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Abstract

The purpose of this study was to develop a virtual imaging framework that simulates a new 

photon-counting CT (PCCT) system (NAEOTOM Alpha, Siemens). The PCCT simulator was 

built upon the DukeSim platform, which generates projection images of computational phantoms 

given the geometry and physics of the scanner and imaging parameters. DukeSim was adapted to 

account for the geometry of the PCCT prototype. To model the photon-counting detection process, 

we utilized a Monte Carlo-based detector model with the known properties of the detectors. We 

validated the simulation platform against experimental measurements. The images were acquired 

at four dose levels (CTDIvol of 1.5, 3.0, 6.0, and 12.0 mGy) and reconstructed with three kernels 

(Br36, Br40, Br48). The experimental acquisitions were replicated using our developed simulation 

platform. The real and simulated images were quantitatively compared in terms of image quality 

metrics (HU values, noise magnitude, noise power spectrum, and modulation transfer function). 

The clinical utility of our framework was demonstrated by conducting two clinical applications 

(COPD quantifications and lung nodule radiomics). The phantoms with relevant pathologies 

were imaged with DukeSim modeling the PCCT systems. Different imaging parameters (e.g., 

dose, reconstruction techniques, pixel size, and slice thickness) were altered to investigate their 

effects on task-based quantifications. We successfully implemented the acquisition and physics 

attributes of the PCCT prototype into the DukeSim platform. The discrepancy between the real 

and simulated data was on average about 2 HU in terms of noise magnitude, 0.002 mm−1 in terms 

of noise power spectrum peak frequency and 0.005 mm−1 in terms of the frequency at 50% MTF. 

Analysis suggested that lung lesion radiomics to be more accurate with reduced pixel size and 

slice thickness. For COPD quantifications, higher doses, thinner slices, and softer kernels yielded 

more accurate quantification of density-based biomarkers. Our developed virtual imaging platform 

enables systematic comparison of new PCCT technologies as well as optimization of the imaging 

parameters for specific clinical tasks.
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1. INTRODUCTION

Photon-counting CT (PCCT) is an emerging technology that has the potential of improving 

image quality and reducing radiation dose to patients, compared with conventional energy-

integrating CT systems, thereby improving diagnosis and management of patients. This 

technology is currently in its investigational phase and requires comprehensive assessments 

for optimized use for various clinical tasks. These assessments are limited if only patient 

and physical phantom images are utilized. Physical phantoms do not represent various 

patient anatomies or clinical abnormalities, and patient images lack definite knowledge of 

ground-truth in terms of anatomy or physiology. In addition, the magnitude of these datasets 

is limited as currently, there are not many PCCT systems available. These assessments can 

alternatively be pursued through realistic medical imaging simulations that accurately model 

the imaging chain, including models of patient populations and imaging scanners. [1]

The purpose of this study was to develop a virtual imaging framework that simulates a 

new, state-of-the-art photon-counting system (NAEOTOM Alpha, Siemens). The developed 

CT simulator was validated against experimental measurements. To demonstrate the clinical 

utilities of this computational framework, we performed initial trials focusing on chronic 

obstructive pulmonary disease (COPD) quantifications and lung nodule radiomics.

2. MATERIALS AND METHODS

2.1 Simulator development

The PCCT simulator was built upon our DukeSim platform [2, 3], which generates 

projection images of computational phantoms by combining primary (through ray-tracing) 

and scatter (through Monte Carlo [4]) signals, given the desired geometry, physics of 

the source and detector, and acquisition parameters. In this work, DukeSim was adapted 

to account for the acquisition geometry of the NAEOTOM Alpha with detector pixel 

sizes of 0.4 mm at the isocenter. To model the photon-counting detection process, we 

utilized a Monte Carlo-based detector response model with the known material (CdTe) 

and geometry of the systems’ detectors. The response model consisted of a poly-energetic 

vector for quantum efficiency (per detector energy threshold), a poly-energetic vector for 

charge sharing between 3x3 neighboring pixels (per detector energy threshold), and a 

spatio-energetic covariance matrix for modeling correlated noise between signals acquired at 

different detector energy thresholds across 3x3 neighboring pixels.

