Definitive endoderm cell Brain cell

No. of cell types 7 6 5

No. of cells 1018 758 366

No. of genes 21,413 18,294 17,738

% zeros 47.43% 51.15% 80.06%

No. of reference cells 951 689 332

No. of reference genes 2522 2160 2306

Source Chu et al. (2016) Chu et al. (2016) Darmanis et al. (2015)

GEO accession code GSE75748 GSE75748 GSE67835

GEO, gene expression omnibus; scRNA-seq, single-cell RNA sequencing.
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lower(higher) MSE and CMD tend to have higher(lower) ridge coefficients and thus contribute more(less)

to the construction of final estimates, as shown in Figure 1. Therefore, SCENAridge can accurately recover

the reference correlation by allocating more weights to those single correlations with better performance.

3.2.2. Dimension reduction. For each correlation matrix estimate from imputed data and SCENA,

we compute the matrix of eigenvectors V, and obtain the principal component scores U = ZT V , where Z is

a standardized version of the log transformed simulated data Xs. In Figure 2, we compare the scatterplots

of the top two principal component (PC) scores of the cells against each other. The plots are colored by cell

type labels, and PCs are derived from sample correlations of reference data, SAVER imputed data, and

correlation estimations of SCENAridge and SCENAaverage. Both SCENAridge and SCENAaverage recover the

reference data structure better than data imputation, and yield scatterplots with clear separation among

different types of cells indicated by the cell type labels.

3.2.3. Clustering. We perform hierarchical cells clustering (Ward’s minimum variance method with

Manhattan distance; Friedman et al., 2001) based on the standardized principal components of the down-

sample scRNA-seq data obtained from the different approaches considered (quantities U computed in Section

3.2.2). For each method, we use the top PCs with the proportion of variance explained within the range

(90%,99%), and set the number of clusters equal to the number of true cell labels in the scRNA-seq data.

To assess clustering performance, we measure the similarity between cluster assignments and true cell

labels by calculating the adjusted rand index (ARI) (Rand, 1971). This metric takes values in the interval

[0‚ 1], with large values indicating stronger similarity. In Figure 3 we can see that SCENAaverage yields the

best clustering performance over all other methods in all three data sets. Interestingly, in the chu data,

SCENAaverage has even better performance than the clustering obtained from reference data, in accordance

with the fact that SCENA exploits auxiliary information besides the scRNA-seq data.

FIG. 1. Correlation accuracy and estimated parameters of SCENAridge of single estimates. It presents a consistent

pattern between lower MSE/CMD and higher ridge parameters. corshrink (Lounici, 2014) has relatively lower MSE and

CMD with the reference correlation in all three data sets, which is consistent with its higher ridge coefficients. CMD,

correlation matrix distance; MSE, mean squared error.
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3.2.4. Graphical model of gene expression network. Gene expression network recovery in the

case where several pairs of variables are never observed jointly is a major statistical problem that has

gained strong interest recently. A thorough theoretical investigation of the so-called graph quilting problem

can be found in Vinci et al. (2019). Such problem is strictly related to ours, where an extremely large num-

ber of gene pairs have no reliable empirical correlation estimates. In this study, we investigate the graph

recovery performance based on the various correlation matrix estimates through simulations. Specifically,

we plug the correlation matrix estimates into the graphical lasso (Yuan and Lin, 2007) to obtain a gene-by-

gene network estimate through sparse precision matrix estimation.

For simplicity, we compute graphs about only the top 50 most variable genes among cell types, identified

by applying analysis of variance (ANOVA) to gene expression of reference data. To evaluate the graph

recovery performance of the methods, we compute the F1-score with respect to the graph estimated from

reference data. In Figure 4A we plot F1-score versus the number of graph edges for all methods and data

sets. SCENAridge is superior in recovering the reference graph than other methods in chu and darmanis data,

and it produces a similarly high F1-score in chu_time data as SAVER method. For illustration, in Figure 4B

we also display gene expression network relative to the chu data with 50 edges.

4. APPLICATION TO SCRNA-SEQ DATA

We now apply the methods to the analysis of the three data sets (Table 1), where the chu data set contains

the gene expression of 6038 genes (largest genes set that matched available auxiliary information) mea-

sured in 1018 human embryonic stem cells, chu_time data set contains 5863 genes measured in 1018

human definitive endoderm cells, and darmanis contains 6001 genes measured in 366 human brain cells.

In Figure 5 we plot the first two principal components based on SCENAaverage and SCENAridge, whereas

in Figure 6 we compare the cell clustering performance of SCENA with other methods in terms of ARI.