For each detector pixel with a set of n detector energy thresholds, the average (noise-free) 

detected signal vector of M(det)1xn was calculated as

M(det)1xn = ∑
E

∑
i, j = 1

i, j = 3
Ntr(E)i, j . R(E, tn)i, j,

where Ntr(E)i,j is the transmitted photon counts for the 3x3 neighboring pixels (calculated 

by the ray-tracing and Monte Carlo modules), and R(E, tn)i,j is the probability of an incident 

photon at an Energy bin of E being detected at the 3x3 neighboring pixels of i,j at the 

Abadi et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detector energy threshold of tn. The noise associated with the detected signal was modeled 

with a covariance matrix of K(det)nxn

K(det)nxn =
⋱ ⋯ ⋮
⋮ ⋱ ⋮
⋯ Cov(det)a, b ⋱

,

Cov(det)a, b = ∑
E

∑
i, j = 1

i, j = 3
Ntr(E)i, j . Cov(E, ta, tb)i, j,

where Cov(E, ta, tb)i,j is the spatio-energetic covariance between incident counts at the 

energy thresholds of ta and tb for the 3x3 neighboring pixels of i,j. The noise was then 

estimated using multivariate gaussian random variables with the mean vector of M(det)1xn 

and covariance matrix of K(det)nxn. For the image reconstruction, the projection images 

were input to a water calibration and beam hardening correction module and then input to 

vendor-specific reconstruction software (ReconCT, Siemens).

2.2 Simulator validation

We validated the accuracy of the DukeSim simulations against experimental measurements 

using the NAEOTOM Alpha scanner installed at Duke University. We imaged an ACR 

(Gammex) phantom with detector thresholds of 20 and 65 keV, at 120 kV, dose levels 

(CTDIs of 1.5 to 24 mGy), beam collimations of 144x0.4 mm, a pitch of 0.8, and a rotation 

time of 0.5 seconds. The acquired projection images were used to reconstruct both threshold 

images and 70 keV virtual monoenergetic images using ReconCT with an inplane pixel size 

of 0.4 mm and a slice thickness of 0.4 mm. The reconstruction algorithm was Quantum 

Iterative Reconstruction (QIR) with kernels of Br36, Br40, and Br48.

The experimental acquisitions were replicated using our developed virtual simulation 

platform. A computational model of the ACR phantom was generated and input to DukeSim. 

The simulator was set to mimic the NAEOTOM Alpha scanner acquisition geometry and 

physics, simulating imaging conditions similar to the experimental acquisitions. The real 

and simulated images were quantitatively compared in terms of image quality metrics such 

as HU values, noise characteristics (magnitude and noise power spectrum), and spatial 

resolution (modulation transfer function).

2.3 VIT application

To demonstrate the clinical utility of this developed virtual framework, we studied two 

clinical applications (COPD quantifications and lung nodule radiomics) where PCCT 

scanners have the potential to improve the quantification and characterizations. XCAT 

computational phantoms [5-7] were used as virtual patients in the studies. The phantoms, 

including the relevant pathologies (COPD [8] and lung nodules), were imaged with 

DukeSim modeling the NAOETOM scanner. Different imaging parameters (radiation 

dose, reconstruction algorithm and kernel, pixel size, and slice thickness) were altered to 

investigate their effects on image quantifications. The objective was to identify the imaging 
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parameters that optimize the accuracy of task-based quantifications, defined separately for 

each clinical task. The image quality metrics were density-based for COPD characterizations 

[9] and morphological radiomics features for lung nodule assessments [10]. These task-

based metrics were extracted from the virtual CT images and compared against the digital 

ground truth that exists in the computational phantoms.