The hierarchical clustering based on SCENAaverage performs the best at recovering true cell type labels, in

accordance with simulation results (Section 3.2.3).

Finally, in Figure 7 we display the gene expression network (graphical lasso; Yuan and Lin, 2007) of the

500 most variable genes among cell types (ANOVA criterion as in Section 3.2.4) based on SCENAridge,

with number of edges selected through Extended Bayesian Information Criterion (Foygel and Drton, 2010).

Gene-level communities can be detected by edge betweenness score (Newman and Girvan, 2004), and the

darmanis data set shows a clear separation among the detected clusters. With the hypothesis that genes that

belong to the same cluster might share similar biological functions, we find that the main communities are

enriched in biologically meaningful pathways.

For instance, in the darmanis data set, there are three main communities enriched in the KEGG terms,

metabolic pathways, GABAergic synapse, and PI3K-Akt signaling pathway, which either contribute to

fundamental cellular functions or are significant in the mammalian central nervous system (Kanehisa

et al., 2016). Besides, the hub gene with the largest number of edges SDC4 (408 edges) encodes the

FIG. 6. Clustering performance of real data applications. ARI of cell type grouping through hierarchical clustering

after dimension reduction using PCA explaining various proportions of variance. SCENAaverage yields the best clus-

tering performance over all other methods in all three data sets.
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transmembrane (type I) heparan sulfate proteoglycan, which is significant in intracellular signaling

(Ridgway et al., 2010). In addition, the enriched pathways in the chu data set of embryonic stem cell are

also biologically meaningful, including KEGG terms Regulation of actin cytoskeleton, DNA replication,

and Focal adhesion.

A top hub node protein coding gene DNMT3B is a catalytically active DNA methyltransferase (Liao

et al., 2015), and is specifically expressed in totipotent embryonic stem cells (Watanabe et al., 2002).

Moreover, DNMT3B is one of the pluripotency markers with high level of expression in the cell type H1,

as demonstrated by Chu et al. (2016). Besides, genes IFI16 (Hurst et al., 2019) and HAND1 (Wagh et al.,

2014) are marker genes in cell type EC and cell type TB, respectively, and correspondingly have relatively

large numbers of connections. Also, the main communities detected in chu_time data include Cysteine and

methionine metabolism, Cell adhesion molecules, and Ribosome, which also control important biological

functions in endoderm cells (Kanehisa et al., 2016).

5. DISCUSSION

We have proposed and studied SCENA, a novel methodology for gene-by-gene correlation matrix

estimation from dropout-corrupted scRNA-seq data. SCENA builds upon the strikingly simple but powerful

idea of optimally combining multiple gene-by-gene correlation matrices derived from various sources of

information, besides the scRNA-seq data of interest. This combination is implemented efficiently through

model stacking techniques.

We have demonstrated that SCENA can provide superior estimation performance compared with tradi-

tional data imputation methods. In our analyses, SCENAridge remarkably recovered the information

underlying the corrupted scRNA-seq data in terms of correlation completion, dimension reduction, and

graphical modeling, whereas the hierarchical clustering based on SCENAaverage yielded cell groupings that

best reflected true cell type heterogeneity in terms of ARI.

Indeed, although both variants combine the same single correlation matrices through model stacking,

the weighting coefficients of SCENAridge are calibrated for the optimal recovery of the true correlation

structure of the corrupted gene expression data, whereas SCENAaverage simply assigns uniform weights,

presumably upweighting auxiliary biological network structures that are more informative about cell

characteristics. SCENAaverage is computationally cheaper than SCENAridge, because the estimation of the

weighting coefficients of SCENAridge involves multiple additional imputation and optimization steps that

are computationally expensive.

For instance, in the application presented in Section 4, the model stacking step for SCENAridge took

about 40 minutes, whereas only about 30 seconds for SCENAaverage, on a laptop with 16 GB of RAM

(2133 MHz) and dual-core processor (3.1 GHz). Given all these considerations, we recommend to use

SCENAaverage for the analysis of massive scRNA-seq data sets.

Although we have demonstrated our approach using specific auxiliary sources, SCENA is general and

conducive to many different types of correlation imputation approaches and additional sources of auxil-

iary information on genetic interactions. In addition, our approach can be further optimized using differ-

ent machine learning approaches to model stacking and ensemble learning. Overall, we expect SCENA

to become an important instrument for downstream analyses of massive scRNA-seq data that powerfully

incorporates known auxiliary information on genetic interactions.
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