3. RESULTS

We successfully implemented the acquisition and physics attributes of the NAEOTOM 

Alpha into the DukeSim platform. Figure 1 shows images of an ACR phantom acquired with 

the NAEOTOM scanner and DukeSim. Qualitatively, the virtual images closely matched 

with the real images. Figure 2 shows the HU values measured in both real and simulated 

images. The simulated measurements closely matched the real ones with HU differences of 

−4.2 ± 4.5, 3.9 ± 3.6, 5.0 ± 6.3, and 71.1 ± 17.1 for the air, polyethylene, acrylic, and bone 

insert. The higher discrepancies in the bone insert are likely due to the mismatch of the 

density and elemental composition of that material since the exact values were unknown to 

us.

Figure 3 shows the comparison of the noise magnitude measurements across the acquired 

dose values and reconstruction kernels, demonstrating the close match between the real and 

simulated images in terms of noise magnitude (−1.6 ± 4.2 HU). Figure 4 illustrates the 

normalized noise power spectrum measurements in the real and simulated images across 

the reconstructed kernels. The difference between the real and simulated measurements was 

0.002 ± 0.012 mm−1 in terms of peak frequency, showing a close match in terms of noise 

texture.

Figure 5 shows the modulation transfer function measured in both real and simulated 

images across the reconstruction kernels. The simulations were done with both 1x1 and 

4x4 subsampling of the source and detector area demonstrating how more sampling of the 

x-ray source and detector resulted in more realistic images in terms of spatial resolution. The 

discrepancy between the real and simulated data was 0.005 ± 0.009 in terms the frequency at 

50% MTF (f50).

For the lung radiomics study, our analysis showed that morphological features were closer to 

the corresponding ground truth values when smaller pixel sizes (0.34 vs. 0.68 mm), smaller 

slice thicknesses (0.4 vs. 3.0 mm) and Q56 kernels (compared to Br56 and Bl56) were used 

[10]. For the COPD quantifications, we observed that higher doses (3.17 vs. 0.63 mGy), 

thinner slices (0.4 mm vs. 1.5 mm), and softer kernels (Br36 vs. Br48 and Br64) led to more 

accurate quantification of density-based biomarkers.[9]

4. CONCLUSION

We developed and validated a scanner-specific simulation platform to study a state-of-the-

art clinical photon-counting scanner. We further performed two clinical studies (COPD 

quantifications, lung nodule radiomics) to optimize the imaging parameters of this 

investigational scanner for accurate characterization and quantifications of various imaging 

tasks. Our analysis suggested that an optimum protocol for lung lesion radiomics may 
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have the smallest pixel size and slice thickness. For more accurate density-based COPD 

quantifications, higher doses, soft kernels, and thinner slices may be used. Our developed 

virtual imaging platform enables systematic comparison of new PCCT technologies as well 

as optimization of the imaging parameters for specific clinical tasks.
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Figure 1. 
Real (top row) and simulated (bottom row) images of the ACR phantom imaged at two 

different dose levels. Images demonstrate close visual match between the real and simulated 

images. Images are shown with a window level of 0 and level of 200 HU.
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Figure 2. 
HU values measured in both real and simulated images for two threshold images (T1 = 20 

and T2 = 65 keV) and the virtual monoenergetic images at 70 keV.
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Figure 3. 
Noise magnitude measured in real data (red) and simulated (blue) data at various dose levels 

(CTDIvol) and reconstruction kernels (Br36, Br40, and Br48).
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Figure 4. 
Normalized noise power spectrum measured in real data (red) and simulated (blue) images 

across multiple reconstruction kernels (Br36, Br40, and Br48).
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Figure 5. 
Modulation transfer function measured in the real data (red) and simulated (blue and black) 

images across multiple reconstruction kernels (Br36, Br40, and Br48). The simulations were 

done with 1x1 and 4x4 subsampling of the source and detector area, demonstrating how 

more sampling of the x-ray source and detector resulted in more realistic images in terms of 

spatial resolution.
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